The 2023 MDPI Annual Report has
been released!
 
33 pages, 1127 KiB  
Article
Conceptual Models of Franchisee Behaviors in the Dietary Supplements and Cosmetics to Imply the Business Investments
by Patcharapol Suttidharm and Adisorn Leelasantitham
Sustainability 2024, 16(10), 4287; https://doi.org/10.3390/su16104287 (registering DOI) - 19 May 2024
Abstract
Franchise businesses have demonstrated resilience before, through, and after the circumstances of COVID-19. This can be attributed to the inherent appeal of rapid success and risk mitigation for investors. Therefore, investors are attached to engaging in a franchise business model. Fierce competition exists [...] Read more.
Franchise businesses have demonstrated resilience before, through, and after the circumstances of COVID-19. This can be attributed to the inherent appeal of rapid success and risk mitigation for investors. Therefore, investors are attached to engaging in a franchise business model. Fierce competition exists among franchise businesses, with numerous brands within the same industry, especially the cosmetic and dietary supplement franchise category, which has garnered significant popularity in Southeast Asia, particularly Thailand. The expansion of this franchise category has accelerated, surpassing the growth rates observed in other countries. Investment decisions across various investor levels are influenced by diverse factors, including intense competition, contributing to the rapid expansion. Therefore, a comprehensive study and understanding of the investment behavior of cosmetic and dietary supplement franchise businesses has become imperative. The success of a franchise business hinges on different factors encompassing decisions made before, during, and after investments. This study delves into the decision-making behaviors preceding and following investments across different investor levels in the cosmetics and dietary supplement franchise industry, utilizing fundamental aspects derived from rational choice theory (RCT) and additional variables. The researcher gathered responses through questionnaires from 490 respondents with investment experience in the cosmetics and dietary supplement franchise business. The study revealed that factors postulated in this study significantly influenced investment choices within cosmetics and dietary supplement franchises. When segmented based on investor levels, distinct considerations emerged for each group. Furthermore, there is a compelling need for cosmetic and dietary supplement franchise owners to implement enhancements in services to uphold and expand investor bases, representing an intense challenge in the cosmetics and dietary supplement franchise business nowadays. This study is intended only for individuals with prior investment experience in the cosmetics and dietary supplement franchise industry. It focuses on examining the factors that influence investment decisions both before and after the initial investment, particularly with regard to dietary supplement and cosmetics franchises. Full article
(This article belongs to the Special Issue Sustainable Management and Consumer Behavior Studies)
24 pages, 2833 KiB  
Review
A Comprehensive Review of Plant-Based Biopolymers as Viscosity-Modifying Admixtures in Cement-Based Materials
by Yousra Boutouam, Mahmoud Hayek, Kamal Bouarab and Ammar Yahia
Appl. Sci. 2024, 14(10), 4307; https://doi.org/10.3390/app14104307 (registering DOI) - 19 May 2024
Abstract
As the construction industry is facing the challenge of meeting the ever-increasing demand for environmentally friendly and durable concrete, the role of viscosity-modifying admixtures (VMAs) has become increasingly essential to improve the rheological properties, stability, and mechanical properties of concrete. Additionally, natural polymers [...] Read more.
As the construction industry is facing the challenge of meeting the ever-increasing demand for environmentally friendly and durable concrete, the role of viscosity-modifying admixtures (VMAs) has become increasingly essential to improve the rheological properties, stability, and mechanical properties of concrete. Additionally, natural polymers are ever evolving, offering multiple opportunities for innovative applications and sustainable solutions. This comprehensive review delves into the historical context and classifications of VMAs, accentuating their impact in enhancing the rheological properties, stability, and mechanical properties of concrete. Emphasis is placed on the environmental impact of synthetic VMAs, promoting the exploration of sustainable alternatives derived from plant-based biopolymers. Indeed, biopolymers, such as cellulose, starch, alginate, pectin, and carrageenan are considered in this paper, focusing on understanding their efficacy in improving concrete properties while enhancing the environmental sustainability within the concrete. Full article
(This article belongs to the Special Issue Innovative Building Materials for Sustainable Built Environment)
Show Figures

Figure 1

16 pages, 9672 KiB  
Article
Experimental Evaluation of a Granular Damping Element
by Sanel Avdić, Marko Nagode, Jernej Klemenc and Simon Oman
Polymers 2024, 16(10), 1440; https://doi.org/10.3390/polym16101440 (registering DOI) - 19 May 2024
Abstract
Due to their advantages—longer internal force delay compared to bulk materials, resistance to harsh conditions, damping of a wide frequency spectrum, insensitivity to ambient temperature, high reliability and low cost—granular materials are seen as an opportunity for the development of high-performance, lightweight vibration-damping [...] Read more.
Due to their advantages—longer internal force delay compared to bulk materials, resistance to harsh conditions, damping of a wide frequency spectrum, insensitivity to ambient temperature, high reliability and low cost—granular materials are seen as an opportunity for the development of high-performance, lightweight vibration-damping elements (particle dampers). The performance of particle dampers is affected by numerous parameters, such as the base material, the size of the granules, the flowability, the initial prestress, etc. In this work, a series of experiments were performed on specimens with different combinations of influencing parameters. Energy-based design parameters were used to describe the overall vibration-damping performance. The results provided information for a deeper understanding of the dissipation mechanisms and their mutual correlation, as well as the influence of different parameters (base material, granule size and flowability) on the overall damping performance. A comparison of the performance of particle dampers with carbon steel and polyoxymethylene granules and conventional rubber dampers is given. The results show that the damping performance of particle dampers can be up to 4 times higher compared to conventional bulk material-based rubber dampers, even though rubber as a material has better vibration-damping properties than the two granular materials in particle dampers. However, when additional design features such as mass and stiffness are introduced, the results show that the overall performance of particle dampers with polyoxymethylene granules can be up to 3 times higher compared to particle dampers with carbon steel granules and conventional bulk material-based rubber dampers. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

20 pages, 1184 KiB  
Article
Research on CC-SSBLS Model-Based Air Quality Index Prediction
by Lin Wang, Yibing Wang, Jian Chen, Shuangqing Zhang and Lanhong Zhang
Atmosphere 2024, 15(5), 613; https://doi.org/10.3390/atmos15050613 (registering DOI) - 19 May 2024
Abstract
Establishing reliable and effective prediction models is a major research priority for air quality parameter monitoring and prediction and is utilized extensively in numerous fields. The sample dataset of air quality metrics often established has missing data and outliers because of certain uncontrollable [...] Read more.
Establishing reliable and effective prediction models is a major research priority for air quality parameter monitoring and prediction and is utilized extensively in numerous fields. The sample dataset of air quality metrics often established has missing data and outliers because of certain uncontrollable causes. A broad learning system based on a semi-supervised mechanism is built to address some of the dataset’s data-missing issues, hence reducing the air quality model prediction error. Several air parameter sample datasets in the experiment were discovered to have outlier issues, and the anomalous data directly impact the prediction model’s stability and accuracy. Furthermore, the correlation entropy criteria perform better when handling the sample data’s outliers. Therefore, the prediction model in this paper consists of a semi-supervised broad learning system based on the correlation entropy criterion (CC-SSBLS). This technique effectively solves the issue of unstable and inaccurate prediction results due to anomalies in the data by substituting the correlation entropy criterion for the mean square error criterion in the BLS algorithm. Experiments on the CC-SSBLS algorithm and comparative studies with models like Random Forest (RF), Support Vector Regression (V-SVR), BLS, SSBLS, and Categorical and Regression Tree-based Broad Learning System (CART-BLS) were conducted using sample datasets of air parameters in various regions. In this paper, the root mean square error (RMSE) and mean absolute percentage error (MAPE) are used to judge the advantages and disadvantages of the proposed model. Through the experimental analysis, RMSE and MAPE reached 8.68 μg·m−3 and 0.24% in the Nanjing dataset. It is possible to conclude that the CC-SSBLS algorithm has superior stability and prediction accuracy based on the experimental results. Full article
16 pages, 4708 KiB  
Article
Hydrogen Sulfide Increases Drought Tolerance by Modulating Carbon and Nitrogen Metabolism in Foxtail Millet Seedlings
by Juan Zhao, Shifang Zhang, Xiaoxiao Yang, Ke Feng, Guo Wang, Qifeng Shi, Xinru Wang, Xiangyang Yuan and Jianhong Ren
Agronomy 2024, 14(5), 1080; https://doi.org/10.3390/agronomy14051080 (registering DOI) - 19 May 2024
Abstract
Hydrogen sulfide (H2S), a novel gas signaling molecule, has been shown to enhance plant resistance to various abiotic stresses. Here, we investigated the effect of sodium hydrosulfide (NaHS, a H2S donor) on the growth, photosynthetic parameters, and enzyme activities [...] Read more.
Hydrogen sulfide (H2S), a novel gas signaling molecule, has been shown to enhance plant resistance to various abiotic stresses. Here, we investigated the effect of sodium hydrosulfide (NaHS, a H2S donor) on the growth, photosynthetic parameters, and enzyme activities related to carbon and nitrogen metabolism, as well as the levels of carbohydrates and nitrogen metabolites in foxtail millet seedlings subjected to drought stress conditions in pots. The findings revealed that drought stress led to a significant 41.2% decline in the total dry weight (DW) after 12 days of treatment, whereas plants treated with NaHS showed a lesser reduction of 18.7% in total DW. Under drought stress, exogenous NaHS was found to enhance carbon metabolism in foxtail millet seedlings by significantly enhancing photosynthetic capacity, starch, and sucrose content. Additionally, exogenous NaHS was observed to improve nitrogen metabolism by substantially increasing soluble protein content, nitrogen assimilate activity, and synthesis of nitrogen-containing compounds in foxtail millet seedlings. In summary, the exogenous application of NaHS stimulated seedling growth and enhanced drought resistance in foxtail millet by modulating carbon and nitrogen metabolism processes affected by drought stress. Full article
Show Figures

Figure 1

20 pages, 10664 KiB  
Article
Research on NaCl-KCl High-Temperature Thermal Storage Composite Phase Change Material Based on Modified Blast Furnace Slag
by Gai Zhang, Hui Cui, Xuecheng Hu, Anchao Qu, Hao Peng and Xiaotian Peng
Energies 2024, 17(10), 2430; https://doi.org/10.3390/en17102430 (registering DOI) - 19 May 2024
Abstract
The high-temperature composite phase change materials (HCPCMs) were prepared from solid waste blast furnace slag (BFS) and NaCl-KCl binary eutectic salt to achieve efficient and cost-effective utilization. To ensure good chemical compatibility with chlorine salt, modifier fly ash (FA) was incorporated and subjected [...] Read more.
The high-temperature composite phase change materials (HCPCMs) were prepared from solid waste blast furnace slag (BFS) and NaCl-KCl binary eutectic salt to achieve efficient and cost-effective utilization. To ensure good chemical compatibility with chlorine salt, modifier fly ash (FA) was incorporated and subjected to high-temperature treatment for the processing of industrial solid waste BFS, which possesses a complex chemical composition. The HCPCMs were synthesized through a three-step process involving static melting, solid waste modification, and mixing–cold pressing–sintering. Then, the influence of the modification method and the amount of SiC thermal conductivity reinforced material on chemical compatibility and thermodynamic performance was explored. The results demonstrate that the predominant phase of the modified solid waste is Ca2Al2SiO7, which exhibits excellent chemical compatibility with chlorine salt. HCPCMs containing less than 50 wt.% chloride content exhibit good morphological stability without any cracks, with a melting temperature of 661.76 °C and an enthalpy value of 108.73 J/g. Even after undergoing 60 thermal cycles, they maintain good chemical compatibility, with leakage rates for melting and solidification enthalpies being only 6.3% and 0.23%, respectively. The equilibrium was achieved when 40 wt.% of chloride salt was encapsulated upon the addition of 10% of SiC, and the incorporation of SiC resulted in an enhancement of thermal conductivity for HCPCMs to 2.959 W/(m·K) at room temperature and 2.400 W/(m·K) at 200 °C, with an average increase of about 2 times. The cost of the prepared HCPCMs experienced a significant reduction of 81.3%, demonstrating favorable economic performance and promising prospects for application. The research findings presented in this article can offer significant insights into the efficient utilization of solid waste. Full article
(This article belongs to the Special Issue Advanced Applications of Solar and Thermal Storage Energy)
Show Figures

Figure 1

13 pages, 748 KiB  
Article
The Effect of 14-Day Consumption of Hydrogen-Rich Water Alleviates Fatigue but Does Not Ameliorate Dyspnea in Long-COVID Patients: A Pilot, Single-Blind, and Randomized, Controlled Trial
by Yineng Tan, Yixun Xie, Gengxin Dong, Mingyue Yin, Zhangyuting Shang, Kaixiang Zhou, Dapeng Bao and Junhong Zhou
Nutrients 2024, 16(10), 1529; https://doi.org/10.3390/nu16101529 (registering DOI) - 19 May 2024
Abstract
(1) Background: Hydrogen (H2) may be a potential therapeutic agent for managing Long COVID symptoms due to its antioxidant and anti-inflammatory properties. However, more scientific literature is needed to describe the effects of H2 administration on treating symptoms. A study [...] Read more.
(1) Background: Hydrogen (H2) may be a potential therapeutic agent for managing Long COVID symptoms due to its antioxidant and anti-inflammatory properties. However, more scientific literature is needed to describe the effects of H2 administration on treating symptoms. A study aimed to investigate the impact of hydrogen-rich water (HRW) administration on the fatigue and dyspnea of Long-COVID patients for 14 consecutive days. (2) Methods: In this randomized, single-blind, placebo-controlled study, 55 participants were recruited, and 23 of them were excluded. A total of 32 eligible participants were randomized into a hydrogen-rich water (HRW) group (n = 16) and a placebo water (PW) group (n = 16) in which they were instructed to consume hydrogen-rich water or placebo water for 14 days, respectively. The participants completed the Fatigue Severity Scale (FSS), Six-Minute Walk Test (6MWT), 30 s Chair Stand Test (30s-CST), Modified Medical Research Council Dyspnea Rating Scale (mMRC), Pittsburgh Sleep Quality Index (PSQI), and depression anxiety stress scale (DASS-21) before and after the intervention. A linear mixed-effects model was used to analyze the effects of HRW. Cohen’s d values were used to assess the effect size when significance was observed. The mean change with 95% confidence intervals (95% CI) was also reported. (3) Results: The effects of HRW on lowering FSS scores (p = 0.046, [95% CI = −20.607, −0.198, d = 0.696] and improving total distance in the 6WMT (p < 0.001, [95% CI = 41.972, 61.891], d = 1.010), total time for the 30s-CST (p = 0.002, [95% CI = 1.570, 6.314], d = 1.190), and PSQI scores (p = 0.012, [95% CI = −5.169, 0.742], d = 1.274) compared to PW were of a significantly moderate effect size, while there was no significant difference in mMRC score (p = 0.556) or DASS-21 score (p > 0.143). (4) Conclusions: This study demonstrates that HRW might be an effective strategy for alleviating fatigue and improving cardiorespiratory endurance, musculoskeletal function, and sleep quality. Still, it does not ameliorate dyspnea among Long-COVID patients. Full article
(This article belongs to the Section Nutritional Epidemiology)
14 pages, 2585 KiB  
Review
Recent Advances in the Photonic Curing of the Hole Transport Layer, the Electron Transport Layer, and the Perovskite Layers to Improve the Performance of Perovskite Solar Cells
by Moulay Ahmed Slimani, Sylvain G. Cloutier and Ricardo Izquierdo
Nanomaterials 2024, 14(10), 886; https://doi.org/10.3390/nano14100886 (registering DOI) - 19 May 2024
Abstract
Perovskite solar cells (PSCs) have attracted increasing research interest, but their performance depends on both the choice of materials and the process used. The materials can typically be treated in solution, which makes them well suited for roll-to-roll processing methods, but their deposition [...] Read more.
Perovskite solar cells (PSCs) have attracted increasing research interest, but their performance depends on both the choice of materials and the process used. The materials can typically be treated in solution, which makes them well suited for roll-to-roll processing methods, but their deposition under ambient conditions requires overcoming some challenges to improve stability and efficiency. In this review, we highlight the latest advancements in photonic curing (PC) for perovskite materials, as well as for hole transport layer (HTL) and electron transport layer (ETL) materials. We present how PC parameters can be used to control the optical, electrical, morphological, and structural properties of perovskite HTL and ETL layers. Emphasizing the significance of these advancements for perovskite solar cells could further highlight the importance of this research and underline its essential role in creating more efficient and sustainable solar technology. Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications)
18 pages, 3039 KiB  
Article
Balancing Data Acquisition Benefits and Ordering Costs for Predictive Supplier Selection and Order Allocation
by Alberto Regattieri, Matteo Gabellini, Francesca Calabrese, Lorenzo Civolani and Francesco Gabriele Galizia
Appl. Sci. 2024, 14(10), 4306; https://doi.org/10.3390/app14104306 (registering DOI) - 19 May 2024
Abstract
The strategic selection of suppliers and the allocation of orders across multiple periods have long been recognized as critical aspects influencing company expenditure and resilience. Leveraging the enhanced predictive capabilities afforded by machine learning models, direct lookahead models—linear programming models that optimize future [...] Read more.
The strategic selection of suppliers and the allocation of orders across multiple periods have long been recognized as critical aspects influencing company expenditure and resilience. Leveraging the enhanced predictive capabilities afforded by machine learning models, direct lookahead models—linear programming models that optimize future decisions based on forecasts generated by external predictive modules—have emerged as viable alternatives to traditional deterministic and stochastic programming methodologies to solve related problems. However, despite these advancements, approaches implementing direct lookahead models typically lack mechanisms for updating forecasts over time. Yet, in practice, suppliers often exhibit dynamic behaviours, and failing to update forecasts can lead to suboptimal decision-making. This study introduces a novel approach based on parametrized direct lookahead models to address this gap. The approach explicitly addresses the hidden trade-offs associated with incorporating forecast updates. Recognizing that forecasts can only be updated by acquiring new data and that the primary means of acquiring supplier-related data is through order allocation, this study investigates the trade-offs between data acquisition benefits and order allocation costs. An experimental design utilizing real-world automotive sector data is employed to assess the potential of the proposed approach against various benchmarks. These benchmarks include decision scenarios representing perfect foresight, no data acquisition benefits, and consistently positive benefits. Empirical findings demonstrate that the proposed approach achieves performance levels comparable to those of decision-makers with perfect foresight while consistently outperforming benchmarks not balancing order allocation costs and data acquisition benefits. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

24 pages, 5316 KiB  
Article
Amphibious Multifunctional Hydrogel Flexible Haptic Sensor with Self-Compensation Mechanism
by Zhenhao Sun, Yunjiang Yin, Baoguo Liu, Tao Xue and Qiang Zou
Sensors 2024, 24(10), 3232; https://doi.org/10.3390/s24103232 (registering DOI) - 19 May 2024
Abstract
In recent years, hydrogel-based wearable flexible electronic devices have attracted much attention. However, hydrogel-based sensors are affected by structural fatigue, material aging, and water absorption and swelling, making stability and accuracy a major challenge. In this study, we present a DN-SPEZ dual-network hydrogel [...] Read more.
In recent years, hydrogel-based wearable flexible electronic devices have attracted much attention. However, hydrogel-based sensors are affected by structural fatigue, material aging, and water absorption and swelling, making stability and accuracy a major challenge. In this study, we present a DN-SPEZ dual-network hydrogel prepared using polyvinyl alcohol (PVA), sodium alginate (SA), ethylene glycol (EG), and ZnSO4 and propose a self-calibration compensation strategy. The strategy utilizes a metal salt solution to adjust the carrier concentration of the hydrogel to mitigate the resistance drift phenomenon to improve the stability and accuracy of hydrogel sensors in amphibious scenarios, such as land and water. The ExpGrow model was used to characterize the trend of the ∆R/R0 dynamic response curves of the hydrogels in the stress tests, and the average deviation of the fitted curves ` was calculated to quantify the stability differences of different groups. The results showed that the stability of the uncompensated group was much lower than that of the compensated group utilizing LiCl, NaCl, KCl, MgCl2, and AlCl3 solutions (` in the uncompensated group in air was 276.158, 1.888, 2.971, 30.586, and 13.561 times higher than that of the compensated group in LiCl, NaCl, KCl, MgCl2, and AlCl3, respectively;` in the uncompensated group in seawater was 10.287 times, 1.008 times, 1.161 times, 4.986 times, 1.281 times, respectively, higher than that of the compensated group in LiCl, NaCl, KCl, MgCl2 and AlCl3). In addition, for the ranking of the compensation effect of different compensation solutions, the concentration of the compensation solution and the ionic radius and charge of the cation were found to be important factors in determining the compensation effect. Detection of events in amphibious environments such as swallowing, robotic arm grasping, Morse code, and finger–wrist bending was also performed in this study. This work provides a viable method for stability and accuracy enhancement of dual-network hydrogel sensors with strain and pressure sensing capabilities and offers solutions for sensor applications in both airborne and underwater amphibious environments. Full article
26 pages, 2556 KiB  
Article
Simultaneous Localization and Mapping System for Agricultural Yield Estimation Based on Improved VINS-RGBD: A Case Study of a Strawberry Field
by Quanbo Yuan, Penggang Wang, Wei Luo, Yongxu Zhou, Hongce Chen and Zhaopeng Meng
Agriculture 2024, 14(5), 784; https://doi.org/10.3390/agriculture14050784 (registering DOI) - 19 May 2024
Abstract
Crop yield estimation plays a crucial role in agricultural production planning and risk management. Utilizing simultaneous localization and mapping (SLAM) technology for the three-dimensional reconstruction of crops allows for an intuitive understanding of their growth status and facilitates yield estimation. Therefore, this paper [...] Read more.
Crop yield estimation plays a crucial role in agricultural production planning and risk management. Utilizing simultaneous localization and mapping (SLAM) technology for the three-dimensional reconstruction of crops allows for an intuitive understanding of their growth status and facilitates yield estimation. Therefore, this paper proposes a VINS-RGBD system incorporating a semantic segmentation module to enrich the information representation of a 3D reconstruction map. Additionally, image matching using L_SuperPoint feature points is employed to achieve higher localization accuracy and obtain better map quality. Moreover, Voxblox is proposed for storing and representing the maps, which facilitates the storage of large-scale maps. Furthermore, yield estimation is conducted using conditional filtering and RANSAC spherical fitting. The results show that the proposed system achieves an average relative error of 10.87% in yield estimation. The semantic segmentation accuracy of the system reaches 73.2% mIoU, and it can save an average of 96.91% memory for point cloud map storage. Localization accuracy tests on public datasets demonstrate that, compared to Shi–Tomasi corner points, using L_SuperPoint feature points reduces the average ATE by 1.933 and the average RPE by 0.042. Through field experiments and evaluations in a strawberry field, the proposed system demonstrates reliability in yield estimation, providing guidance and support for agricultural production planning and risk management. Full article
(This article belongs to the Topic Current Research on Intelligent Equipment for Agriculture)
23 pages, 5960 KiB  
Systematic Review
Systematic Review of Beta-Lactam vs. Beta-Lactam plus Aminoglycoside Combination Therapy in Neutropenic Cancer Patients
by Kazuhiro Ishikawa, Tomoaki Nakamura, Fujimi Kawai, Erika Ota and Nobuyoshi Mori
Cancers 2024, 16(10), 1934; https://doi.org/10.3390/cancers16101934 (registering DOI) - 19 May 2024
Abstract
We performed a systematic review of studies that compared beta-lactams vs. beta-lactams plus aminoglycosides for the treatment of febrile neutropenia in cancer patients. Method: We searched CENTRAL, MEDLINE, and Embase for studies published up to October 2023, and randomized controlled trials (RCTs) that [...] Read more.
We performed a systematic review of studies that compared beta-lactams vs. beta-lactams plus aminoglycosides for the treatment of febrile neutropenia in cancer patients. Method: We searched CENTRAL, MEDLINE, and Embase for studies published up to October 2023, and randomized controlled trials (RCTs) that compared anti-Pseudomonas aeruginosa beta-lactam monotherapy with any combination of an anti-Pseudomonas aeruginosa beta-lactam and an aminoglycoside were included. Result: The all-cause mortality rate of combination therapy showed no significant differences compared with that of monotherapy (RR 0.99, 95% CI 0.84 to 1.16, high certainty of evidence). Infection-related mortality rates showed that combination therapy had a small positive impact compared with the intervention with monotherapy (RR 0.83, 95% CI 0.66 to 1.05, high certainty of evidence). Regarding treatment failure, combination therapy showed no significant differences compared with monotherapy (RR 0.99, 95% CI 0.94 to 1.03, low certainty of evidence). In the sensitivity analysis, the treatment failure data published between 2010 and 2019 showed better outcomes in the same beta-lactam group (RR 1.10 [95% CI, 1.01–1.19]). Renal failure was more frequent with combination therapy of any daily dosing regimen (RR 0.46, 95% CI 0.36 to 0.60, high certainty of evidence). Conclusion: We found combining aminoglycosides with a narrow-spectrum beta-lactam did not spare the use of broad-spectrum antibiotics. Few studies included antibiotic-resistant bacteria and a detailed investigation of aminoglycoside serum levels, and studies that combined the same beta-lactams showed only a minimal impact with the combination therapy. In the future, studies that include the profile of antibiotic-resistant bacteria and the monitoring of serum aminoglycoside levels will be required. Full article
(This article belongs to the Section Infectious Agents and Cancer)
Show Figures

Figure 1

16 pages, 1676 KiB  
Article
Mobile Robot Path Planning Algorithm Based on NSGA-II
by Sitong Liu, Qichuan Tian and Chaolin Tang
Appl. Sci. 2024, 14(10), 4305; https://doi.org/10.3390/app14104305 (registering DOI) - 19 May 2024
Abstract
Path planning for mobile robots is a key technology in robotics. To address the issues of local optima trapping and non-smooth paths in mobile robot path planning, a novel algorithm based on the NSGA-II (Non-dominated Sorting Genetic Algorithm II) is proposed. The algorithm [...] Read more.
Path planning for mobile robots is a key technology in robotics. To address the issues of local optima trapping and non-smooth paths in mobile robot path planning, a novel algorithm based on the NSGA-II (Non-dominated Sorting Genetic Algorithm II) is proposed. The algorithm utilizes a search window approach for population initialization, which improves the quality of the initial population. An innovative fitness function is designed as the objective function for optimization iterations. A probability-based selection strategy is employed for population selection and optimization, enhancing the algorithm’s ability to escape local minima and preventing premature convergence to suboptimal solutions. Furthermore, a path smoothing algorithm is developed by incorporating Bézier curves. By connecting multiple segments of Bézier curves, the problem of the high computational complexity associated with high-degree Bézier curves is addressed, while simultaneously achieving smooth paths. Simulation results demonstrated that the proposed path planning algorithm exhibited fewer iterations, superior path quality, and path smoothness. Compared to other methods, the proposed approach demonstrated better overall performance and practical applicability. Full article
(This article belongs to the Special Issue Intelligent Control and Robotics II)
20 pages, 2000 KiB  
Article
Novel Efficient Lipid-Based Delivery Systems Enable a Delayed Uptake and Sustained Expression of mRNA in Human Cells and Mouse Tissues
by Artem G. Fedorovskiy, Denis N. Antropov, Anton S. Dome, Pavel A. Puchkov, Daria M. Makarova, Maria V. Konopleva, Anastasiya M. Matveeva, Eugenia A. Panova, Elena V. Shmendel, Mikhail A. Maslov, Sergey E. Dmitriev, Grigory A. Stepanov and Oleg V. Markov
Pharmaceutics 2024, 16(5), 684; https://doi.org/10.3390/pharmaceutics16050684 (registering DOI) - 19 May 2024
Abstract
Over the past decade, mRNA-based therapy has displayed significant promise in a wide range of clinical applications. The most striking example of the leap in the development of mRNA technologies was the mass vaccination against COVID-19 during the pandemic. The emergence of large-scale [...] Read more.
Over the past decade, mRNA-based therapy has displayed significant promise in a wide range of clinical applications. The most striking example of the leap in the development of mRNA technologies was the mass vaccination against COVID-19 during the pandemic. The emergence of large-scale technology and positive experience of mRNA immunization sparked the development of antiviral and anti-cancer mRNA vaccines as well as therapeutic mRNA agents for genetic and other diseases. To facilitate mRNA delivery, lipid nanoparticles (LNPs) have been successfully employed. However, the diverse use of mRNA therapeutic approaches requires the development of adaptable LNP delivery systems that can control the kinetics of mRNA uptake and expression in target cells. Here, we report effective mRNA delivery into cultured mammalian cells (HEK293T, HeLa, DC2.4) and living mouse muscle tissues by liposomes containing either 1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosane tetrahydrochloride (2X3) or the newly applied 1,30-bis(cholest-5-en-3β-yloxycarbonylamino)-9,13,18,22-tetraaza-3,6,25,28-tetraoxatriacontane tetrahydrochloride (2X7) cationic lipids. Using end-point and real-time monitoring of Fluc mRNA expression, we showed that these LNPs exhibited an unusually delayed (of over 10 h in the case of the 2X7-based system) but had highly efficient and prolonged reporter activity in cells. Accordingly, both LNP formulations decorated with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000) provided efficient luciferase production in mice, peaking on day 3 after intramuscular injection. Notably, the bioluminescence was observed only at the site of injection in caudal thigh muscles, thereby demonstrating local expression of the model gene of interest. The developed mRNA delivery systems hold promise for prophylactic applications, where sustained synthesis of defensive proteins is required, and open doors to new possibilities in mRNA-based therapies. Full article
Show Figures

Figure 1

11 pages, 4450 KiB  
Article
A Portable, Integrated, Sample-In Result-Out Nucleic Acid Diagnostic Device for Rapid and Sensitive Chikungunya Virus Detection
by Changping Xu, Yalin Chen, Guiying Zhu, Huan Wu, Qi Jiang, Rui Zhang, Beibei Yu, Lei Fang and Zhiwei Wu
Micromachines 2024, 15(5), 663; https://doi.org/10.3390/mi15050663 (registering DOI) - 19 May 2024
Abstract
Chikungunya virus, a mosquito-borne virus that causes epidemics, is often misdiagnosed due to symptom similarities with other arboviruses. Here, a portable and integrated nucleic acid-based diagnostic device, which combines reverse transcription-loop-mediated isothermal amplification and lateral-flow detection, was developed. The device is simple to [...] Read more.
Chikungunya virus, a mosquito-borne virus that causes epidemics, is often misdiagnosed due to symptom similarities with other arboviruses. Here, a portable and integrated nucleic acid-based diagnostic device, which combines reverse transcription-loop-mediated isothermal amplification and lateral-flow detection, was developed. The device is simple to use, precise, equipment-free, and highly sensitive, enabling rapid chikungunya virus identification. The result can be obtained by the naked eye within 40 min. The assay can effectively distinguish chikungunya virus from dengue virus, Japanese encephalitis virus, Zika virus, and yellow fever virus with high specificity and sensitivity as low as 598.46 copies mL−1. It has many benefits for the community screening and monitoring of chikungunya virus in resource-limited areas because of its effectiveness and simplicity. The platform has great potential for the rapid nucleic acid detection of other viruses. Full article
(This article belongs to the Special Issue Micro/Nanofluidics Devices for Nucleic Acids and Cell Analysis)
Show Figures

Figure 1

15 pages, 5914 KiB  
Communication
Shear Wave Velocity Determination of a Complex Field Site Using Improved Nondestructive SASW Testing
by Gunwoong Kim and Sungmoon Hwang
Sensors 2024, 24(10), 3231; https://doi.org/10.3390/s24103231 (registering DOI) - 19 May 2024
Abstract
The nondestructive spectral analysis of surface waves (SASW) technique determines the shear wave velocities along the wide wavelength range using Rayleigh-type surface waves that propagate along pairs of receivers on the surface. The typical configuration of source-receivers consists of a vertical source and [...] Read more.
The nondestructive spectral analysis of surface waves (SASW) technique determines the shear wave velocities along the wide wavelength range using Rayleigh-type surface waves that propagate along pairs of receivers on the surface. The typical configuration of source-receivers consists of a vertical source and three vertical receivers arranged in a linear array. While this approach allows for effective site characterization, laterally variable sites are often challenging to characterize. In addition, in a traditional SASW test configuration system, where sources are placed in one direction, the data are collected more on one side, which can cause an imbalance in the interpretation of the data. Data interpretation issues can be resolved by moving the source to opposite ends of the original array and relocating receivers to perform a second complete set of tests. Consequently, two different Vs profiles can be provided with only a small amount of additional time at sites where lateral variability exists. Furthermore, the testing procedure can be modified to enhance the site characterization during data collection. The advantages of performing SASW testing in both directions are discussed using a real case study. Full article
Show Figures

Figure 1

31 pages, 2841 KiB  
Article
Performance Evaluation of Railway Infrastructure Managers: A Novel Hybrid Fuzzy MCDM Model
by Aida Kalem, Snežana Tadić, Mladen Krstić, Nermin Čabrić and Nedžad Branković
Mathematics 2024, 12(10), 1590; https://doi.org/10.3390/math12101590 (registering DOI) - 19 May 2024
Abstract
Modern challenges such as the liberalization of the railway sector and growing demands for sustainability, high-quality services, and user satisfaction set new standards in railway operations. In this context, railway infrastructure managers (RIMs) play a crucial role in ensuring innovative approaches that will [...] Read more.
Modern challenges such as the liberalization of the railway sector and growing demands for sustainability, high-quality services, and user satisfaction set new standards in railway operations. In this context, railway infrastructure managers (RIMs) play a crucial role in ensuring innovative approaches that will strengthen the position of railways in the market by enhancing efficiency and competitiveness. Evaluating their performance is essential for assessing the achieved objectives, and it is conducted through a wide range of key performance indicators (KPIs), which encompass various dimensions of operations. Monitoring and analyzing KPIs are crucial for improving service quality, achieving sustainability, and establishing a foundation for research and development of new strategies in the railway sector. This paper provides a detailed overview and evaluation of KPIs for RIMs. This paper creates a framework for RIM evaluation using various scientific methods, from identifying KPIs to applying complex analysis methods. A novel hybrid model, which integrates the fuzzy Delphi method for aggregating expert opinions on the KPIs’ importance, the extended fuzzy analytic hierarchy process (AHP) method for determining the relative weights of these KPIs, and the ADAM method for ranking RIMs, has been developed in this paper. This approach enables a detailed analysis and comparison of RIMs and their performances, providing the basis for informed decision-making and the development of new strategies within the railway sector. The analysis results provide insight into the current state of railway infrastructure and encourage further efforts to improve the railway sector by identifying key areas for enhancement. The main contributions of the research include a detailed overview of KPIs for RIMs and the development of a hybrid multi-criteria decision making (MCDM) model. The hybrid model represents a significant step in RIM performance analysis, providing a basis for future research in this area. The model is universal and, as such, represents a valuable contribution to MCDM theory. Full article
(This article belongs to the Special Issue Multi-criteria Optimization Models and Methods for Smart Cities)
Show Figures

Figure 1

11 pages, 863 KiB  
Communication
Extraction of Dibenzyl Disulfide from Transformer Oils by Acidic Ionic Liquid
by Lili Zhang, Pei Peng, Qian Pan, Fang Wan and Huaxin Zhang
Molecules 2024, 29(10), 2395; https://doi.org/10.3390/molecules29102395 (registering DOI) - 19 May 2024
Abstract
Abstract: In recent years, dibenzyl disulfide (DBDS) in transformer oils has caused many transformer failures around the world, and its removal has attracted more attention. In this work, nine imidazolium-based ionic liquids (ILs) were applied as effective, green desulfurization extractants for DBDS-containing [...] Read more.
Abstract: In recent years, dibenzyl disulfide (DBDS) in transformer oils has caused many transformer failures around the world, and its removal has attracted more attention. In this work, nine imidazolium-based ionic liquids (ILs) were applied as effective, green desulfurization extractants for DBDS-containing transformer oil for the first time. The results show that the desulfurization ability of the ILs for DBDS followed the order of [BMIM]FeCl4 > [BMIM]N(CN)2 > [BMIM]SCN > [BMIM](C4H9O)2PO2 > [BMIM]MeSO4 > [BMIM]NTf2 > [BMIM]OTf > [BMIM]PF6 > [BMIM]BF4. Especially, [BMIM]FeCl4 ionic liquid had excellent removal efficiency for DBDS, with its S partition coefficient KN (S) being up to 2642, which was much higher than the other eight imidazolium-based ILs. Moreover, the extractive performance of [BMIM]FeCl4 increased with an increasing molar ratio of FeCl3 to [BMIM]Cl, which was attributed to its Lewis acidity and fluidity. [BMIM]FeCl4 ionic liquid could also avail in the desulfurization of diphenyl sulfide (DPS) from model oils. The experimental results demonstrate that π−π action, π-complexation, and Lewis acid−base interaction played important roles in the desulfurization process. Finally, the ([BMIM]FeCl4) ionic liquid could be recycled five times without a significant decrease in extractive ability. Full article
17 pages, 3238 KiB  
Article
Inhibition of Amyloid-β (Aβ)-Induced Cognitive Impairment and Neuroinflammation in CHI3L1 Knockout Mice through Downregulation of ERK-PTX3 Pathway
by Hyeon Joo Ham, Yong Sun Lee, Ja Keun Koo, Jaesuk Yun, Dong Ju Son, Sang-Bae Han and Jin Tae Hong
Int. J. Mol. Sci. 2024, 25(10), 5550; https://doi.org/10.3390/ijms25105550 (registering DOI) - 19 May 2024
Abstract
Several clinical studies reported that the elevated expression of Chitinase-3-like 1 (CHI3L1) was observed in patients suffering from a wide range of diseases: cancer, metabolic, and neurological diseases. However, the role of CHI3L1 in AD is still unclear. Our previous study demonstrated that [...] Read more.
Several clinical studies reported that the elevated expression of Chitinase-3-like 1 (CHI3L1) was observed in patients suffering from a wide range of diseases: cancer, metabolic, and neurological diseases. However, the role of CHI3L1 in AD is still unclear. Our previous study demonstrated that 2-({3-[2-(1-Cyclohexen-1-yl)ethyl]-6,7-dimethoxy-4-oxo-3,4-dihydro-2-quinazolinyl}culfanyl)-N-(4-ethylphenyl)butanamide, a CHI3L1 inhibiting compound, alleviates memory and cognitive impairment and inhibits neuroinflammation in AD mouse models. In this study, we studied the detailed correlation of CHI3L1 and AD using serum from AD patients and using CHI3L1 knockout (KO) mice with Aβ infusion (300 pmol/day, 14 days). Serum levels of CHI3L1 were significantly elevated in patients with AD compared to normal subjects, and receiver operating characteristic (ROC) analysis data based on serum analysis suggested that CHI3L1 could be a significant diagnostic reference for AD. To reveal the role of CHI3L1 in AD, we investigated the CHI3L1 deficiency effect on memory impairment in Aβ-infused mice and microglial BV-2 cells. In CHI3L1 KO mice, Aβ infusion resulted in lower levels of memory dysfunction and neuroinflammation compared to that of WT mice. CHI3L1 deficiency selectively inhibited phosphorylation of ERK and IκB as well as inhibition of neuroinflammation-related factors in vivo and in vitro. On the other hand, treatment with recombinant CHI3L1 increased neuroinflammation-related factors and promoted phosphorylation of IκB except for ERK in vitro. Web-based gene network analysis and our results showed that CHI3L1 is closely correlated with PTX3. Moreover, in AD patients, we found that serum levels of PTX3 were correlated with serum levels of CHI3L1 by Spearman correlation analysis. These results suggest that CHI3L1 deficiency could inhibit AD development by blocking the ERK-dependent PTX3 pathway. Full article
(This article belongs to the Topic Inflammaging: The Immunology of Aging)
Show Figures

Figure 1

27 pages, 14831 KiB  
Article
Prediction of Aggregate Packing with Tubular Macrocapsules in the Inert Structure of Self-Healing Concrete Based on Dewar’s Particle Packing Model
by Harry Hermawan, Alicia Simons, Silke Teirlynck, Giovanni Anglani, Pedro Serna, Jean-Marc Tulliani, Paola Antonaci, Peter Minne and Elke Gruyaert
Materials 2024, 17(10), 2455; https://doi.org/10.3390/ma17102455 (registering DOI) - 19 May 2024
Abstract
This paper brings a new insight into understanding the influence of macrocapsules in packing systems, which can be useful in designing the inert structure of self-healing concrete. A variety of tubular macrocapsules, in terms of types and sizes, was used to assess the [...] Read more.
This paper brings a new insight into understanding the influence of macrocapsules in packing systems, which can be useful in designing the inert structure of self-healing concrete. A variety of tubular macrocapsules, in terms of types and sizes, was used to assess the capsules’ effect in the packing, together with various aggregate types and fractions. The voids ratios (U) of aggregate mixtures were evaluated experimentally and compared with the prediction via the particle packing model of Dewar. The packing of coarse particles was found to be considerably affected by the presence of macrocapsules, while no capsules’ effect on the packing of fine particles was attained. A higher capsule dosage and capsule aspect ratio led to a higher voids ratio. In the formulation of the inert structure, the packing disturbance due to capsules can be minimised by increasing the content of fine aggregates over coarse aggregates. Dewar’s model showed a good compatibility with experimental results in the absence of capsules. However, the model needed to be upgraded for the introduction of tubular macrocapsules. Accordingly, the effect of macrocapsules was extensively analysed and a ‘U model’ for capsules (with some limitations) was finally proposed, offering a high predicting accuracy. Full article
Show Figures

Figure 1

12 pages, 1982 KiB  
Article
Dual-Ring SNAREpin Machinery Tuning for Fast Synaptic Vesicle Fusion
by Matthieu Caruel and Frédéric Pincet
Biomolecules 2024, 14(5), 600; https://doi.org/10.3390/biom14050600 (registering DOI) - 19 May 2024
Abstract
During neurotransmission, neurotransmitters are released less than a millisecond after the arrival of the action potential. To achieve this ultra-fast event, the synaptic vesicle must be pre-docked to the plasma membrane. In this primed state, SNAREpins, the protein-coiled coils whose assembly provides the [...] Read more.
During neurotransmission, neurotransmitters are released less than a millisecond after the arrival of the action potential. To achieve this ultra-fast event, the synaptic vesicle must be pre-docked to the plasma membrane. In this primed state, SNAREpins, the protein-coiled coils whose assembly provides the energy to trigger fusion, are partly zippered and clamped like a hairpin and held open and ready to snap close when the clamp is released. Recently, it was suggested that three types of regulatory factors, synaptophysin, synaptotagmins, and complexins act cooperatively to organize two concentric rings, a central and a peripheral ring, containing up to six SNAREpins each. We used a mechanical model of the SNAREpins with two separate states, half-zippered and fully zippered, and determined the energy landscape according to the number of SNAREpins in each ring. We also performed simulations to estimate the fusion time in each case. The presence of the peripheral SNAREpins generally smoothens the energy landscape and accelerates the fusion time. With the predicted physiological numbers of six central and six peripheral SNAREpins, the fusion time is accelerated at least 100 times by the presence of the peripheral SNAREpins, and fusion occurs in less than 10 μs, which is well within the physiological requirements. Full article
(This article belongs to the Special Issue Molecular Mechanism Investigations into Membrane Fusion)
Show Figures

Figure 1

21 pages, 2566 KiB  
Article
Discrepancies of Functional Requirements of Façade Opening System between Real-Life Public and Built Environment Experts Focusing on Thermal Comfort and Ventilation
by Woohyoung Lee, Dong Hee Choi and Dong Hwa Kang
Sustainability 2024, 16(10), 4286; https://doi.org/10.3390/su16104286 (registering DOI) - 19 May 2024
Abstract
A survey was conducted to analyze the discrepancies of the functional requirements of the façade system in residential units among 605 of the real-life public and 73 experts. Personal and housing information, resident life patterns, public façade usage behavior, and functional requirements were [...] Read more.
A survey was conducted to analyze the discrepancies of the functional requirements of the façade system in residential units among 605 of the real-life public and 73 experts. Personal and housing information, resident life patterns, public façade usage behavior, and functional requirements were collected from the respondents. Both the public and experts recognized insulation as the main function of façade opening systems. More than 85% of the public and experts opened windows for ventilation, but ventilation was ranked 3rd amongst the public and 4th amongst experts in the main functions list of façade systems. The public cited the inflow of fine dust as the main reason for dissatisfaction with opening windows. In contrast, the experts cited a decrease in thermal comfort due to the inflow of external moisture as the reason for dissatisfaction with opening windows. The results showed that discrepancies exist between the public and experts’ perceptions of the main function of housing façade systems. Analyzing the common points and differences between the public and experts’ perception can help in developing façade system design and control technology. Full article
(This article belongs to the Section Green Building)
11 pages, 2530 KiB  
Article
Direct Selective Epitaxy of 2D Sb2Te3 onto Monolayer WS2 for Vertical p–n Heterojunction Photodetectors
by Baojun Pan, Zhenjun Dou, Mingming Su, Ya Li, Jialing Wu, Wanwan Chang, Peijian Wang, Lijie Zhang, Lei Zhao, Mei Zhao and Sui-Dong Wang
Nanomaterials 2024, 14(10), 884; https://doi.org/10.3390/nano14100884 (registering DOI) - 19 May 2024
Abstract
Two-dimensional transition metal dichalcogenides (2D-TMDs) possess appropriate bandgaps and interact via van der Waals (vdW) forces between layers, effectively overcoming lattice compatibility challenges inherent in traditional heterojunctions. This property facilitates the creation of heterojunctions with customizable bandgap alignments. However, the prevailing method for [...] Read more.
Two-dimensional transition metal dichalcogenides (2D-TMDs) possess appropriate bandgaps and interact via van der Waals (vdW) forces between layers, effectively overcoming lattice compatibility challenges inherent in traditional heterojunctions. This property facilitates the creation of heterojunctions with customizable bandgap alignments. However, the prevailing method for creating heterojunctions with 2D-TMDs relies on the low-efficiency technique of mechanical exfoliation. Sb2Te3, recognized as a notable p-type semiconductor, emerges as a versatile component for constructing diverse vertical p–n heterostructures with 2D-TMDs. This study presents the successful large-scale deposition of 2D Sb2Te3 onto inert mica substrates, providing valuable insights into the integration of Sb2Te3 with 2D-TMDs to form heterostructures. Building upon this initial advancement, a precise epitaxial growth method for Sb2Te3 on pre-existing WS2 surfaces on SiO2/Si substrates is achieved through a two-step chemical vapor deposition process, resulting in the formation of Sb2Te3/WS2 heterojunctions. Finally, the development of 2D Sb2Te3/WS2 optoelectronic devices is accomplished, showing rapid response times, with a rise/decay time of 305 μs/503 μs, respectively. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop