The 2023 MDPI Annual Report has
been released!
 
11 pages, 2712 KiB  
Article
Evaluating Anticoagulant and Antiplatelet Therapies in Rhesus and Cynomolgus Macaques for Predictive Modeling in Humans
by Sydney N. Phu, David J. Leishman, Sierra D. Palmer, Scott H. Oppler, Melanie N. Niewinski, Lucas A. Mutch, Jill S. Faustich, Andrew B. Adams, Robert T. Tranquillo and Melanie L. Graham
Surgeries 2024, 5(2), 423-433; https://doi.org/10.3390/surgeries5020035 - 17 May 2024
Abstract
Anticoagulant and antiplatelet therapies are used to prevent life-threatening complications associated with thrombosis. While there are numerous clinical guidelines for antithrombotic medications, there is an incomplete understanding of whether these interventions yield similar effects in preclinical models, potentially impacting their predictive value for [...] Read more.
Anticoagulant and antiplatelet therapies are used to prevent life-threatening complications associated with thrombosis. While there are numerous clinical guidelines for antithrombotic medications, there is an incomplete understanding of whether these interventions yield similar effects in preclinical models, potentially impacting their predictive value for translational studies on the development of medical devices, therapies, and surgical techniques. Due to their close physiologic similarities to humans, we employed nonhuman primates (NHPs) using a reverse translational approach to analyze the response to clinical regimens of unfractionated heparin, low-molecular-weight heparin (LMWH) and aspirin to assess concordance with typical human responses and evaluate the predictive validity of this model. We evaluate activated clotting time (ACT) in nine rhesus and six cynomolgus macaques following the intraoperative administration of intravenous unfractionated heparin (100–300 U/kg) reflecting the clinical dose range. We observed a significant dose-dependent effect of heparin on ACT (low-dose average = 114.1 s; high-dose average = 148.3 s; p = 0.0011). LMWH and aspirin, common clinical antithrombotic prophylactics, were evaluated in three rhesus macaques. NHPs achieved therapeutic Anti-Xa levels (mean = 0.64 U/mL) and ARU (mean = 459) via VerifyNow, adhering to clinical guidance using 1.0 mg/kg enoxaparin and 81 mg aspirin. Clinical dosing strategies for unfractionated heparin, LMWH, and aspirin were safe and effective in NHPs, with no development of thrombosis or bleeding complications intraoperatively, postoperatively, or for prophylaxis. Our findings suggest that coagulation studies, performed as an integrative part of studies on biologics, bioengineered devices, or transplantation in NHPs, can be extrapolated to the clinical situation with high predictive validity. Full article
Show Figures

Figure 1

10 pages, 3474 KiB  
Article
Flowable Electrodes from Colloidal Suspensions of Thin Multiwall Carbon Nanotubes
by Massinissa Hamouma, Wilfrid Neri, Xavier Bril, Jinkai Yuan, Annie Colin, Nicolas Brémond and Philippe Poulin
Colloids Interfaces 2024, 8(3), 32; https://doi.org/10.3390/colloids8030032 - 17 May 2024
Abstract
Flowable electrodes, a versatile alternative to traditional solid electrodes for electrochemical applications, exhibit challenges of high viscosity and carbon content, limiting flow and device performances. This study introduces colloidal suspensions of thin multiwall carbon nanotubes (MWCNTs) with diameters of 10–15 nm as electrode [...] Read more.
Flowable electrodes, a versatile alternative to traditional solid electrodes for electrochemical applications, exhibit challenges of high viscosity and carbon content, limiting flow and device performances. This study introduces colloidal suspensions of thin multiwall carbon nanotubes (MWCNTs) with diameters of 10–15 nm as electrode materials. These thin nanotubes, stabilized in water with a surfactant, form percolated networks, exhibiting high conductivity (50 ms/cm) and stability at a low carbon content (below 2 wt%). Colloidal clustering is enhanced by weak depletion attractive interactions. The resulting suspensions display yield stress and a shear thinning behavior with a low consistency index. They can easily flow at a nearly constant shear over a broad range of shear rates. They remain electrically conductive under shear, making them a promising option for flow electrochemical applications. This work suggests that the use of depletion-induced MWVNT aggregates addresses crucial issues in flow electrochemical applications, such as membrane fragility, operating energy, and pressure. These conductive colloidal suspensions thereby offer potential advancements in device performance and lifespan. Full article
Show Figures

Figure 1

12 pages, 2167 KiB  
Article
Effect of the Incorporation of Olive Tree Pruning Sawdust in the Production of Lightweight Mortars
by Marina Oya-Monzón, Dolores Eliche-Quesada and M. Dolores La Rubia
J. Compos. Sci. 2024, 8(5), 188; https://doi.org/10.3390/jcs8050188 - 17 May 2024
Abstract
In order to reduce energy consumption in buildings, this study used olive pruning sawdust (OTPS) instead of natural sand in the production of lightweight mortars. Different percentages of natural sand substitution were tested: 0, 10, 25, and 50% by volume of sand over [...] Read more.
In order to reduce energy consumption in buildings, this study used olive pruning sawdust (OTPS) instead of natural sand in the production of lightweight mortars. Different percentages of natural sand substitution were tested: 0, 10, 25, and 50% by volume of sand over 7 and 28 days of curing time. Additionally, the influence of a chemical pretreatment in an aqueous solution of calcium hydroxide on the OTPS was also evaluated to mineralize the wood before its addition to the mortar mixture. Mortars with OTPS incorporations were characterized by volumetric shrinkage, bulk density, and capillary water absorption. Mechanical behavior was tested through compression and flexural tests. The addition of this byproduct decreased bulk density and increased mortar porosity. Pretreating olive pruning sawdust with an aqueous solution of calcium hydroxide was effective for wood mineralization, resulting in physical and mechanical properties superior to mortars without pretreatment. The results showed that a maximum addition of 10% by volume of OTPS treated with calcium hydroxide solution produced lighter mortars with similar mechanical properties to the control mortar. Adding higher amounts of pretreated olive pruning (25–50% by volume) led to a more pronounced deterioration of mechanical properties. Full article
(This article belongs to the Special Issue Sustainable Composite Construction Materials, Volume II)
Show Figures

Figure 1

18 pages, 3018 KiB  
Article
Human Dendritic Cell Maturation Is Modulated by Leishmania mexicana through Akt Signaling Pathway
by Jorge Rodríguez-González, Arturo A. Wilkins-Rodríguez and Laila Gutiérrez-Kobeh
Trop. Med. Infect. Dis. 2024, 9(5), 118; https://doi.org/10.3390/tropicalmed9050118 - 17 May 2024
Abstract
Dendritic cells (DC) along with macrophages are the main host cells of the intracellular parasite Leishmania. DC traverse a process of maturation, passing through an immature state with phagocytic ability to a mature one where they can modulate the immune response through [...] Read more.
Dendritic cells (DC) along with macrophages are the main host cells of the intracellular parasite Leishmania. DC traverse a process of maturation, passing through an immature state with phagocytic ability to a mature one where they can modulate the immune response through the secretion of cytokines. Several studies have demonstrated that Leishmania inhibits DC maturation. Nevertheless, when cells are subjected to a second stimulus such as LPS/IFN-γ, they manage to mature. In the maturation process of DC, several signaling pathways have been implicated, importantly MAPK. On the other hand, Akt is a signaling pathway deeply involved in cell survival. Some Leishmania species have shown to activate MAPK and Akt in different cells. The aim of this work was to investigate the role of ERK and Akt in the maturation of monocyte-derived DC (moDC) infected with L. mexicana. moDC were infected with L. mexicana metacyclic promastigotes, and the phosphorylation of ERK and Akt, the expression of MHCII and CD86 and IL-12 transcript, and secretion were determined in the presence or absence of an Akt inhibitor. We showed that L. mexicana induces a sustained Akt and ERK phosphorylation, while the Akt inhibitor inhibits it. Moreover, the infection of moDC downregulates CD86 expression but not MHCII, and the Akt inhibitor reestablishes CD86 expression and 12p40 production. Thus, L. mexicana can modulate DC maturation though Akt signaling. Full article
Show Figures

Figure 1

21 pages, 276 KiB  
Article
The Specificity of Fantasy and the “Affective Novum”: A Theory of a Core Subset of Fantasy Literature
by Geoff M. Boucher
Literature 2024, 4(2), 101-121; https://doi.org/10.3390/literature4020008 - 17 May 2024
Abstract
This article proposes a new approach to the nature of a core set within fantasy fiction that regards it as a speculative literature of the exploration of subjectivity, one which at its limit conjectures fresh possibilities for the subjective world. To motivate acceptance [...] Read more.
This article proposes a new approach to the nature of a core set within fantasy fiction that regards it as a speculative literature of the exploration of subjectivity, one which at its limit conjectures fresh possibilities for the subjective world. To motivate acceptance of this proposed approach, I begin by surveying the existing state of debate in the critical field. I notice the emergence of widening agreement on the idea that fantasy is a literature of the impossible. I then develop the logical implications of this widening agreement in the critical field, arguing that it entails a representational definition of fantasy literature, which implies a modal approach to the core set that defines this literary order. I suggest that the marvellous mode, the kind of writing which represents the impossible, is a broad class that includes other speculative literatures, and that what differentiates these is the referential world within which the impossible happens. The aim here is to break up monolithic conceptions of the impossible, while pointing to a motivation for developing an understanding of the specificity of a core set of fantasy texts that proceeds by way of contrasts. After explaining why I am extremely skeptical about the definition of science fiction as a “literature of the possible”, I probe descriptions of the difference between fantasy and sci-fi. I propose that whereas some science fiction is a literature of conjectural objectivity, guided by the “cognitive novum”, a significant group of fantasy texts is a literature of speculative subjectivity, guided by an “affective novum”. Full article
(This article belongs to the Special Issue American Sci-Fi)
16 pages, 2532 KiB  
Article
Stocking Density and Diet of Two Oyster (Crassostrea gasar and Crassostrea gigas) Seeds in Fluidized Bed Bottle Nursery System
by Simone Sühnel, Francisco José Lagreze-Squella, Gabriel Nandi Corrêa, Jaqueline Araújo, Glauber de Souza, João Paulo Ramos Ferreira, Francisco Carlos da Silva, Carlos Henrique Araújo de Miranda Gomes and Claudio Manoel Rodrigues de Melo
Fishes 2024, 9(5), 183; https://doi.org/10.3390/fishes9050183 - 17 May 2024
Abstract
Crassostrea is the most farmed oyster genus worldwide and has significant economic and social impacts with environmental benefits. Hatchery oyster seed production is a highly costly phase, and a fluidized nursery system can help reduce this cost and reduce seed production time. The [...] Read more.
Crassostrea is the most farmed oyster genus worldwide and has significant economic and social impacts with environmental benefits. Hatchery oyster seed production is a highly costly phase, and a fluidized nursery system can help reduce this cost and reduce seed production time. The present study evaluated the survival and growth of two oyster species (Crassostrea gasar and Crassostrea gigas) in a fluidized bed bottle nursery system. With C. gasar, two experiments were performed; one tested three stocking densities and the other three bialgae diets. With C. gigas, one experiment with a bialgae and monoalgae in an initial bottle occupation of 8.8% produced more seeds per bottle, but an initial bottle occupation of 2.2% produced bigger seeds. Also, the experiment with C. gasar and with C. gigas tested diets did not affect seed survival, but the diets with bialgae I. galbana and N. oculate promoted more seed growth. The fluidized bed bottle nursery system developed for this study was adequate for the seeds of the oysters C. gasar and C. gigas in the nursery phase. Full article
(This article belongs to the Special Issue Integrated Aquaculture and Monoculture of Low-Trophic Species)
Show Figures

Figure 1

11 pages, 1233 KiB  
Article
Imaging-Based Deep Learning for Predicting Desmoid Tumor Progression
by Rabih Fares, Lilian D. Atlan, Ido Druckmann, Shai Factor, Yair Gortzak, Ortal Segal, Moran Artzi and Amir Sternheim
J. Imaging 2024, 10(5), 122; https://doi.org/10.3390/jimaging10050122 - 17 May 2024
Abstract
Desmoid tumors (DTs) are non-metastasizing and locally aggressive soft-tissue mesenchymal neoplasms. Those that become enlarged often become locally invasive and cause significant morbidity. DTs have a varied pattern of clinical presentation, with up to 50–60% not growing after diagnosis and 20–30% shrinking or [...] Read more.
Desmoid tumors (DTs) are non-metastasizing and locally aggressive soft-tissue mesenchymal neoplasms. Those that become enlarged often become locally invasive and cause significant morbidity. DTs have a varied pattern of clinical presentation, with up to 50–60% not growing after diagnosis and 20–30% shrinking or even disappearing after initial progression. Enlarging tumors are considered unstable and progressive. The management of symptomatic and enlarging DTs is challenging, and primarily consists of chemotherapy. Despite wide surgical resection, DTs carry a rate of local recurrence as high as 50%. There is a consensus that contrast-enhanced magnetic resonance imaging (MRI) or, alternatively, computerized tomography (CT) is the preferred modality for monitoring DTs. Each uses Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1), which measures the largest diameter on axial, sagittal, or coronal series. This approach, however, reportedly lacks accuracy in detecting response to therapy and fails to detect tumor progression, thus calling for more sophisticated methods. The objective of this study was to detect unique features identified by deep learning that correlate with the future clinical course of the disease. Between 2006 and 2019, 51 patients (mean age 41.22 ± 15.5 years) who had a tissue diagnosis of DT were included in this retrospective single-center study. Each had undergone at least three MRI examinations (including a pretreatment baseline study), and each was followed by orthopedic oncology specialists for a median of 38.83 months (IQR 44.38). Tumor segmentations were performed on a T2 fat-suppressed treatment-naive MRI sequence, after which the segmented lesion was extracted to a three-dimensional file together with its DICOM file and run through deep learning software. The results of the algorithm were then compared to clinical data collected from the patients’ medical files. There were 28 males (13 stable) and 23 females (15 stable) whose ages ranged from 19.07 to 83.33 years. The model was able to independently predict clinical progression as measured from the baseline MRI with an overall accuracy of 93% (93 ± 0.04) and ROC of 0.89 ± 0.08. Artificial intelligence may contribute to risk stratification and clinical decision-making in patients with DT by predicting which patients are likely to progress. Full article
Show Figures

Figure 1

24 pages, 1785 KiB  
Systematic Review
Valorizing Fruit and Vegetable Waste: The Untapped Potential for Entrepreneurship in Sub-Saharan Africa—A Systematic Review
by Grace Okuthe
Recycling 2024, 9(3), 40; https://doi.org/10.3390/recycling9030040 - 17 May 2024
Abstract
Valorizing food waste (FW) in sub-Saharan Africa (SSA) can enhance the efficiency of limited resources, make healthy diets more affordable, and foster the creation of innovative enterprises. The vast quantities of FW from the agri-food chain significantly threaten food security. To address this [...] Read more.
Valorizing food waste (FW) in sub-Saharan Africa (SSA) can enhance the efficiency of limited resources, make healthy diets more affordable, and foster the creation of innovative enterprises. The vast quantities of FW from the agri-food chain significantly threaten food security. To address this issue and maximize potential environmental and socio-economic benefits, valorizing waste, a value-adding process for waste materials, has emerged as a sustainable and efficient strategy. Valorizing FW reduces greenhouse gas emissions, mitigates climate change, enhances resource efficiency, and improves planetary health. As a pivotal player in the transition toward the circular economy, this study investigates the potential of converting FW into value-added products, offering entrepreneurial opportunities for SSA’s unemployed youth. A systematic literature review is conducted to identify and filter relevant articles over five years by applying inclusion and exclusion criteria. A total of 33 articles were included for in-depth analysis to address the study’s aim. The findings highlight a range of value-added products derived from FW, including renewable energy sources, nutraceuticals, and heavy metal adsorbents. These products present promising entrepreneurial prospects within SSA. Nonetheless, overcoming barriers to FW valorization adoption is crucial for fully realizing its potential as a profitable business avenue. Full article
(This article belongs to the Special Issue Resource Recovery from Waste Biomass)
Show Figures

Figure 1

12 pages, 3112 KiB  
Article
Rapid Waste Motor Oil Conversion into Diesel-Range Hydrocarbons Using Hydrochar as Catalyst: Kinetic Study and Product Characterization
by Herman A. Murillo, Evelyn Juiña, Karla Vizuete, Alexis Debut, Daniel Echeverría, Sebastian Taco-Vasquez and Sebastian Ponce
Recycling 2024, 9(3), 39; https://doi.org/10.3390/recycling9030039 - 17 May 2024
Abstract
Herein, raw and alkali-treated hydrochars from biomass waste are prepared as a highly active catalyst for the conversion of waste motor oil into diesel-like fuels. Among all materials, hydrochar obtained at 250 °C and subsequent alkali activation with KOH showed a 600% improvement [...] Read more.
Herein, raw and alkali-treated hydrochars from biomass waste are prepared as a highly active catalyst for the conversion of waste motor oil into diesel-like fuels. Among all materials, hydrochar obtained at 250 °C and subsequent alkali activation with KOH showed a 600% improvement of the kinetic constant from 0.0088 to 0.0614 m−1. Conversion values at the same conditions were also improved from 66 to 80% regarding thermal and catalytic cracking, respectively. Moreover, the activation energy was also reduced from 293 to 246 kJ mol−1 for thermal and catalytic cracking, respectively. After characterization, the enhanced catalytic activity was correlated to an increased surface area and functionalization due to the alkali activation. Finally, the liquid product characterization demonstrated that catalytic cracking is more effective than thermal cracking for producing hydrocarbons in the diesel range. In particular, hydrochar-based catalysts are suggested to promote the formation of specific hydrocarbons so that the carbon distribution can be tailored by modifying the hydrothermal treatment temperature. Full article
(This article belongs to the Special Issue Resource Recovery from Waste Biomass)
Show Figures

Figure 1

27 pages, 11656 KiB  
Article
Novel Hybrid Ferromagnetic Fe–Co/Nanodiamond Nanostructures: Influence of Carbon on Their Structural and Magnetic Properties
by Panagiotis G. Ziogas, Athanasios B. Bourlinos, Polyxeni Chatzopoulou, George P. Dimitrakopulos, Anastasios Markou and Alexios P. Douvalis
Magnetochemistry 2024, 10(5), 35; https://doi.org/10.3390/magnetochemistry10050035 - 17 May 2024
Abstract
This study introduces a novel magnetic nanohybrid material consisting of ferromagnetic (FM) bcc Fe–Co nanoparticles (NPs) grown on nanodiamond (ND) nanotemplates. A combination of wet chemistry, which produces chemical precursors and their subsequent thermal treatment under vacuum, was utilized for its development. The [...] Read more.
This study introduces a novel magnetic nanohybrid material consisting of ferromagnetic (FM) bcc Fe–Co nanoparticles (NPs) grown on nanodiamond (ND) nanotemplates. A combination of wet chemistry, which produces chemical precursors and their subsequent thermal treatment under vacuum, was utilized for its development. The characterization and study of the prepared samples performed with a range of specialized experimental techniques reveal that thermal treatment of the as-prepared hybrid precursors under a range of annealing conditions leads to the development of Co-rich Fe–Co alloy NPs, with average sizes in the range of 6–10 nm, that exhibit uniform distribution on the surfaces of the ND nanotemplates and demonstrate FM behavior throughout a temperature range from 2 K to 400 K, with maximum magnetization values ranging between 18.9 and 21.1 emu/g and coercivities ranging between 112 and 881 Oe. Moreover, 57Fe Mössbauer spectroscopy reveals that apart from the predominant bcc FM Fe–Co phase, iron atoms also participate in the formation of a secondary martensitic-type Fe–Co phase. The emergence of this distinctive phase is attributed to the diffusion of carbon atoms within the Fe–Co lattices during their formation at elevated temperatures. The source of these carbon atoms is related to the unique morphological properties of the ND growth matrices, which facilitate surface sp2 formations. Apart from their diffusion within the Fe–Co NP lattice, the carbon atoms also reconstruct layered graphitic-type nanostructures enveloping the metallic alloy NPs. These non-typical nanohybrid materials, reported here for the first time in the literature, hold significant potential for use in applications related, but not limited to, biomedicine, biopharmaceutics, catalysis, and other various contemporary technological fields. Full article
(This article belongs to the Section Magnetic Nanospecies)
Show Figures

Figure 1

19 pages, 6062 KiB  
Article
Non-Destructive Detection of Cerasus Humilis Fruit Quality by Hyperspectral Imaging Combined with Chemometric Method
by Bin Wang, Hua Yang, Lili Li and Shujuan Zhang
Horticulturae 2024, 10(5), 519; https://doi.org/10.3390/horticulturae10050519 - 17 May 2024
Abstract
Cerasus Humilis fruit is susceptible to rapid color changes post-harvest, which degrades its quality. This research utilized hyperspectral imaging technology to detect and visually analyze the soluble solid content (SSC) and firmness of the fruit, aiming to improve quality and achieve optimal pricing. [...] Read more.
Cerasus Humilis fruit is susceptible to rapid color changes post-harvest, which degrades its quality. This research utilized hyperspectral imaging technology to detect and visually analyze the soluble solid content (SSC) and firmness of the fruit, aiming to improve quality and achieve optimal pricing. Four maturity stages (color turning stage, coloring stage, maturity stage, and fully ripe stage) of Cerasus Humilis fruit were examined using hyperspectral images (895–1700 nm) alongside data collection on SSC and firmness. These samples were divided into a calibration set and a validation set with a ratio of 3:1 by sample set partitioning based on the joint X-Y distances (SPXY) method. The original spectral data was processed by a spectral preprocessing method. Multiple linear regression (MLR) and nonlinear least squares support vector machine (LS-SVM) detection models were established using feature wavelengths selected by the successive projections algorithm (SPA), competitive adaptive reweighted sampling (CARS), uninformative variable elimination (UVE), and two combined downscaling algorithms (UVE-SPA and UVE-CARS), respectively. For SSC and firmness detection, the best models were the SNV-SPA-LS-SVM model with 18 feature wavelengths and the original spectra-UVE-CARS-LS-SVM model with eight feature wavelengths, respectively. For SSC, the correlation coefficient of prediction (Rp) was 0.8526, the root mean square error of prediction (RMSEP) was 0.9703, and the residual prediction deviation (RPD) was 1.9017. For firmness, Rp was 0.7879, RMSEP was 1.1205, and RPD was 2.0221. Furthermore, the optimal model was employed to retrieve the distribution of SSC and firmness within Cerasus Humilis fruit. This retrieved information facilitated visual inspection, enabling a more intuitive and comprehensive assessment of SSC and firmness at each pixel level. These findings demonstrated the effectiveness of hyperspectral imaging technology for determining SSC and firmness in Cerasus Humilis fruit. This paves the way for online monitoring of fruit quality, ultimately facilitating timely harvesting. Full article
(This article belongs to the Special Issue Application of Smart Technology and Equipment in Horticulture)
Show Figures

Figure 1

13 pages, 661 KiB  
Article
Effect of Transplanting Time and Nitrogen–Potassium Ratio on Yield, Growth, and Quality of Cauliflower Landrace Gigante di Napoli in Southern Italy
by Alessio Vincenzo Tallarita, Eugenio Cozzolino, Antonio Salluzzo, Agnieszka Sekara, Robert Pokluda, Otilia Cristina Murariu, Lorenzo Vecchietti, Luisa del Piano, Pasquale Lombardi, Antonio Cuciniello and Gianluca Caruso
Horticulturae 2024, 10(5), 518; https://doi.org/10.3390/horticulturae10050518 - 17 May 2024
Abstract
Research has been increasingly focusing on the preservation of the biodiversity of vegetable crops under sustainable farming management. An experiment was carried out in southern Italy on Brassica oleracea L. var. botrytis, landrace Gigante di Napoli, to assess the effects of two transplanting [...] Read more.
Research has been increasingly focusing on the preservation of the biodiversity of vegetable crops under sustainable farming management. An experiment was carried out in southern Italy on Brassica oleracea L. var. botrytis, landrace Gigante di Napoli, to assess the effects of two transplanting times (9 September and 7 October), in factorial combination with five nitrogen–potassium ratios (0.6; 0.8; 1.0; 1.2; and 1.4) on plant growth, yield, and quality of cauliflower heads. A split-plot design was used for the treatment distribution in the field, with three replications. The earlier transplant and the 1.2 N:K ratio led to the highest yield, mean weight, and firmness of cauliflower heads which were not significantly affected by both transplanting time and N:K ratio in terms of colour components. The 1.2 N:K ratio led to the highest head diameter with the earlier transplant, whereas the 1.0 ratio was the most effective on this parameter in the later crop cycle. The highest nitrate, nitrogen, and potassium concentrations in the heads were recorded with the earlier transplanting time. Antioxidant activity, ascorbic acid, and polyphenol content increased with the rise of the N:K ratio. The element use efficiency was constantly negative with the N:K increase for nitrogen and was augmented until the 1.2 ratio for potassium. The results of our investigation showed that the optimal combination between transplanting time and N:K ratio is a key aspect to improve head yield and quality of the cauliflower landrace Gigante di Napoli, under the perspective of biodiversity safeguarding and valorisation. Full article
Show Figures

Figure 1

17 pages, 5721 KiB  
Article
Insights into the Electrocatalytic Activity of Fe,N-Glucose/Carbon Nanotube Hybrids for the Oxygen Reduction Reaction
by Rafael G. Morais, Natalia Rey-Raap, José L. Figueiredo and Manuel F. R. Pereira
C 2024, 10(2), 47; https://doi.org/10.3390/c10020047 - 17 May 2024
Abstract
Glucose-derived carbon hybrids were synthesized by hydrothermal treatment in the presence of oxidized carbon nanotubes. Additionally, iron and nitrogen functionalities were incorporated into the carbon structure using different methodologies. The introduction of iron and nitrogen in a single step under a H2 [...] Read more.
Glucose-derived carbon hybrids were synthesized by hydrothermal treatment in the presence of oxidized carbon nanotubes. Additionally, iron and nitrogen functionalities were incorporated into the carbon structure using different methodologies. The introduction of iron and nitrogen in a single step under a H2 atmosphere favored the formation of quaternary nitrogen and oxidized nitrogen, whereas the incorporation of nitrogen under an N2 atmosphere after doping the hybrids with iron mainly produced pyridinic nitrogen. The samples were characterized by scanning electron microscopy, X-ray spectroscopy, adsorption isotherms, inductively coupled plasma optical emission spectrometry, and Raman spectroscopy. The presence of iron and nitrogen in the carbons increases the onset potential toward oxygen reduction in KOH 0.1 mol L−1 by 130 mV (0.83 V), in comparison to carbonized glucose, whereas the reaction mechanism shifts closer to a direct pathway and the formation of HO2 decreases to 25% (3.5 electrons). The reaction rate also increased in comparison to the carbonized glucose, as observed by the decrease in the Tafel slope value from 117 to 61 mV dec−1. Furthermore, the incorporation of iron and nitrogen in a single step enhanced the short-term performance of the prepared electrocatalysts, which may also be due to the higher relative amount of quaternary nitrogen. Full article
Show Figures

Graphical abstract

18 pages, 10118 KiB  
Article
Tissue Regeneration and Remodeling in Rat Models after Application of Hypericum perforatum L. Extract-Loaded Bigels
by Yoana Sotirova, Yoana Kiselova-Kaneva, Deyana Vankova, Oskan Tasinov, Diana Ivanova, Hristo Popov, Minka Hristova, Krastena Nikolova and Velichka Andonova
Gels 2024, 10(5), 341; https://doi.org/10.3390/gels10050341 - 17 May 2024
Abstract
The wound-healing effect of St. John’s Wort (SJW) is mainly attributed to hyperforin (HP), but its low stability restricts its topical administration. This study investigates how “free” HP-rich SJW extract (incorporated into a bigel; B/SJW) and extract “protected” by nanostructured lipid carriers (also [...] Read more.
The wound-healing effect of St. John’s Wort (SJW) is mainly attributed to hyperforin (HP), but its low stability restricts its topical administration. This study investigates how “free” HP-rich SJW extract (incorporated into a bigel; B/SJW) and extract “protected” by nanostructured lipid carriers (also included in a biphasic semisolid; B/NLC-SJW) affect tissue regeneration in a rat skin excision wound model. Wound diameter, histological changes, and tissue gene expression levels of fibronectin (Fn), matrix metalloproteinase 8 (MMP8), and tumor necrosis factor-alpha (TNF-α) were employed to quantify the healing progress. A significant wound size reduction was achieved after applying both extract-containing semisolids, but after a 21-day application period, the smallest wound size was observed in the B/NLC-SJW-treated animals. However, the inflammatory response was affected more favorably by the bigel containing the “free” SJW extract, as evidenced by histological studies. Moreover, after the application of B/SJW, the expression of Fn, MMP8, and TNF-α was significantly higher than in the positive control. In conclusion, both bigel formulations exhibited beneficial effects on wound healing in rat skin, but B/SJW affected skin restoration processes in a comprehensive and more efficient way. Full article
Show Figures

Figure 1

19 pages, 2989 KiB  
Article
Effect of Drying Conditions and Jojoba Oil Incorporation on the Selected Physical Properties of Hydrogel Whey Protein-Based Edible Films
by Sabina Galus, Magdalena Karwacka, Agnieszka Ciurzyńska and Monika Janowicz
Gels 2024, 10(5), 340; https://doi.org/10.3390/gels10050340 - 17 May 2024
Abstract
Edible hydrogel coatings or films in comparison to conventional food packaging materials are characterized as thin layers obtained from biopolymers that can be applied or enveloped onto the surface of food products. The use of lipid-containing hydrogel packaging materials, primarily as edible protective [...] Read more.
Edible hydrogel coatings or films in comparison to conventional food packaging materials are characterized as thin layers obtained from biopolymers that can be applied or enveloped onto the surface of food products. The use of lipid-containing hydrogel packaging materials, primarily as edible protective coatings for food applications, is recognized for their excellent barrier capacity against water vapor during storage. With the high brittleness of waxes and the oxidation of different fats or oils, highly stable agents are desirable. Jojoba oil obtained from the jojoba shrub is an ester of long-chain fatty acids and monovalent, long-chain alcohols, which contains natural oxidants α, β, and δ tocopherols; therefore, it is resistant to oxidation and shows high thermal stability. The production of hydrogel films and coatings involves solvent evaporation, which may occur in ambient or controlled drying conditions. The study aimed to determine the effect of drying conditions (temperature from 20 to 70 °C and relative humidity from 30 to 70%) and jojoba oil addition at the concentrations of 0, 0.5, 1.0, 1.5, and 2.0% on the selected physical properties of hydrogel edible films based on whey protein isolate. Homogenization resulted in stable, film-forming emulsions with bimodal lipid droplet distribution and a particle size close to 3 and 45 µm. When higher drying temperatures were used, the drying time was much shorter (minimum 2 h for temperature of 70 °C and relative humidity of 30%) and a more compact structure, lower water content (12.00–13.68%), and better mechanical resistance (3.48–3.93 MPa) of hydrogel whey protein films were observed. The optimal conditions for drying hydrogel whey protein films are a temperature of 50 °C and an air humidity of 30% over 3 h. Increasing the content of jojoba oil caused noticeable color changes (total color difference increased from 2.00 to 2.43 at 20 °C and from 2.58 to 3.04 at 70 °C), improved mechanical elasticity (the highest at 60 °C from 48.4 to 101.1%), and reduced water vapor permeability (the highest at 70 °C from 9.00·10−10 to 6.35·10−10 g/m·s·Pa) of the analyzed films. The observations of scanning electron micrographs showed the heterogeneity of the film surface and irregular distribution of lipid droplets in the film matrix. Full article
(This article belongs to the Special Issue Gel Technology for Development of Bioactive Foodstuffs)
Show Figures

Figure 1

18 pages, 1729 KiB  
Review
Rheumatic and Degenerative Mitral Stenosis: From an Iconic Clinical Case to the Literature Review
by Francesca Napoli, Ciro Vella, Luca Ferri, Marco B. Ancona, Barbara Bellini, Filippo Russo, Eustachio Agricola, Antonio Esposito and Matteo Montorfano
J. Cardiovasc. Dev. Dis. 2024, 11(5), 153; https://doi.org/10.3390/jcdd11050153 - 17 May 2024
Abstract
Mitral stenosis (MS) poses significant challenges in diagnosis and management due to its varied etiologies, such as rheumatic mitral stenosis (RMS) and degenerative mitral stenosis (DMS). While rheumatic fever-induced RMS has declined in prevalence, DMS is rising with aging populations and comorbidities. Starting [...] Read more.
Mitral stenosis (MS) poses significant challenges in diagnosis and management due to its varied etiologies, such as rheumatic mitral stenosis (RMS) and degenerative mitral stenosis (DMS). While rheumatic fever-induced RMS has declined in prevalence, DMS is rising with aging populations and comorbidities. Starting from a complex clinical case of DMS, the aim of this paper is to review the literature on mitral stenosis by analyzing the available tools and the differences in terms of diagnosis and treatment for rheumatic and degenerative stenosis. Emerging transcatheter techniques, such as transcatheter mitral valve replacement (TMVR) and lithotripsy-facilitated percutaneous mitral commissurotomy (PMC), represent promising alternatives for DMS patients deemed unfit for surgery. In particular, intravascular lithotripsy (IVL) has shown potential in facilitating percutaneous interventions by fracturing calcific deposits and enabling subsequent interventions. However, larger prospective studies are warranted to validate these findings and establish IVL’s role in DMS management. To further enhance this technique, research could focus on investigating the long-term outcomes and durability of mitral lithotripsy, as well as exploring its potential in combination with PMC or TMVR. Full article
(This article belongs to the Special Issue Innovative Trends in Cardiovascular Medicine and Surgery)
Show Figures

Figure 1

12 pages, 585 KiB  
Article
Canine Euthanasia’s Trend Analysis during Thirty Years (1990–2020) in Italy: A Veterinary Hospital as Case Study
by Annalisa Previti, Vito Biondi, Michela Pugliese, Angela Alibrandi, Agata Zirilli, Mariana Roccaro, Angelo Peli and Annamaria Passantino
Vet. Sci. 2024, 11(5), 224; https://doi.org/10.3390/vetsci11050224 - 17 May 2024
Abstract
This study aimed to investigate changes in the number of, and reasons for, requests for dogs’ euthanasia over the last thirty years. Data (breed, age, gender, neuter status, manner, and cause of death) from dogs’ euthanasia registered between 1990 and 2020 in a [...] Read more.
This study aimed to investigate changes in the number of, and reasons for, requests for dogs’ euthanasia over the last thirty years. Data (breed, age, gender, neuter status, manner, and cause of death) from dogs’ euthanasia registered between 1990 and 2020 in a small animals’ veterinary hospital were analyzed. The overall period examined has been split into two terms (T1 = 1990–2004 and T2 = 2005–2020) considering the introduction and enforcement of Law 189/2004. During the whole period examined, a significant increasing trend in euthanasia cases has been recorded (p = 0.027). Comparing the two terms, we observed significant differences regarding variables such as age, breed, reproductive status, and ownership. The number of euthanized dogs was significantly higher in T1 than in T2. Dogs euthanized in T2 were older than dogs in T1. A high percentage of the euthanized dogs were crossbred and stray dogs. Additionally, the number of neutered/spayed dogs was significantly higher. Regarding the cause of death, a significantly higher percentage of neoplastic processes was detected in T2. The data here reported suggest a potential influence of Law 189/2004. This law in Italy has proven to be a legal milestone that has influenced the decision-making process between euthanasia and natural death. Full article
Show Figures

Figure 1

14 pages, 4960 KiB  
Article
Computational Lower Limb Simulator Boundary Conditions to Reproduce Measured TKA Loading in a Cohort of Telemetric Implant Patients
by Chase Maag, Clare K. Fitzpatrick and Paul J. Rullkoetter
Bioengineering 2024, 11(5), 503; https://doi.org/10.3390/bioengineering11050503 - 17 May 2024
Abstract
Recent advancements in computational modeling offer opportunities to refine total knee arthroplasty (TKA) design and treatment strategies. This study developed patient-specific simulator external boundary conditions (EBCs) using a PID-controlled lower limb finite element (FE) model. Calibration of the external actuation required to achieve [...] Read more.
Recent advancements in computational modeling offer opportunities to refine total knee arthroplasty (TKA) design and treatment strategies. This study developed patient-specific simulator external boundary conditions (EBCs) using a PID-controlled lower limb finite element (FE) model. Calibration of the external actuation required to achieve measured patient-specific joint loading and motion was completed for nine patients with telemetric implants during gait, stair descent, and deep knee bend. The study also compared two EBC scenarios: activity-specific hip AP motion and pelvic rotation (that was averaged across all patients for an activity) and patient-specific hip AP motion and pelvic rotation. Including patient-specific data significantly improved reproduction of joint-level loading, reducing root mean squared error between the target and achieved loading by 28.7% and highlighting the importance of detailed patient data in replicating joint kinematics and kinetics. The principal component analysis (PCA) of the EBCs for the patient dataset showed that one component represented 77.8% of the overall variation, while the first three components represented 97.8%. Given the significant loading variability within the patient cohort, this group of patient-specific models can be run individually to provide insight into expected TKA mechanics variability, and the PCA can be utilized to further create reasonable EBCs that expand the variability evaluated. Full article
(This article belongs to the Special Issue Computational Biomechanics, Volume II)
Show Figures

Figure 1

14 pages, 3381 KiB  
Article
Adherence-Promoting Design Features in Pediatric Neurostimulators for ADHD Patients
by William Delatte, Allyson Camp, Richard B. Kreider and Anthony Guiseppi-Elie
Bioengineering 2024, 11(5), 502; https://doi.org/10.3390/bioengineering11050502 - 17 May 2024
Abstract
The emergence of remote health monitoring and increased at-home care emphasizes the importance of patient adherence outside the clinical setting. This is particularly pertinent in the treatment of Attention Deficit Hyperactivity Disorder (ADHD) in pediatric patients, as the population inherently has difficulty remembering [...] Read more.
The emergence of remote health monitoring and increased at-home care emphasizes the importance of patient adherence outside the clinical setting. This is particularly pertinent in the treatment of Attention Deficit Hyperactivity Disorder (ADHD) in pediatric patients, as the population inherently has difficulty remembering and initiating treatment tasks. Neurostimulation is an emerging treatment modality for pediatric ADHD and requires strict adherence to a treatment regimen to be followed in an at-home setting. Thus, to achieve the desired therapeutic effect, careful attention must be paid to design features that can passively promote and effectively monitor therapeutic adherence. This work describes instrumentation designed to support a clinical trial protocol that tests whether choice of color, or color itself, can statistically significantly increase adherence rates in pediatric ADHD patients in an extraclinical environment. This is made possible through the development and application of an internet-of-things approach in a remote adherence monitoring technology that can be implemented in forthcoming neurostimulation devices for pediatric patient use. This instrumentation requires minimal input from the user, is durable and resistant to physical damage, and provides accurate adherence data to parents and physicians, increasing assurance that neurostimulation devices are effective for at-home care. Full article
Show Figures

Figure 1

16 pages, 6070 KiB  
Article
Biomechanical Effects of the Badminton Split-Step on Forecourt Lunging Footwork
by Yile Wang, Liu Xu, Hanhui Jiang, Lin Yu, Hanzhang Wu and Qichang Mei
Bioengineering 2024, 11(5), 501; https://doi.org/10.3390/bioengineering11050501 - 17 May 2024
Abstract
Background: This research investigates the biomechanical impact of the split-step technique on forehand and backhand lunges in badminton, aiming to enhance players’ on-court movement efficiency. Despite the importance of agile positioning in badminton, the specific contributions of the split-step to the biomechanical impact [...] Read more.
Background: This research investigates the biomechanical impact of the split-step technique on forehand and backhand lunges in badminton, aiming to enhance players’ on-court movement efficiency. Despite the importance of agile positioning in badminton, the specific contributions of the split-step to the biomechanical impact of lunging footwork still need to be determined. Methods: This study examined the lower limb kinematics and ground reaction forces of 18 male badminton players performing forehand and backhand lunges. Data were collected using the VICON motion capture system and Kistler force platforms. Variability in biomechanical characteristics was assessed using paired-sample t-tests and Statistical Parametric Mapping 1D (SPM1D). Results: The study demonstrates that the split-step technique in badminton lunges significantly affects lower limb biomechanics. During forehand lunges, the split-step increases hip abduction and rotation while decreasing knee flexion at foot contact. In backhand lunges, it increases knee rotation and decreases ankle rotation. Additionally, the split-step enhances the loading rate of the initial ground reaction force peak and narrows the time gap between the first two peaks. Conclusions: These findings underscore the split-step’s potential in optimizing lunging techniques, improving performance and reducing injury risks in badminton athletes. Full article
Show Figures

Figure 1

14 pages, 6448 KiB  
Article
Microplastic Release from Single-Use Plastic Beverage Cups
by Selen Akbulut, Perihan Kubra Akman, Fatih Tornuk and Hasan Yetim
Foods 2024, 13(10), 1564; https://doi.org/10.3390/foods13101564 - 17 May 2024
Abstract
Microplastics (MPs) have attracted considerable attention as one of the most remarkable food and drink pollutants in recent years. Disposable cups, which are widely used as single-use containers, have been suspected as the primary sources of MPs found in cold and hot beverages. [...] Read more.
Microplastics (MPs) have attracted considerable attention as one of the most remarkable food and drink pollutants in recent years. Disposable cups, which are widely used as single-use containers, have been suspected as the primary sources of MPs found in cold and hot beverages. In this study, the effect of different exposure times (0, 5, 10 and 20 min) and temperatures (4 °C, 50 °C and 80 °C) on MP release from the single-use cups made of four different materials [polypropylene (PP), polystyrene (PS), polyethylene (PE) coated paper cups and expanded polystyrene (EPS)] into the water was investigated. The number of MPs ranged from 126 p/L to 1420 p/L, while the highest and lowest counts were observed in the PP (50 °C for 20 min) and PE-coated paper cups (4 °C 0 min), respectively. Washing the cups with ultrapure water prior to use reduced the MP release by 52–65%. SEM images demonstrated the abrasion on the surface of the disposable cups as a result of hot water exposure. Intensities of FTIR absorbance levels at some wavelengths were decreased by the water treatment, which could be evidence of surface abrasion. The annual MP exposure of consumers was calculated as 18,720–73,840 by the consumption of hot and cold beverages in disposable cups. In conclusion, as the level and potential toxicity of MP exposure in humans are not yet fully known, this study sheds light on the number of MPs transferred to cold and hot beverages from single-use disposable cups. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

13 pages, 3006 KiB  
Article
Comparison of Fruit Texture and Storage Quality of Four Apple Varieties
by Xiaoyi Ding, Yajin Zheng, Rongjian Jia, Xiangyu Li, Bin Wang and Zhengyang Zhao
Foods 2024, 13(10), 1563; https://doi.org/10.3390/foods13101563 - 17 May 2024
Abstract
Fruit texture and storage properties of various apple varieties exhibit significant variation. The rate of fruit softening post-harvest plays a crucial role in determining fruit quality and shelf life. This research utilized four apple varieties as test subjects to investigate the internal factors [...] Read more.
Fruit texture and storage properties of various apple varieties exhibit significant variation. The rate of fruit softening post-harvest plays a crucial role in determining fruit quality and shelf life. This research utilized four apple varieties as test subjects to investigate the internal factors influencing fruit texture changes among different varieties. By monitoring changes in relevant physiological indicators during the post-harvest texture softening process, the study examined fruit quality, cell wall material content, hydrolase activity, and gene transcription levels during storage of ‘Orin’, ‘RX’, ‘RXH’, and ‘Envy’ apples. Initial fruit softening was primarily linked to heightened post-harvest fruit respiration intensity, ethylene production, and rapid amylase activity. Subsequent softening was associated with increased activity of water-soluble pectin (WSP), cellulose (CEL), and other hydrolases. With the extension of the storage period, the fruit cells of the four varieties became more loosely arranged, resulting in larger intercellular gaps. Variations in WSP and cellulose content, CEL activity, and relative expression of Mdβ-gal were observed among the different apple varieties, potentially accounting for the disparities in fruit texture. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

13 pages, 1509 KiB  
Article
Development of New Series of Certified Reference Materials for Ferrosilicon Magnesium Alloys
by Justyna Kostrzewa, Jacek Anyszkiewicz, Tadeusz Gorewoda, Ewa Jamroz, Kjell Blandhol, Alf Yngve Guldhav, Magdalena Knapik, Jadwiga Charasińska and Agata Jakóbik-Kolon
Processes 2024, 12(5), 1017; https://doi.org/10.3390/pr12051017 - 17 May 2024
Abstract
This paper presents a practical approach to the production of certified reference materials (CRMs) for ferrosilicon magnesium alloys. These new CRMs are predicted to be used in fast X-ray fluorescence spectrometry (XRF) analysis, which does not require sample digestion and does not result [...] Read more.
This paper presents a practical approach to the production of certified reference materials (CRMs) for ferrosilicon magnesium alloys. These new CRMs are predicted to be used in fast X-ray fluorescence spectrometry (XRF) analysis, which does not require sample digestion and does not result in the production of acidic sewage and emissions, contrary to the classical and instrumental techniques currently used in laboratories. Four new certified reference materials (CRMs) were developed to fill the gap in the reference materials market and ensure fast and traceable analyses. The materials were produced with an industrial process and then homogenized and mixed to achieve the required compositions and level of homogeneity. The homogeneity was determined using specially developed analytical methods and confirmed statistically by ANOVA. Additionally, the results of the tests show the short- and long-term stabilities of the new materials. The certified values for specific element contents were determined in interlaboratory tests. All results were assessed statistically for outliers. The results from three or more independent and different analytical methods were used for the calculations. In parallel homogeneity, the stability, and characterization standard uncertainties were calculated and used in the estimation of the final expanded uncertainties of the certified values. Finally, four new CRMs were assisted with the proper certificates according to ISO standards. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop