The 2023 MDPI Annual Report has
been released!
 
12 pages, 3210 KiB  
Article
Improving Ammonia Emission Model of Urea Fertilizer Fluidized Bed Granulation System Using Particle Swarm Optimization for Sustainable Fertilizer Manufacturing Practice
by Norhidayah Mohamad, Nor Azlina Ab. Aziz, Anith Khairunnisa Ghazali and Mohd Rizal Salleh
Processes 2024, 12(5), 1025; https://doi.org/10.3390/pr12051025 (registering DOI) - 18 May 2024
Abstract
Granulation is an important class of production processes in food, chemical and pharmaceutical manufacturing industries. In urea fertilizer manufacturing, fluidized beds are often used for the granulation system. However, the granulation processes release ammonia to the environment. Ammonia gas can contribute to eutrophication, [...] Read more.
Granulation is an important class of production processes in food, chemical and pharmaceutical manufacturing industries. In urea fertilizer manufacturing, fluidized beds are often used for the granulation system. However, the granulation processes release ammonia to the environment. Ammonia gas can contribute to eutrophication, which is an oversupply of nitrogen and acidification to the ecosystems. Eutrophication may cause major disruptions of aquatic ecosystems. It is estimated that global ammonia emissions from urea fertilizer processes are approximately at 10 to 12 Tg N/year, which represents 23% of overall ammonia released globally. Therefore, accurate modeling of the ammonia emission by the urea fertilizer fluidized bed granulation system is important. It allows for the system to be operated efficiently and within sustainable condition. This research attempts to optimize the model of the system using the particle swarm optimization (PSO) algorithm. The model takes pressure (Mpa), binder feed rate (rpm) and inlet temperature (°C) as the manipulated variables. The PSO searches for the model’s optimal coefficients. The accuracy of the model is measured using mean square error (MSE) between the model’s simulated value and the actual data of ammonia released which is collected from an experiment. The proposed method reduces the MSE to 0.09727, indicating that the model can accurately simulate the actual system. Full article
Show Figures

Figure 1

22 pages, 13002 KiB  
Article
Study on Sulfide Ore Dust Dispersion and Dust Reduction Measures Based on Simulation
by Zijun Li, Pengyu Hu and Yuanyuan Xu
Minerals 2024, 14(5), 523; https://doi.org/10.3390/min14050523 (registering DOI) - 18 May 2024
Abstract
Sulfide ore dust is at risk of explosion. To analyze the concentration distribution of sulfide ore dust in the ore loading, transporting, and unloading operations, the migration and dispersion processes of sulfide ore dust were simulated by using FLUENT software and taking the [...] Read more.
Sulfide ore dust is at risk of explosion. To analyze the concentration distribution of sulfide ore dust in the ore loading, transporting, and unloading operations, the migration and dispersion processes of sulfide ore dust were simulated by using FLUENT software and taking the dust generation rate, roadway air velocity, and dust source position as variables. The concentration of sulfide ore dust was analyzed from the four-dimensional perspective of time and space. The results show that the maximum concentration of sulfide ore dust is determined by the dust generation rate. The roadway air velocity exhibits dual effects on the migration and deposition of sulfide ore dust. The ore loading position significantly impacts the distribution of sulfide ore dust, manifesting in varying degrees of superposition effects. Based on the results, this paper proposes a comprehensive dust reduction measure in the form of water curtain and dynamic ventilation, effectively minimizing the concentration of sulfide mine dust within the roadway. Full article
Show Figures

Figure 1

20 pages, 23249 KiB  
Article
Ecological Security Pattern Construction in Loess Plateau Areas—A Case Study of Shanxi Province, China
by Yongyong Fu, Wenjia Zhang, Feng Gao, Xu Bi, Ping Wang and Xiaojun Wang
Land 2024, 13(5), 709; https://doi.org/10.3390/land13050709 (registering DOI) - 18 May 2024
Abstract
Strong soil erosion and increasing human activities have made Loess Plateau areas ecologically fragile regions. Constructing the ecological security pattern (ESP) is imperative to maintain their ecosystem functions and sustainable development. However, it is still challenging to establish the ESP in such an [...] Read more.
Strong soil erosion and increasing human activities have made Loess Plateau areas ecologically fragile regions. Constructing the ecological security pattern (ESP) is imperative to maintain their ecosystem functions and sustainable development. However, it is still challenging to establish the ESP in such an unstable and scattered ecological environment. In this study, we take Shanxi Province, which suffers severe ecological problems in Loess Plateau areas, as an example to construct the ESP in a pattern of “source-resistance-corridor”. The proposed methods include the following steps: (1) potential ecological sources are selected with important ecosystem functions based on contributions of soil and water conservation, habitat quality, and carbon storage; (2) ecological sources are determined by considering core areas at the landscape scale based on morphological spatial pattern analysis (MSPA) along with stability based on dynamic assessment on previous sources; (3) the comprehensive resistance surface is constructed by multiple resistance factors and remotely sensed nighttime light data; (4) ecological corridors are simulated and extracted based on circuit theory. As a result, the proposed ESP in our study area mainly includes 13,592 km2 of ecological sources, 8519.64 km of ecological corridors, and 277 ecological nodes. Meanwhile, an ecological framework of “two axes, three belts, and three zones” was proposed based on the optimization and reorganization of ecological components within the ESP. Our research lays a methodological and practical foundation for regional ESP construction and sustainable development in Loess Plateau areas. Full article
(This article belongs to the Special Issue Local and Regional Planning for Sustainable Development)
Show Figures

Figure 1

15 pages, 3489 KiB  
Article
Short-Term Electrical Load Forecasting Using an Enhanced Extreme Learning Machine Based on the Improved Dwarf Mongoose Optimization Algorithm
by Haocheng Wang, Yu Zhang and Lixin Mu
Symmetry 2024, 16(5), 628; https://doi.org/10.3390/sym16050628 (registering DOI) - 18 May 2024
Abstract
Accurate short-term electrical load forecasting is crucial for the stable operation of power systems. Given the nonlinear, periodic, and rapidly changing characteristics of short-term power load forecasts, this paper introduces a novel forecasting method employing an Extreme Learning Machine (ELM) enhanced by an [...] Read more.
Accurate short-term electrical load forecasting is crucial for the stable operation of power systems. Given the nonlinear, periodic, and rapidly changing characteristics of short-term power load forecasts, this paper introduces a novel forecasting method employing an Extreme Learning Machine (ELM) enhanced by an improved Dwarf Mongoose Optimization Algorithm (Local escape Dwarf Mongoose Optimization Algorithm, LDMOA). This method addresses the significant prediction errors of conventional ELM models and enhances prediction accuracy. The enhancements to the Dwarf Mongoose Optimization Algorithm include three key modifications: initially, a dynamic backward learning strategy is integrated at the early stages of the algorithm to augment its global search capabilities. Subsequently, a cosine algorithm is employed to locate new food sources, thereby expanding the search scope and avoiding local optima. Lastly, a “madness factor” is added when identifying new sleeping burrows to further widen the search area and effectively circumvent local optima. Comparative analyses using benchmark functions demonstrate the improved algorithm’s superior convergence and stability. In this study, the LDMOA algorithm optimizes the weights and thresholds of the ELM to establish the LDMOA-ELM prediction model. Experimental forecasts utilizing data from China’s 2016 “The Electrician Mathematical Contest in Modeling” demonstrate that the LDMOA-ELM model significantly outperforms the original ELM model in terms of prediction error and accuracy. Full article
Show Figures

Figure 1

12 pages, 4088 KiB  
Article
Effect of Applying 1% Metformin on Guided Bone Regeneration Processes with Bovine-Derived Xenografts
by Oier Montalbán-Vadillo, Esteban Pérez-Pevida, Iratxe Viteri-Agustín, David Chávarri-Prado, Alejandro Estrada-Martínez, Markel Diéguez-Pereira, Fernando Sánchez-Lasheras and Aritza Brizuela-Velasco
J. Clin. Med. 2024, 13(10), 2973; https://doi.org/10.3390/jcm13102973 (registering DOI) - 18 May 2024
Abstract
Background: Although xenografts have shown successful results in GBR procedures due to their osteoconductive properties, many authors have opted to add co-adjuvant drugs to favor osteogenesis and differentiate cells into an osteoblastic lineage. Metformin has been shown to have bone-protective properties, regulating osteoclast [...] Read more.
Background: Although xenografts have shown successful results in GBR procedures due to their osteoconductive properties, many authors have opted to add co-adjuvant drugs to favor osteogenesis and differentiate cells into an osteoblastic lineage. Metformin has been shown to have bone-protective properties, regulating osteoclast differentiation, as well as the ability to promote osteoblast mineralization and differentiation. The present study aimed to evaluate the effect of the local application of a 1% metformin solution on bone neoformation in the treatment of an experimental bone defect in a guided bone regeneration animal model with a particulated bovine hydroxyapatite xenograft with hyaluronate. Methods: With this purpose in mind, two critical defects with 8 mm diameter and 0.5 mm depth were created in eight male New Zealand rabbit calvarias. Titanium cylinders were fixed in each defect and filled with particulate hydroxyapatite of bovine origin and sodium hyaluronate, with sterile injectable saline added to the control group and sterile 1% metformin solution added to the test group. At 6 weeks, the animals were euthanized, and samples were obtained and prepared for histomorphometric analysis. Results: A higher percentage of new bone formation was observed in the metformin samples than in the control samples, both in the region closest to the animal’s calvaria and in the most distal region analyzed. A higher average bone–biomaterial contact percentage was observed in the samples, with metformin in both the proximal and distal regions. There was no statistically significant difference in the mean value in either region in both parameters. Conclusion: The local application of a 1% metformin solution in an animal model of guided bone regeneration with particulate bovine hydroxyapatite and hyaluronate resulted in greater bone neoformation and xenograft osseointegration than in the control group. Full article
Show Figures

Figure 1

13 pages, 1819 KiB  
Article
Impact of Various Essential Oils on the Development of Pathogens of the Fusarium Genus and on Health and Germination Parameters of Winter Wheat and Maize
by Jakub Danielewicz, Monika Grzanka, Łukasz Sobiech, Ewa Jajor, Joanna Horoszkiewicz, Marek Korbas, Andrzej Blecharczyk, Kinga Stuper-Szablewska and Kinga Matysiak
Molecules 2024, 29(10), 2376; https://doi.org/10.3390/molecules29102376 (registering DOI) - 18 May 2024
Abstract
Currently, researchers are looking for ways to replace synthetic pesticides with substances of natural origin. Essential oils are produced by plants, among other things, to protect against pathogens, which is why there is interest in their use as fungicides. This experiment assessed the [...] Read more.
Currently, researchers are looking for ways to replace synthetic pesticides with substances of natural origin. Essential oils are produced by plants, among other things, to protect against pathogens, which is why there is interest in their use as fungicides. This experiment assessed the composition of essential oils from a commercial source, their impact on the development of mycelium of pathogens of the Fusarium genus, and the possibility of using them as a pre-sowing treatment. Grains of winter wheat (Triticum aestivum L.) and corn (Zea mays L.) were inoculated with a suspension of mycelium and spores of fungi of the Fusarium genus and then soaked in solutions containing oils of sage (Salvia officinalis L.), cypress (Cupressus sempervirens L.), cumin (Cuminum cyminum L.), and thyme (Thymus vulgaris L.). The obtained results indicate that thyme essential oil had the strongest effect on limiting the development of Fusarium pathogens and seedling infection, but at the same time it had an adverse effect on the level of germination and seedling development of the tested plants. The remaining essential oils influenced the mentioned parameters to varying degrees. Selected essential oils can be an alternative to synthetic fungicides, but they must be selected appropriately. Full article
(This article belongs to the Special Issue The Chemistry of Essential Oils II)
Show Figures

Figure 1

14 pages, 7833 KiB  
Article
Compositional Diversity of Early Mesozoic Granites in South Qinling: Derivation from Heterogenous Basement Rocks in the Orogenic Belt
by Risheng Ye, Weiyong Li, Dongyang Huo, Jingxin Zhao, Xiguang Huang, Jun He and Fukun Chen
Geosciences 2024, 14(5), 138; https://doi.org/10.3390/geosciences14050138 (registering DOI) - 18 May 2024
Abstract
Granitic rocks forming in the syn- to post-orogenic stages can trace the compositional and structural complexity of the crust beneath an orogenic belt. The Qinling orogenic belt undertook multiple stages of tectonics and magmatism, resulting in the multifaceted evolution and compositional diversity of [...] Read more.
Granitic rocks forming in the syn- to post-orogenic stages can trace the compositional and structural complexity of the crust beneath an orogenic belt. The Qinling orogenic belt undertook multiple stages of tectonics and magmatism, resulting in the multifaceted evolution and compositional diversity of the crust. In the present study, the Guangtoushan and Miba plutons in South Qinling were chosen to reveal the crustal heterogeneity in study area via isotopic geochemistry and zircon geochronology. The Guangtoushan pluton was emplaced between ~215 Ma and ~202 Ma and the Miba pluton formed at ~213 Ma, as constrained by zircon U-Pb isotopic dating. Granitic rocks of the Miba pluton are characterized by amphibole bearing and homogeneous composition, with relatively depleted Sr-Nd isotopic compositions (initial 87Sr/86Sr values of 0.7060 to 0.7084 and initial εNd values of −5.4 to −9.5) and high Pb isotopic values. The Guangtoushan pluton contains muscovite and complex inherited zircon grains and has variable Sr-Nd isotopic composition (initial 87Sr/86Sr values of 0.7050 to 0.7091 and initial εNd values of −4.5 to −12.9) and low Pb isotopic values. Felsic magmas of the Guangtoushan pluton should be derived mainly from meta-sedimentary rocks beneath South Qinling, while the Miba pluton originated primarily from partial melting of meta-igneous rocks. The compositional diversity recorded in the Early Mesozoic plutons was caused by the heterogeneous crust, and partial melting was induced by heating of the up-welling asthenosphere in a post-collision setting. Full article
Show Figures

Figure 1

24 pages, 6087 KiB  
Article
Spatial Analysis on Resource Utilization, Environmental Consequences and Sustainability of Rice–Crayfish Rotation System in Jianghan Plain, China
by Hang Shi, Guang Han, Naijuan Hu, Shuyang Qu and Liqun Zhu
Agronomy 2024, 14(5), 1071; https://doi.org/10.3390/agronomy14051071 (registering DOI) - 18 May 2024
Abstract
The rice–crayfish rotation system (RCR), originating in the Jianghan Plain, is developing rapidly in various regions of China and has been characterized by unbalanced regional development, which has also led to widespread concerns and discussion on its environmental impacts and sustainability. This study [...] Read more.
The rice–crayfish rotation system (RCR), originating in the Jianghan Plain, is developing rapidly in various regions of China and has been characterized by unbalanced regional development, which has also led to widespread concerns and discussion on its environmental impacts and sustainability. This study selects representative RCR production areas in the Jianghan Plain, including Jianli, Qianjiang, Shishou, Shayang, Gong’an and Honghu, to analyze resource inputs, resource utilization efficiency, environmental impacts and sustainability by employing the emergy analysis method. Our analysis of Jianli, Honghu, Qianjiang, Gong’an, Shishou and Shayang reports total emergy inputs ranging from 6.46 × 1016 to 8.25 × 1016, with renewable rates between 78.38% and 84.34%. Shishou leads in the unit emergy value (5.58 × 10−1) and the emergy yield ratio (5.30). The sustainability evaluation finds that the environmental loading ratio is from 0.19 to 0.28 and the emergy index for sustainable development varies between 1.27 and 3.00. This analysis indicates that the southern regions have higher inputs and efficiency, with southeastern areas showing lower environmental impact and higher sustainability. We also underscore the impact of non-renewable resources on environmental outcomes and sustainability, suggesting tailored development strategies for the rice–crayfish rotation system’s optimization and sustainable growth. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

12 pages, 1906 KiB  
Article
Generation and Validation of Normative, Age-Specific Reference Curves for Bone Strain Index in Women
by Luca Rinaudo, Sofia Cuttone, Carmelo Messina, Veronica Magni, Davide Capra, Luca Maria Sconfienza, Francesco Sardanelli and Fabio Massimo Ulivieri
Diagnostics 2024, 14(10), 1046; https://doi.org/10.3390/diagnostics14101046 (registering DOI) - 18 May 2024
Abstract
Bone Strain Index (BSI), based on dual-energy X-ray absorptiometry (DXA), is a densitometric index of bone strength of the femur and lumbar spine. Higher BSI values indicate a higher strain applied to bone, predisposing to higher fracture risk. This retrospective, multicentric study on [...] Read more.
Bone Strain Index (BSI), based on dual-energy X-ray absorptiometry (DXA), is a densitometric index of bone strength of the femur and lumbar spine. Higher BSI values indicate a higher strain applied to bone, predisposing to higher fracture risk. This retrospective, multicentric study on Italian women reports the BSI normative age-specific reference curves. A cohort of Caucasian Italian women aged 20 to 90 years was selected from three different clinical centres. Bone mineral density (BMD) and BSI measurements were obtained for the lumbar spine vertebrae (L1–L4) and for the femur (neck, trochanter and intertrochanter) using Hologic densitometers scans. The data were compared with BMD normative values provided by the densitometer manufacturer. Then, the age-specific BSI curve for the femur and lumbar spine was generated. No significant difference was found between the BMD of the subjects in this study and BMD reference data provided by Hologic (p = 0.68 for femur and p = 0.90 for lumbar spine). Spine BSI values (L1–L4) increase by 84% between 20 and 90 years of age. The mean BSI of the total femur increases about 38% in the same age range. The BSI age-specific reference curve could help clinicians improve osteoporosis patient management, allowing an appropriate patient classification according to the bone resistance to the applied loads and fragility fracture risk assessment. Full article
(This article belongs to the Special Issue Diagnosis and Management of Osteoporosis)
Show Figures

Figure 1

11 pages, 509 KiB  
Article
Clinical and Genomic Features of Patients with Renal Cell Carcinoma and Advanced Chronic Kidney Disease: Analysis of a Multi-Institutional Database
by Corbin J. Eule, Junxiao Hu, Dale Hedges, Alkesh Jani, Thomas Pshak, Brandon J. Manley, Alejandro Sanchez, Robert Dreicer, Zin W. Myint, Yousef Zakharia and Elaine T. Lam
Cancers 2024, 16(10), 1920; https://doi.org/10.3390/cancers16101920 (registering DOI) - 18 May 2024
Abstract
Background: Patients with advanced chronic kidney disease (ACKD) are at an increased risk of developing renal cell carcinoma (RCC), but molecular alterations in RCC specimens arising from ACKD and overall survival (OS) in affected patients are not well defined. Patients and Methods: Using [...] Read more.
Background: Patients with advanced chronic kidney disease (ACKD) are at an increased risk of developing renal cell carcinoma (RCC), but molecular alterations in RCC specimens arising from ACKD and overall survival (OS) in affected patients are not well defined. Patients and Methods: Using the Oncology Research Information Exchange Network (ORIEN) Total Cancer Care® protocol, 296 consented adult patients with RCC and somatic tumor whole exome sequencing were included. Patients with ACKD were defined as those with serum creatinine ≥1.5 mg/dL prior to RCC diagnosis. Results: Of 296 patients with RCC, 61 met the criteria for ACKD. The most common somatic mutations in the overall cohort were in VHL (126, 42.6%), PBRM1 (102, 34.5%), and SETD2 (54, 18.2%). BAP1 had a decreased mutational frequency in RCC specimens from patients without ACKD as compared to those with ACKD (10.6% versus 1.6%), but this was not statistically significant in univariable (OR 0.14, p = 0.056) or multivariable (OR 0.15, p = 0.067) analysis. Median OS was not reached in either cohort. Conclusions: Using the clinicogenomic ORIEN database, our study found lower rates of BAP1 mutations in RCC specimens from patients with ACKD, which may reflect a BAP1-independent mutational driver of RCC in patients with ACKD. Full article
(This article belongs to the Special Issue New Era of Cancer Research: From Large-Scale Cohorts to Big-Data)
Show Figures

Figure 1

11 pages, 2270 KiB  
Article
Competitive Mechanism of Alloying Elements on the Physical Properties of Al10Ti15Nix1Crx2Cox3 Alloys through Single-Element and Multi-Element Analysis Methods
by Yu Liu, Lijun Wang, Juangang Zhao, Zhipeng Wang, Ruizhi Zhang, Yuanzhi Wu, Touwen Fan and Pingying Tang
Coatings 2024, 14(5), 639; https://doi.org/10.3390/coatings14050639 (registering DOI) - 18 May 2024
Abstract
Altering the content of an alloying element in alloy materials will inevitably affect the content of other elements, while the effect is frequently disregarded, leading to subsequent negligence of the common influence on the physical properties of alloys. Therefore, the correlation between alloying [...] Read more.
Altering the content of an alloying element in alloy materials will inevitably affect the content of other elements, while the effect is frequently disregarded, leading to subsequent negligence of the common influence on the physical properties of alloys. Therefore, the correlation between alloying elements and physical properties has not been adequately addressed in the existing studies. In response to this problem, the present study focuses on the Al10Ti15Nix1Crx2Cox3 alloys and investigates the competitive interplay among Ni, Cr, and Co elements in the formation of physical properties through a single-element (SE) analysis and a multi-element (ME) analysis based on the first principles calculations and the partial least squares (PLS) regression. The values of C11 and C44 generally increase with the incorporation of Ni or Cr content in light of SE analysis, which is contrary to the inclination of ME analysis in predicting the impact of Ni and Cr elements, and the Ni element demonstrates a pronounced negative competitive ability. The overall competitive relationship among the three alloying elements suggests that increasing the content of Ni and Cr does not contribute to enhancing the elastic constants of alloys, and the phenomenon is also observed in the analysis of elastic moduli. The reason is that the SE analysis fails to account for the aforementioned common influence of multiple alloying elements on the physical properties of alloys. Therefore, the integration of SE analysis and ME analysis is more advantageous in elucidating the hidden competitive mechanism among multiple alloying elements, and offering a more robust theoretical framework for the design of alloy materials. Full article
(This article belongs to the Special Issue Microstructure, Mechanical and Tribological Properties of Alloys)
Show Figures

Figure 1

12 pages, 1361 KiB  
Article
Hypoglycemic Effects of Extracts Obtained from Endemic Betonica bulgarica Degen and Neič
by Iva Slavova, Tea Genisheva, Gabriela Angelova, Vasilyan Chalumov, Teodora Tomova and Mariana Argirova
Plants 2024, 13(10), 1406; https://doi.org/10.3390/plants13101406 (registering DOI) - 18 May 2024
Abstract
The increasing prevalence of diabetes mellitus, together with the limited access of many patients to conventional antidiabetic drugs and the side effects resulting from their use, are the reason for the ever-increasing need for new agents. One of the most important strategies used [...] Read more.
The increasing prevalence of diabetes mellitus, together with the limited access of many patients to conventional antidiabetic drugs and the side effects resulting from their use, are the reason for the ever-increasing need for new agents. One of the most important strategies used in the therapy of this disease is to reduce the postprandial blood glucose level by inhibiting the carbohydrate-degrading enzymes α-amylase and α-glucosidase. The purpose of the present study was to provide in vitro evidence for the potential hypoglycemic effect of leaf and inflorescence aqueous extracts of Bulgarian endemic species Betonica bulgarica Degen and Neič. Total phenolic and flavonoid contents and antioxidant activities were determined by spectrophotometric methods. Qualitative and quantitative determinations of principal phenolic acids and flavonoids were performed using HPLC with a dual absorbance detector. The plant extracts were able to retard the enzymatic breakdown of starch to glucose with 50% inhibiting concentrations of 1.86 mg/mL and 1.54 mg/mL respectively for leaf and flower extract. Some of the plant constituents are proven inhibitors of α-amylase and/or α-glucosidase, but their adsorption on starch seems to be one additional mechanism for the inhibition of glucose release. Combination index analysis carried out with binary mixtures of acarbose and plant extracts showed a tendency toward synergism with an increase in concentrations and level of inhibition. Full article
(This article belongs to the Special Issue Plant Extracts with Antihyperglycemic and Antidiabetic Effects)
Show Figures

Figure 1

18 pages, 4055 KiB  
Article
Unveiling Key Factors Shaping Energy Storage Strategies for Sustainable Energy Communities
by José Andrés Palacios-Ferrer, Francisco J. Rey-Martínez, Christian A. Repenning-Bzdigian and Javier M. Rey-Hernández
Buildings 2024, 14(5), 1466; https://doi.org/10.3390/buildings14051466 (registering DOI) - 18 May 2024
Abstract
This research delves into a case study of a photovoltaic (PV) energy community, leveraging empirical data to explore the integration of renewable energy sources and storage solutions. By evaluating energy generation and consumption patterns within real-world energy communities (a nominal generation capacity of [...] Read more.
This research delves into a case study of a photovoltaic (PV) energy community, leveraging empirical data to explore the integration of renewable energy sources and storage solutions. By evaluating energy generation and consumption patterns within real-world energy communities (a nominal generation capacity of 33 kWn) in Gipuzkoa, Spain, from May 2022 to May 2023, this study comprehensively examines operational dynamics and performance metrics. This study highlights the critical role of energy consumption patterns in facilitating the integration of renewable energy sources and underscores the importance of proactive strategies to manage demand fluctuations effectively. Against the backdrop of rising energy costs and environmental concerns, renewable energies and storage solutions emerge as compelling alternatives, offering financial feasibility and environmental benefits within energy communities. This study emphasizes the necessity of research and development efforts to develop efficient energy storage technologies and the importance of economic incentives and collaborative initiatives to drive investments in renewable energy infrastructure. The analyzed results provide valuable insights into operational dynamics and performance metrics, further advancing our understanding of their transformative potential in achieving a sustainable energy future. Specifically, our study suggests that storage capacity should ideally support an average annual capacity of 23%, with fluctuations observed where this capacity may double or reduce to a minimum in certain months. Given the current market conditions, our findings indicate the necessity of significant public subsidies, amounting to no less than 67%, to facilitate the installation of storage infrastructure, especially in cases where initial investments are not covered by the energy community. Full article
(This article belongs to the Topic Trends and Prospects for Energy Communities in Europe)
Show Figures

Figure 1

18 pages, 813 KiB  
Review
Long Noncoding RNA MALAT1: Salt-Sensitive Hypertension
by Mohd Mabood Khan and Annet Kirabo
Int. J. Mol. Sci. 2024, 25(10), 5507; https://doi.org/10.3390/ijms25105507 (registering DOI) - 18 May 2024
Abstract
Hypertension stands as the leading global cause of mortality, affecting one billion individuals and serving as a crucial risk indicator for cardiovascular morbidity and mortality. Elevated salt intake triggers inflammation and hypertension by activating antigen-presenting cells (APCs). We found that one of the [...] Read more.
Hypertension stands as the leading global cause of mortality, affecting one billion individuals and serving as a crucial risk indicator for cardiovascular morbidity and mortality. Elevated salt intake triggers inflammation and hypertension by activating antigen-presenting cells (APCs). We found that one of the primary reasons behind this pro-inflammatory response is the epithelial sodium channel (ENaC), responsible for transporting sodium ions into APCs and the activation of NADPH oxidase, leading to increased oxidative stress. Oxidative stress increases lipid peroxidation and the formation of pro-inflammatory isolevuglandins (IsoLG). Long noncoding RNAs (lncRNAs) play a crucial role in regulating gene expression, and MALAT1, broadly expressed across cell types, including blood vessels and inflammatory cells, is also associated with inflammation regulation. In hypertension, the decreased transcriptional activity of nuclear factor erythroid 2-related factor 2 (Nrf2 or Nfe2l2) correlates with heightened oxidative stress in APCs and impaired control of various antioxidant genes. Kelch-like ECH-associated protein 1 (Keap1), an intracellular inhibitor of Nrf2, exhibits elevated levels of hypertension. Sodium, through an increase in Sp1 transcription factor binding at its promoter, upregulates MALAT1 expression. Silencing MALAT1 inhibits sodium-induced Keap1 upregulation, facilitating the nuclear translocation of Nrf2 and subsequent antioxidant gene transcription. Thus, MALAT1, acting via the Keap1-Nrf2 pathway, modulates antioxidant defense in hypertension. This review explores the potential role of the lncRNA MALAT1 in controlling the Keap1-Nrf2-antioxidant defense pathway in salt-induced hypertension. The inhibition of MALAT1 holds therapeutic potential for the progression of salt-induced hypertension and cardiovascular disease (CVD). Full article
(This article belongs to the Special Issue Molecular Pharmacology of Cardiovascular Disease)
Show Figures

Figure 1

11 pages, 967 KiB  
Review
Analysis of Individual Viral Particles by Flow Virometry
by Caroline O. Tabler and John C. Tilton
Viruses 2024, 16(5), 802; https://doi.org/10.3390/v16050802 (registering DOI) - 18 May 2024
Abstract
This review focuses on the emerging field of flow virometry, the study and characterization of individual viral particles using flow cytometry instruments and protocols optimized for the detection of nanoscale events. Flow virometry faces considerable technical challenges including minimal light scattering by small [...] Read more.
This review focuses on the emerging field of flow virometry, the study and characterization of individual viral particles using flow cytometry instruments and protocols optimized for the detection of nanoscale events. Flow virometry faces considerable technical challenges including minimal light scattering by small viruses that complicates detection, coincidental detection of multiple small particles due to their high concentrations, and challenges with sample preparation including the inability to easily “wash” samples to remove unbound fluorescent antibodies. We will discuss how the field has overcome these challenges to reveal novel insights into viral biology. Full article
(This article belongs to the Special Issue Flow Virometry: A New Tool for Studying Viruses)
Show Figures

Figure 1

19 pages, 794 KiB  
Article
De Novo Antimicrobial Peptide Design with Feedback Generative Adversarial Networks
by Michaela Areti Zervou, Effrosyni Doutsi, Yannis Pantazis and Panagiotis Tsakalides
Int. J. Mol. Sci. 2024, 25(10), 5506; https://doi.org/10.3390/ijms25105506 (registering DOI) - 18 May 2024
Abstract
Antimicrobial peptides (AMPs) are promising candidates for new antibiotics due to their broad-spectrum activity against pathogens and reduced susceptibility to resistance development. Deep-learning techniques, such as deep generative models, offer a promising avenue to expedite the discovery and optimization of AMPs. A remarkable [...] Read more.
Antimicrobial peptides (AMPs) are promising candidates for new antibiotics due to their broad-spectrum activity against pathogens and reduced susceptibility to resistance development. Deep-learning techniques, such as deep generative models, offer a promising avenue to expedite the discovery and optimization of AMPs. A remarkable example is the Feedback Generative Adversarial Network (FBGAN), a deep generative model that incorporates a classifier during its training phase. Our study aims to explore the impact of enhanced classifiers on the generative capabilities of FBGAN. To this end, we introduce two alternative classifiers for the FBGAN framework, both surpassing the accuracy of the original classifier. The first classifier utilizes the k-mers technique, while the second applies transfer learning from the large protein language model Evolutionary Scale Modeling 2 (ESM2). Integrating these classifiers into FBGAN not only yields notable performance enhancements compared to the original FBGAN but also enables the proposed generative models to achieve comparable or even superior performance to established methods such as AMPGAN and HydrAMP. This achievement underscores the effectiveness of leveraging advanced classifiers within the FBGAN framework, enhancing its computational robustness for AMP de novo design and making it comparable to existing literature. Full article
(This article belongs to the Special Issue Molecular Advances in Bioinformatics Analysis of Protein Properties)
Show Figures

Figure 1

16 pages, 1553 KiB  
Article
Valorization of Wheat Bran by Co-Cultivation of Fungi with Integrated Hydrolysis to Provide Sugars and Animal Feed
by Fabian Mittermeier, Fabienne Fischer, Sebastian Hauke, Peter Hirschmann and Dirk Weuster-Botz
BioTech 2024, 13(2), 15; https://doi.org/10.3390/biotech13020015 (registering DOI) - 18 May 2024
Abstract
The enzymatic hydrolysis of agricultural residues like wheat bran enables the valorization of otherwise unused carbon sources for biotechnological processes. The co-culture of Aspergillus niger and Trichoderma reesei with wheat bran particles as substrate produces an enzyme set consisting of xylanases, amylases, and [...] Read more.
The enzymatic hydrolysis of agricultural residues like wheat bran enables the valorization of otherwise unused carbon sources for biotechnological processes. The co-culture of Aspergillus niger and Trichoderma reesei with wheat bran particles as substrate produces an enzyme set consisting of xylanases, amylases, and cellulases that is suitable to degrade lignocellulosic biomass to sugar monomers (D-glucose, D-xylose, and L-arabinose). An integrated one-pot process for enzyme production followed by hydrolysis in stirred tank bioreactors resulted in hydrolysates with overall sugar concentrations of 32.3 g L−1 and 24.4 g L−1 at a 25 L and a 1000 L scale, respectively, within 86 h. Furthermore, the residual solid biomass consisting of fermented wheat bran with protein-rich fungal mycelium displays improved nutritional properties for usage as animal feed due to its increased content of sugars, protein, and fat. Full article
(This article belongs to the Section Agricultural and Food Biotechnology)
Show Figures

Figure 1

13 pages, 1625 KiB  
Article
Conversion of Post-Refining Waste MONG to Gaseous Fuel in a Rotary Gasifier
by Andrzej Sitka, Piotr Szulc, Daniel Smykowski, Beata Anwajler, Tomasz Tietze and Wiesław Jodkowski
Sustainability 2024, 16(10), 4251; https://doi.org/10.3390/su16104251 (registering DOI) - 18 May 2024
Abstract
Biodiesel manufacturing frequently employs sustainable materials like soybeans, microorganisms, palm extract, jatropha plant, and recycled frying oils. The expansion of biodiesel manufacturing has escalated the volume of waste byproducts, encompassing glycerin and non-glycerin organic matter (MONG), jointly known as raw glycerin. MONG is [...] Read more.
Biodiesel manufacturing frequently employs sustainable materials like soybeans, microorganisms, palm extract, jatropha plant, and recycled frying oils. The expansion of biodiesel manufacturing has escalated the volume of waste byproducts, encompassing glycerin and non-glycerin organic matter (MONG), jointly known as raw glycerin. MONG is characterized by a low calorific value, a high autoignition temperature, and significant viscosity at room temperature. As a waste product, it negatively affects the natural environment due to the lack of viable disposal methods. Hence, there is a need for its conversion into high-calorific gaseous fuel with significantly less environmental impact. One of the methods for converting MONG into gaseous fuel is the pyrolysis process. This study describes the pyrolytic conversion of MONG conducted on a test stand consisting of a rotating chamber with a shell filled with liquid lead as a heating medium. Based on the measurements and balance calculations, the amount of heat required to preserve the autothermal process was determined. The calorific value and composition of the pyrolytic gas were measured, revealing that 70% of the gas involves compounds characterized by a high calorific value. As a result, the calorific value of dry, purified gas equals 35.07 MJ/kg. A life cycle assessment has been conducted, in order to determine if the produced gaseous fuel matches sustainable development criteria. MONG-based gas is a sustainable replacement of, e.g., natural gas, lignite, or hard coal; however, it allows us to avoid 233–416 kg/h CO2 emissions per 1 MWt of heat. Full article
(This article belongs to the Special Issue Biomass Conversion and Green Technology)
Show Figures

Figure 1

25 pages, 1080 KiB  
Review
Influence of Amino Acids and Exercise on Muscle Protein Turnover, Particularly in Cancer Cachexia
by Rashmita Pradhan, Walburga Dieterich, Anirudh Natarajan, Raphaela Schwappacher, Dejan Reljic, Hans J. Herrmann, Markus F. Neurath and Yurdagül Zopf
Cancers 2024, 16(10), 1921; https://doi.org/10.3390/cancers16101921 (registering DOI) - 18 May 2024
Abstract
Cancer cachexia is a multifaceted syndrome that impacts individuals with advanced cancer. It causes numerous pathological changes in cancer patients, such as inflammation and metabolic dysfunction, which further diminish their quality of life. Unfortunately, cancer cachexia also increases the risk of mortality in [...] Read more.
Cancer cachexia is a multifaceted syndrome that impacts individuals with advanced cancer. It causes numerous pathological changes in cancer patients, such as inflammation and metabolic dysfunction, which further diminish their quality of life. Unfortunately, cancer cachexia also increases the risk of mortality in affected individuals, making it an important area of focus for cancer research and treatment. Several potential nutritional therapies are being tested in preclinical and clinical models for their efficacy in improving muscle metabolism in cancer patients. Despite promising results, no special nutritional therapies have yet been validated in clinical practice. Multiple studies provide evidence of the benefits of increasing muscle protein synthesis through an increased intake of amino acids or protein. There is also increasing evidence that exercise can reduce muscle atrophy by modulating protein synthesis. Therefore, the combination of protein intake and exercise may be more effective in improving cancer cachexia. This review provides an overview of the preclinical and clinical approaches for the use of amino acids with and without exercise therapy to improve muscle metabolism in cachexia. Full article
Show Figures

Figure 1

17 pages, 2591 KiB  
Article
Decoding the Effects of High Hydrostatic Pressure and High-Temperature Short-Time Sterilization on the Volatile Aroma Profile of Red Raspberry Juice
by Wentao Zhang, Xuejie Li, Xuzeng Wang, He Li, Xiaojun Liao, Fei Lao, Jihong Wu and Jian Li
Foods 2024, 13(10), 1574; https://doi.org/10.3390/foods13101574 (registering DOI) - 18 May 2024
Abstract
The loss of distinctive aromas due to sterilization significantly hinders efforts to enhance the sensory quality of fruit and vegetable juices. This study aimed to elucidate the impacts of high-hydrostatic pressure (HHP) and high-temperature short-time (HTST) sterilization methods on the loss of C6 [...] Read more.
The loss of distinctive aromas due to sterilization significantly hinders efforts to enhance the sensory quality of fruit and vegetable juices. This study aimed to elucidate the impacts of high-hydrostatic pressure (HHP) and high-temperature short-time (HTST) sterilization methods on the loss of C6 aldehyde aroma-active compounds in red raspberry juice. External standard quantification and quantitative descriptive analysis (QDA) revealed a notable decline in the levels of hexanal and (Z)-3-hexenal following the HHP and HTST treatments (p < 0.05), resulting in a marked attenuation of the grassy aroma characteristic of red raspberry juice. Furthermore, a comprehensive examination of the precursors, pivotal enzymes, intermediates, and downstream aromas within the fatty acid metabolism pathway in different raspberry juice samples indicated that the C6 aldehydes loss induced by HHP and HTST sterilizations was primarily ascribed to the competitive inhibition of β-oxidation and the hindered enzymatic oxidation of fatty acids. These insights suggest that modifying sterilization protocols and enhancing enzymatic stability may help preserve the aroma integrity of raspberry juice. Our findings offer practical guidance for optimizing juice processing techniques to maintain flavor. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

15 pages, 5877 KiB  
Article
A Case Study of the Integration of Ground-Based and Drone-Based Ground-Penetrating Radar (GPR) for an Archaeological Survey in Hulata (Israel): Advancements, Challenges, and Applications
by Michael Frid and Vladimir Frid
Appl. Sci. 2024, 14(10), 4280; https://doi.org/10.3390/app14104280 (registering DOI) - 18 May 2024
Abstract
This study delves into the fusion of ground-based and drone-based ground-penetrating radar (GPR) technologies in archaeological exploration. Set against the backdrop of the Hulata solar panel construction site in Israel, the research confronts daunting obstacles such as clayey soil, accurate detection of small [...] Read more.
This study delves into the fusion of ground-based and drone-based ground-penetrating radar (GPR) technologies in archaeological exploration. Set against the backdrop of the Hulata solar panel construction site in Israel, the research confronts daunting obstacles such as clayey soil, accurate detection of small objects, and the imperative of timely reporting crucial for construction management. The drone-based GPR, a testament to technological innovation, showcases remarkable adaptability to challenging terrains, dispelling doubts about electromagnetic wave decay in clayey soil. Methodologically, the study employs detailed orthophoto mapping and grid-type surveys. The correlation of the results significantly bolsters the reliability of archaeological discoveries, uncovering scattered artifacts buried approximately 1–1.5 m below the surface. Meticulous excavations validate the geophysical surveys, affirming the presence of structures constructed from boulders. The application at the Hulata site validates the adaptability of drone-based GPR in challenging terrains. It provides a swift, cost-effective, and minimally invasive alternative to traditional excavation techniques, thereby transforming the field of archaeology. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

9 pages, 2501 KiB  
Article
Phenotypic Variability in Novel Doublecortin Gene Variants Associated with Subcortical Band Heterotopia
by Radha Procopio, Francesco Fortunato, Monica Gagliardi, Mariagrazia Talarico, Ilaria Sammarra, Maria Chiara Sarubbi, Donatella Malanga, Grazia Annesi and Antonio Gambardella
Int. J. Mol. Sci. 2024, 25(10), 5505; https://doi.org/10.3390/ijms25105505 (registering DOI) - 18 May 2024
Abstract
Doublecortin, encoded by the DCX gene, plays a crucial role in the neuronal migration process during brain development. Pathogenic variants of the DCX gene are the major causes of the “lissencephaly (LIS) spectrum”, which comprehends a milder phenotype like Subcortical Band Heterotopia (SBH) [...] Read more.
Doublecortin, encoded by the DCX gene, plays a crucial role in the neuronal migration process during brain development. Pathogenic variants of the DCX gene are the major causes of the “lissencephaly (LIS) spectrum”, which comprehends a milder phenotype like Subcortical Band Heterotopia (SBH) in heterozygous female subjects. We performed targeted sequencing in three unrelated female cases with SBH. We identified three DCX-related variants: a novel missense (c.601A>G: p.Lys201Glu), a novel nonsense (c.210C>G: p.Tyr70*), and a previously identified nonsense (c.907C>T: p.Arg303*) variant. The novel c.601A>G: p.Lys201Glu variant shows a mother–daughter transmission pattern across four generations. The proband exhibits focal epilepsy and achieved seizure freedom with a combination of oxcarbazepine and levetiracetam. All other affected members have no history of epileptic seizures. Brain MRIs of the affected members shows predominant fronto-central SBH with mixed pachygyria on the overlying cortex. The two nonsense variants were identified in two unrelated probands with SBH, severe drug-resistant epilepsy and intellectual disability. These novel DCX variants further expand the genotypic–phenotypic correlations of lissencephaly spectrum disorders. Our documented phenotypic descriptions of three unrelated families provide valuable insights and stimulate further discussions on DCX-SBH cases. Full article
(This article belongs to the Special Issue Genetic Variants in Neurological and Psychiatric Diseases)
Show Figures

Figure 1

11 pages, 810 KiB  
Article
Vaccine Acceptance in Patients with Inflammatory Bowel Disease: Lessons Learned from the COVID-19 Pandemic
by Giada Mastrangeli, Filippo Vernia, Stefano Necozione, Mario Muselli, Sara Frassino, Nicola Cesaro, Giovanni Latella and Leila Fabiani
Vaccines 2024, 12(5), 551; https://doi.org/10.3390/vaccines12050551 (registering DOI) - 18 May 2024
Abstract
Background: Immunomodulating therapies, which are commonly used in patients with Crohn’s disease (CD) and ulcerative colitis (UC), have been linked to an increased risk of contracting opportunistic infectious diseases, the majority of which are preventable through vaccination. Nonetheless, vaccination rates in these patients [...] Read more.
Background: Immunomodulating therapies, which are commonly used in patients with Crohn’s disease (CD) and ulcerative colitis (UC), have been linked to an increased risk of contracting opportunistic infectious diseases, the majority of which are preventable through vaccination. Nonetheless, vaccination rates in these patients are suboptimal, and frequently lower than in the general population. The COVID-19 immunization schedule provided a new scenario for investigating vaccine acceptance in patients with inflammatory bowel disease (IBD), with uncertainty and concerns emerging and the number of subjects receiving the third and fourth doses of the vaccine gradually decreasing. This study investigated IBD patients’ attitudes towards previous COVID-19 vaccine programs and identified the factors that influence their adherence. It considered demographic and disease-related factors as well as the role of gastroenterologists and primary care physicians (PCPs). Methods: Data were collected through a self-completed questionnaire administered to all adult IBD patients (age > 18) who visited the Gastroenterology, Hepatology, and Nutrition division at the University of L’Aquila (Italy) for a regular follow-up between November 2021 and December 2022. Non-IBD gastroenterological outpatients who visited during the same period were included as a control group. Results: A total of 178 patients were included in the analysis. The IBD group consisted of 77 patients, 48.1% with CD and 51.9% with UC; the mean age was 49.5 years and 51.9% were female. Overall, 94.8% of IBD patients had undergone at least one vaccine dose and 79.2% had received two doses, versus 8% of the control group (p < 0.0001). A total of 84.4% of IBD patients reported their propensity towards COVID-19 vaccination, with an average agreement score significantly higher than the controls (p = 0.0044). The trust of IBD patients in the effectiveness of the COVID-19 vaccine (p < 0.0001) and its role in hastening pandemic resolution (p < 0.0001) is strongly related to motivation and propensity. Concerns about the safety of the COVID-19 vaccine in IBD (p = 0.0202) and fear of vaccine-induced flare-ups (p = 0.0192) were reported as the main barriers. No correlation was found between COVID-19 vaccine propensity and clinical features like the type of IBD, years of disease, activity, and ongoing treatment. Regarding the recommendations received from physicians to get vaccinated against COVID-19, IBD patients relied heavily on their gastroenterologists for advice, while the control group relied mainly on their PCPs. Conclusions: The overall positive attitude towards vaccinations reported in our study was better than that observed for other vaccines. The relationship of trust with the gastroenterologist should be used to boost vaccination against other preventable diseases in IBD patients. Our findings add information on the factors influencing vaccine propensity, which can be used to improve current vaccination strategies. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop