The 2023 MDPI Annual Report has
been released!
 
24 pages, 2727 KiB  
Article
Genome-Wide Identification and Characterization of the CCT Gene Family in Rapeseed (Brassica napus L.)
by Liyiqi Yu, Jichun Xia, Rujiao Jiang, Jiajia Wang, Xiaolong Yuan, Xinchao Dong, Zhenjie Chen, Zizheng Zhao, Boen Wu, Lanlan Zhan, Ranfeng Zhang, Kang Tang, Jiana Li and Xinfu Xu
Int. J. Mol. Sci. 2024, 25(10), 5301; https://doi.org/10.3390/ijms25105301 (registering DOI) - 13 May 2024
Abstract
The CCT gene family is present in plants and is involved in biological processes such as flowering, circadian rhythm regulation, plant growth and development, and stress resistance. We identified 87, 62, 46, and 40 CCTs at the whole-genome level in B. napus [...] Read more.
The CCT gene family is present in plants and is involved in biological processes such as flowering, circadian rhythm regulation, plant growth and development, and stress resistance. We identified 87, 62, 46, and 40 CCTs at the whole-genome level in B. napus, B. rapa, B. oleracea, and A. thaliana, respectively. The CCTs can be classified into five groups based on evolutionary relationships, and each of these groups can be further subdivided into three subfamilies (COL, CMF, and PRR) based on function. Our analysis of chromosome localization, gene structure, collinearity, cis-acting elements, and expression patterns in B. napus revealed that the distribution of the 87 BnaCCTs on the chromosomes of B. napus was uneven. Analysis of gene structure and conserved motifs revealed that, with the exception of a few genes that may have lost structural domains, the majority of genes within the same group exhibited similar structures and conserved domains. The gene collinearity analysis identified 72 orthologous genes, indicating gene duplication and expansion during the evolution of BnaCCTs. Analysis of cis-acting elements identified several elements related to abiotic and biotic stress, plant hormone response, and plant growth and development in the promoter regions of BnaCCTs. Expression pattern and protein interaction network analysis showed that BnaCCTs are differentially expressed in various tissues and under stress conditions. The PRR subfamily genes have the highest number of interacting proteins, indicating their significant role in the growth, development, and response to abiotic stress of B. napus. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
13 pages, 445 KiB  
Article
Complications during Veno-Venous Extracorporeal Membrane Oxygenation in COVID-19 and Non-COVID-19 Patients with Acute Respiratory Distress Syndrome
by Andrea Bruni, Caterina Battaglia, Vincenzo Bosco, Corrado Pelaia, Giuseppe Neri, Eugenio Biamonte, Francesco Manti, Annachiara Mollace, Annalisa Boscolo, Michele Morelli, Paolo Navalesi, Domenico Laganà, Eugenio Garofalo, Federico Longhini and IMAGE Group
J. Clin. Med. 2024, 13(10), 2871; https://doi.org/10.3390/jcm13102871 (registering DOI) - 13 May 2024
Abstract
Background: Acute respiratory distress syndrome (ARDS) presents a significant challenge in critical care settings, characterized by compromised gas exchange, necessitating in the most severe cases interventions such as veno-venous extracorporeal membrane oxygenation (vv-ECMO) when conventional therapies fail. Critically ill ARDS patients on vv-ECMO [...] Read more.
Background: Acute respiratory distress syndrome (ARDS) presents a significant challenge in critical care settings, characterized by compromised gas exchange, necessitating in the most severe cases interventions such as veno-venous extracorporeal membrane oxygenation (vv-ECMO) when conventional therapies fail. Critically ill ARDS patients on vv-ECMO may experience several complications. Limited data exist comparing complication rates between COVID-19 and non-COVID-19 ARDS patients undergoing vv-ECMO. This retrospective observational study aimed to assess and compare complications in these patient cohorts. Methods: We retrospectively analyzed the medical records of all patients receiving vv-ECMO for ARDS between March 2020 and March 2022. We recorded the baseline characteristics, the disease course and complication (barotrauma, bleeding, thrombosis) before and after ECMO cannulation, and clinical outcomes (mechanical ventilation and ECMO duration, intensive care unit, and hospital lengths of stay and mortalities). Data were compared between COVID-19 and non-COVID-19 patients. In addition, we compared survived and deceased patients. Results: Sixty-four patients were included. COVID-19 patients (n = 25) showed higher rates of pneumothorax (28% vs. 8%, p = 0.039) with subcutaneous emphysema (24% vs. 5%, p = 0.048) and longer non-invasive ventilation duration before vv-ECMO cannulation (2 [1; 4] vs. 0 [0; 1] days, p = <0.001), compared to non-COVID-19 patients (n = 39). However, complication rates and clinical outcomes post-vv-ECMO were similar between groups. Survival analysis revealed no significant differences in pre-vv-ECMO complications, but non-surviving patients had a trend toward higher complication rates and more pleural effusions post-vv-ECMO. Conclusions: COVID-19 patients on vv-ECMO exhibit higher pneumothorax rates with subcutaneous emphysema pre-cannulation; post-cannulation complications are comparable to non-COVID-19 patients. Full article
(This article belongs to the Section Infectious Diseases)
18 pages, 1957 KiB  
Article
Platelets Induce Cell Apoptosis of Cardiac Cells via FasL after Acute Myocardial Infarction
by Kim J. Krott, Friedrich Reusswig, Matthias Dille, Evelyn Krüger, Simone Gorressen, Saoussen Karray, Amin Polzin, Malte Kelm, Jens W. Fischer and Margitta Elvers
Biomedicines 2024, 12(5), 1077; https://doi.org/10.3390/biomedicines12051077 (registering DOI) - 13 May 2024
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of death worldwide. Cell apoptosis in the myocardium plays an important role in ischemia and reperfusion (I/R) injury, leading to cardiac damage and dysfunction. Platelets are major players in hemostasis and play a [...] Read more.
Acute myocardial infarction (AMI) is one of the leading causes of death worldwide. Cell apoptosis in the myocardium plays an important role in ischemia and reperfusion (I/R) injury, leading to cardiac damage and dysfunction. Platelets are major players in hemostasis and play a crucial role in vessel occlusion, inflammation, and cardiac remodeling after I/R. Here, we studied the impact of platelets on cell apoptosis in the myocardium using a close-chest mouse model of AMI. We found caspase-3-positive resident cardiac cells, while leukocytes were negative for caspase-3. Using two different mouse models of thrombocytopenia, we detected a significant reduction in caspase-3 positive cells in the infarct border zone after I/R injury. Further, we identified platelet FasL to induce cell apoptosis via the extrinsic pathway of Fas receptor activation of target cells. Mechanistically, hypoxia triggers platelet adhesion to FasR, suggesting that platelet-induced apoptosis is elevated after I/R. Platelet-specific FasL knock-out mice showed reduced Bax and Bcl2 expression, suggesting that platelets modulate the intrinsic and extrinsic pathways of apoptosis, leading to reduced infarct size after myocardial I/R injury. Thus, a new mechanism for how platelets contribute to tissue homeostasis after AMI was identified that should be validated in patients soon. Full article
(This article belongs to the Special Issue Molecular Insights into Myocardial Infarction)
29 pages, 7687 KiB  
Article
Urban Waterfront Regeneration on Ecological and Historical Dimensions: Insight from a Unique Case in Beijing, China
by Lulu Chen, Hong Leng, Jian Dai, Yi Liu and Ziqing Yuan
Land 2024, 13(5), 674; https://doi.org/10.3390/land13050674 (registering DOI) - 13 May 2024
Abstract
To address current ecological issues and a lack of historical preservation in Beijing’s waterfront, it has become necessary to establish an urban design project that optimizes these aspects. This study focuses on “Beijing’s Waterfront Overall Urban Design,” a project that integrates government requirements [...] Read more.
To address current ecological issues and a lack of historical preservation in Beijing’s waterfront, it has become necessary to establish an urban design project that optimizes these aspects. This study focuses on “Beijing’s Waterfront Overall Urban Design,” a project that integrates government requirements with Beijing’s waterfront urban design characteristics and problems to establish an urban layer system from two dimensions: historical and ecological. It explores how the urban layer system can be applied to Beijing’s overall waterfront urban design, from investigation to evaluation, analysis, visualization, and strategy development. First, an urban layer system for Beijing’s waterfront was established from a historical perspective, based on urban setting and construction stages and space utilization, referring to the literature and field surveys. The evolution of urban layers of waterbodies, the water–city relationship, and water functions was systematically analyzed. Second, an urban layer system was established for the ecological dimension of Beijing’s waterfront based on a literature review, expert interviews, and analytic hierarchy process methods. It included four urban layers: waterbody, greening, shoreline, and ecological function. The quality of the ecological urban design of 54 waterfront reaches in Beijing was evaluated using questionnaires and field surveys. Third, a series of urban layer maps was generated using the mapping method. Finally, urban design strategies were developed based on the combined historical and ecological characteristics and problems of Beijing’s waterfront. The results of this study and the concept of an urban layer system for waterfront urban design can benefit waterfront urban design projects and future studies. Full article
27 pages, 18927 KiB  
Article
Investigation on the Aerodynamic Performance and Flow Mechanism of Transonic Ultra-Highly Loaded Tandem-Rotor Stage
by Shilong Yuan, Yunfeng Wu, Shengfeng Zhao, Xingen Lu and Ge Han
Aerospace 2024, 11(5), 389; https://doi.org/10.3390/aerospace11050389 (registering DOI) - 13 May 2024
Abstract
The compressor serves as a crucial component that influences the performance of the gas turbine engine. Researchers have been endeavoring to explore compressor types that possess a high loading level and high-efficiency characteristics concurrently. In this study, tandem blade technology was applied to [...] Read more.
The compressor serves as a crucial component that influences the performance of the gas turbine engine. Researchers have been endeavoring to explore compressor types that possess a high loading level and high-efficiency characteristics concurrently. In this study, tandem blade technology was applied to a transonic ultra-highly loaded axial compressor, and the Baseline single-blade rotor was replaced by a tandem rotor to take into account the loading level and compressor performance. Detailed investigations were carried out to identify the effects on the aerodynamic performance of the ultra-highly loaded stage and the fundamental flow mechanism within the tandem-rotor stage. This paper presents original design maps for the tandem-rotor stage, and the selection criteria for tandem parameters in tandem-rotor stage are refined. The results indicate that the peak efficiency improved by 0.83%, the stall margin increased by 2.16%, and the choke flow rate rose by 0.30% for the optimal tandem-rotor configuration. The meridional division position of the rotor primarily affects the ratio of loading of the front and rear blades, while the circumferential relative position of the tandem rotor mainly influences the channel types formed by the front and rear blades. Larger values for the meridional division position parameter and smaller values for circumferential relative position parameter should be selected for the tandem rotor design to optimize both the isentropic efficiency and total pressure ratio. This investigation offers the theoretical foundation for the design of a transonic ultra-highly loaded tandem-rotor compressor. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

25 pages, 2050 KiB  
Article
A Multi-Point Joint Prediction Model for High-Arch Dam Deformation Considering Spatial and Temporal Correlation
by Wenhan Cao, Zhiping Wen, Yanming Feng, Shuai Zhang and Huaizhi Su
Water 2024, 16(10), 1388; https://doi.org/10.3390/w16101388 (registering DOI) - 13 May 2024
Abstract
Deformation monitoring for mass concrete structures such as high-arch dams is crucial to their safe operation. However, structure deformations are influenced by many complex factors, and deformations at different positions tend to have spatiotemporal correlation and variability, increasing the difficulty of deformation monitoring. [...] Read more.
Deformation monitoring for mass concrete structures such as high-arch dams is crucial to their safe operation. However, structure deformations are influenced by many complex factors, and deformations at different positions tend to have spatiotemporal correlation and variability, increasing the difficulty of deformation monitoring. A novel deep learning-based monitoring model for high-arch dams considering multifactor influences and spatiotemporal data correlations is proposed in this paper. First, the measurement points are clustered to capture the spatial relationship. Successive multivariate mode decomposition is applied to extract the common mode components among the correlated points as spatial influencing factors. Second, the relationship between various factors and deformation components is extracted using factor screening. Finally, a deep learning prediction model is constructed with stacked components to obtain the final prediction. The model is validated based on practical engineering. In nearly one year of high-arch dam deformation prediction, the root mean square error is 0.344 and the R2 is 0.998, showing that the modules within the framework positively contribute to enhancing prediction performance. The prediction results of different measurement points as well as the comparison results with benchmark models show its superiority and generality, providing an advancing and practical approach for engineering structural health monitoring, particularly for high-arch dams. Full article
(This article belongs to the Special Issue Safety Evaluation of Dam and Geotechnical Engineering, Volume II)
31 pages, 5194 KiB  
Review
Cupolets: History, Theory, and Applications
by Matthew A. Morena and Kevin M. Short
Dynamics 2024, 4(2), 394-424; https://doi.org/10.3390/dynamics4020022 (registering DOI) - 13 May 2024
Abstract
In chaos control, one usually seeks to stabilize the unstable periodic orbits (UPOs) that densely inhabit the attractors of many chaotic dynamical systems. These orbits collectively play a significant role in determining the dynamics and properties of chaotic systems and are said to [...] Read more.
In chaos control, one usually seeks to stabilize the unstable periodic orbits (UPOs) that densely inhabit the attractors of many chaotic dynamical systems. These orbits collectively play a significant role in determining the dynamics and properties of chaotic systems and are said to form the skeleton of the associated attractors. While UPOs are insightful tools for analysis, they are naturally unstable and, as such, are difficult to find and computationally expensive to stabilize. An alternative to using UPOs is to approximate them using cupolets. Cupolets, a name derived from chaotic, unstable, periodic, orbit-lets, are a relatively new class of waveforms that represent highly accurate approximations to the UPOs of chaotic systems, but which are generated via a particular control scheme that applies tiny perturbations along Poincaré sections. Originally discovered in an application of secure chaotic communications, cupolets have since gone on to play pivotal roles in a number of theoretical and practical applications. These developments include using cupolets as wavelets for image compression, targeting in dynamical systems, a chaotic analog to quantum entanglement, an abstract reducibility classification, a basis for audio and video compression, and, most recently, their detection in a chaotic neuron model. This review will detail the historical development of cupolets, how they are generated, and their successful integration into theoretical and computational science and will also identify some unanswered questions and future directions for this work. Full article
(This article belongs to the Special Issue Recent Advances in Dynamic Phenomena—2nd Edition)
Show Figures

Figure 1

14 pages, 1587 KiB  
Review
Molecular Diagnostics of Cryptococcus spp. and Immunomics of Cryptococcosis-Associated Immune Reconstitution Inflammatory Syndrome
by Irina Vlasova-St. Louis and Hesham Mohei
Diseases 2024, 12(5), 101; https://doi.org/10.3390/diseases12050101 (registering DOI) - 13 May 2024
Abstract
Cryptococcal infection poses a significant global public health challenge, particularly in regions near the equator. In this review, we offer a succinct exploration of the Cryptococcus spp. genome and various molecular typing methods to assess the burden and genetic diversity of cryptococcal pathogens [...] Read more.
Cryptococcal infection poses a significant global public health challenge, particularly in regions near the equator. In this review, we offer a succinct exploration of the Cryptococcus spp. genome and various molecular typing methods to assess the burden and genetic diversity of cryptococcal pathogens in the environment and clinical isolates. We delve into a detailed discussion on the molecular pathogenesis and diagnosis of immune reconstitution inflammatory syndrome (IRIS) associated with cryptococcosis, with a specific emphasis on cryptococcal meningitis IRIS (CM-IRIS). Our examination includes the recent literature on CM-IRIS, covering host cellulomics, proteomics, transcriptomics, and genomics. Full article
Show Figures

Figure 1

20 pages, 4730 KiB  
Article
Tumor- and Fibroblast-Derived Cell-Free DNAs Differently Affect the Progression of B16 Melanoma In Vitro and In Vivo
by Alina A. Filatova, Ludmila A. Alekseeva, Aleksandra V. Sen’kova, Innokenty A. Savin, Khetam Sounbuli, Marina A. Zenkova and Nadezhda L. Mironova
Int. J. Mol. Sci. 2024, 25(10), 5304; https://doi.org/10.3390/ijms25105304 (registering DOI) - 13 May 2024
Abstract
It is widely postulated that the majority of pathologically elevated extracellular or cell-free DNA (cfDNA) in cancer originates from tumor cells; however, evidence has emerged regarding the significant contributions of other cells from the tumor microenvironment. Here, the effect of cfDNA originating from [...] Read more.
It is widely postulated that the majority of pathologically elevated extracellular or cell-free DNA (cfDNA) in cancer originates from tumor cells; however, evidence has emerged regarding the significant contributions of other cells from the tumor microenvironment. Here, the effect of cfDNA originating from murine B16 melanoma cells and L929 fibroblasts on B16 cells was investigated. It was found that cfDNAL929 increased the viability and migration properties of B16 cells in vitro and their invasiveness in vivo. In contrast, cfDNAB16 exhibited a negative effect on B16 cells, reducing their viability and migration in vitro, which in vivo led to decreased tumor size and metastasis number. It was shown that cell treatment with both cfDNAs resulted in an increase in the expression of genes encoding DNases and the oncogenes Braf, Kras, and Myc. cfDNAL929-treated cells were shown to experience oxidative stress. Gene expression changes in the case of cfDNAB16 treatment are well correlated with the observed decrease in proliferation and migration of B16 cells. The obtained data may indicate the possible involvement of fibroblast DNA in the tumor microenvironment in tumor progression and, potentially, in the formation of new tumor foci due to the transformation of normal cells. Full article
19 pages, 2162 KiB  
Article
Effects of Lactone- and Ketone-Brassinosteroids of the 28-Homobrassinolide Series on Barley Plants under Water Deficit
by Liliya V. Kolomeichuk, Ol’ga K. Murgan, Elena D. Danilova, Mariya V. Serafimovich, Vladimir A. Khripach, Raisa P. Litvinovskaya, Alina L. Sauchuk, Daria V. Denisiuk, Vladimir N. Zhabinskii, Vladimir V. Kuznetsov and Marina V. Efimova
Plants 2024, 13(10), 1345; https://doi.org/10.3390/plants13101345 (registering DOI) - 13 May 2024
Abstract
The aim of this work was to study the ability of 28-homobrassinolide (HBL) and 28-homocastasterone (HCS) to increase the resistance of barley (Hordeum vulgare L.) plants to drought and to alter their endogenous brassinosteroid status. Germinated barley seeds were treated with 0.1 [...] Read more.
The aim of this work was to study the ability of 28-homobrassinolide (HBL) and 28-homocastasterone (HCS) to increase the resistance of barley (Hordeum vulgare L.) plants to drought and to alter their endogenous brassinosteroid status. Germinated barley seeds were treated with 0.1 nM HBL or HCS solutions for two hours. A water deficit was created by stopping the watering of 7-day-old plants for the next two weeks. Plants responded to drought through growth inhibition, impaired water status, increased lipid peroxidation, differential effects on antioxidant enzymes, intense proline accumulation, altered expression of genes involved in metabolism, and decreased endogenous contents of hormones (28-homobrassinolide, B-ketones, and B-lactones). Pretreatment of plants with HBL reduced the inhibitory effect of drought on fresh and dry biomass accumulation and relative water content, whereas HCS partially reversed the negative effect of drought on fresh biomass accumulation, reduced the intensity of lipid peroxidation, and increased the osmotic potential. Compared with drought stress alone, pretreatment of plants with HCS or HBL followed by drought increased superoxide dismutase activity sevenfold or threefold and catalase activity (by 36%). The short-term action of HBL and HCS in subsequent drought conditions partially restored the endogenous B-ketone and B-lactone contents. Thus, the steroidal phytohormones HBL and HCS increased barley plant resistance to subsequent drought, showing some specificity of action. Full article
Show Figures

Figure 1

8 pages, 1775 KiB  
Brief Report
Course and Relation of the Facial Vessels—An Anatomical Study
by Martin Siwetz, Hannes Widni-Pajank, Niels Hammer, Simon Bruneder, Andreas Wree and Veronica Antipova
Medicina 2024, 60(5), 805; https://doi.org/10.3390/medicina60050805 (registering DOI) - 13 May 2024
Abstract
Background and Objectives: Facial vascular anatomy plays a pivotal role in both physiological context and in surgical intervention. While data exist on the individual course of the facial artery and vein, to date, the spatial relationship of the vasculature has been ill [...] Read more.
Background and Objectives: Facial vascular anatomy plays a pivotal role in both physiological context and in surgical intervention. While data exist on the individual course of the facial artery and vein, to date, the spatial relationship of the vasculature has been ill studied. The aim of this study was to assess the course of facial arteries, veins and branches one relative to another. Materials and Methods: In a total of 90 halved viscerocrania, the facial vessels were injected with colored latex. Dissection was carried out, the relation of the facial vessels was studied, and the distance at the lower margin of the mandible was measured. Furthermore, branches including the labial and angular vessels were assessed. Results: At the base of the mandible, the facial artery was located anterior to the facial vein in all cases at a mean distance of 6.2 mm (range 0–15 mm), with three cases of both vessels adjacent. An angular vein was present in all cases, while an angular artery was only present in 34.4% of cases. Conclusions: The main trunk of the facial artery and vein yields a rather independent course, with the facial artery always located anterior to the vein, while their branches, especially the labial vessels, demonstrate a closer relationship. Full article
Show Figures

Figure 1

20 pages, 847 KiB  
Article
Yield Response and Leaf Gas Exchange of Sicilian Wheat Landraces
by Sebastiano Andrea Corinzia, Paolo Caruso, Alessio Scandurra, Umberto Anastasi, Salvatore Luciano Cosentino and Giorgio Testa
Agronomy 2024, 14(5), 1038; https://doi.org/10.3390/agronomy14051038 (registering DOI) - 13 May 2024
Abstract
Wheat landraces are traditional varieties that have evolved over generations in response to local environments and farming practices and therefore exhibit remarkable adaptability to challenging climatic conditions and low-input farming systems. While the suitability of Mediterranean landraces to non-optimal climatic conditions during anthesis [...] Read more.
Wheat landraces are traditional varieties that have evolved over generations in response to local environments and farming practices and therefore exhibit remarkable adaptability to challenging climatic conditions and low-input farming systems. While the suitability of Mediterranean landraces to non-optimal climatic conditions during anthesis and grain ripening stage have been previously assessed, the role of photosynthesis efficiency and stomatal control on this resilience remains unexplored. This study aims to evaluate the relationship between grain yield and the post-anthesis flag leaf gas exchanges of Sicilian wheat landraces under irrigated and rainfed conditions and to compare these traits to modern durum (Triticum turgidum subsp. durum) and bread wheat (T. aestivum) varieties. Results indicate that wheat landraces respond to water availability similarly to modern varieties, reducing stomatal conductance by 26.8% and net photosynthesis by 18.1% under rainfed conditions, resulting in 10.6% lower grain yield compared to irrigated conditions. However, some landraces demonstrate comparable or even higher flag leaf net photosynthesis rates and lower transpiration levels, leading to higher yields in both rainfed and irrigated conditions, confirming their value as a source of gene pool for wheat breeding programs in drought-prone Mediterranean regions. Full article
22 pages, 1375 KiB  
Article
Digital K–12 STEM Education through Human–Robot Interaction: Investigation on Prerequisites
by S. M. Mizanoor Rahman
Digital 2024, 4(2), 461-482; https://doi.org/10.3390/digital4020023 (registering DOI) - 13 May 2024
Abstract
This article aims to explore, investigate, and determine the prerequisites that learners (students) should possess for participating in and being adequately benefitted from digital (robotics-enabled) K–12 STEM education offered through intuitive human–robot interaction. We selected 23 middle school mathematics and science teachers who [...] Read more.
This article aims to explore, investigate, and determine the prerequisites that learners (students) should possess for participating in and being adequately benefitted from digital (robotics-enabled) K–12 STEM education offered through intuitive human–robot interaction. We selected 23 middle school mathematics and science teachers who received training on how to design, develop, and implement robotics-enabled lessons. The teachers then implemented robotics-enabled lessons in actual classroom settings, and separately responded to a survey based on their training, classroom experiences and observations, and self-brainstorming. We derived a set of prerequisite knowledge, skills, and abilities, including their relative importance for the students by analyzing the survey responses. The results showed that the students should not only possess prerequisite knowledge in the subject matter, but also possess behavioral, social, scientific, cognitive, and intellectual skills and abilities to participate in and receive benefits from robotics-enabled human–robot interactive digital STEM education. Out of the many prerequisites, the computational thinking ability of students was identified as one of the most required prerequisites to participate in robotics-enabled digital STEM education. To validate the derived prerequisites, teachers separately assessed the fulfillment of prerequisites by 38 participating students, and the results showed user acceptance, effectiveness, and suitability of the derived prerequisites set. We also identified a set of limitations of the studies and proposed action plans to enable students to meet the prerequisites. The results presented herein can help determine required instructional efforts and scaffolds before implementing robotics-enabled digital STEM lessons, and thus foster incorporating technology-enhanced (robotics-enabled) digital STEM education into K–12 curricula. Full article
Show Figures

Figure 1

13 pages, 6385 KiB  
Article
How Rhizosphere Microbial Assemblage Is Influenced by Dragon Fruits with White and Red Flesh
by Xinyan Zhou, Siyu Chen, Lulu Qiu, Liyuan Liao, Guifeng Lu and Shangdong Yang
Plants 2024, 13(10), 1346; https://doi.org/10.3390/plants13101346 (registering DOI) - 13 May 2024
Abstract
The synthesis of betalain using microorganisms is an innovative developmental technology, and the excavation of microorganisms closely related to betalain can provide certain theoretical and technical support to this technology. In this study, the characteristics of soil microbial community structures and their functions [...] Read more.
The synthesis of betalain using microorganisms is an innovative developmental technology, and the excavation of microorganisms closely related to betalain can provide certain theoretical and technical support to this technology. In this study, the characteristics of soil microbial community structures and their functions in the rhizospheres of white-fleshed dragon fruit (Hylocereus undatus) and red-fleshed dragon fruit (Hylocereus polyrhizus) were analyzed. The results show that the soil bacterial and fungal compositions in the rhizospheres were shaped differently between H. undatus and H. polyrhizus. Bacterial genera such as Kribbella and TM7a were the unique dominant soil bacterial genera in the rhizospheres of H. undatus, whereas Bradyrhizobium was the unique dominant soil bacterial genus in the rhizospheres of H. polyrhizus. Additionally, Myrothecium was the unique dominant soil fungal genus in the rhizospheres of H. polyrhizus, whereas Apiotrichum and Arachniotus were the unique dominant soil fungal genera in the rhizospheres of H. undatus. Moreover, TM7a, Novibacillus, Cupriavidus, Mesorhizobium, Trechispora, Madurella, Cercophora, and Polyschema were significantly enriched in the rhizospheres of H. undatus, whereas Penicillium, Blastobotrys, Phialemonium, Marasmius, and Pseudogymnoascus were significantly enriched in the rhizospheres of H. polyrhizus. Furthermore, the relative abundances of Ascomycota and Penicillium were significantly higher in the rhizospheres of H. polyrhizus than in those of H. undatus. Full article
(This article belongs to the Special Issue Plant-Soil Microbe Interactions in Ecosystems)
Show Figures

Figure 1

19 pages, 1443 KiB  
Review
Novel Endocrine Therapeutic Opportunities for Estrogen Receptor-Positive Ovarian Cancer—What Can We Learn from Breast Cancer?
by Tine Ottenbourgs and Els Van Nieuwenhuysen
Cancers 2024, 16(10), 1862; https://doi.org/10.3390/cancers16101862 (registering DOI) - 13 May 2024
Abstract
Low-grade serous ovarian cancer (LGSOC) is a rare ovarian malignancy primarily affecting younger women and is characterized by an indolent growth pattern. It exhibits indolent growth and high estrogen/progesterone receptor expression, suggesting potential responsiveness to endocrine therapy. However, treatment efficacy remains limited due [...] Read more.
Low-grade serous ovarian cancer (LGSOC) is a rare ovarian malignancy primarily affecting younger women and is characterized by an indolent growth pattern. It exhibits indolent growth and high estrogen/progesterone receptor expression, suggesting potential responsiveness to endocrine therapy. However, treatment efficacy remains limited due to the development of endocrine resistance. The mechanisms of resistance, whether primary or acquired, are still largely unknown and present a significant hurdle in achieving favorable treatment outcomes with endocrine therapy in these patients. In estrogen receptor-positive breast cancer, mechanisms of endocrine resistance have been largely explored and novel treatment strategies to overcome resistance have emerged. Considering the shared estrogen receptor positivity in LGSOC and breast cancer, we wanted to explore whether there are any parallel mechanisms of resistance and whether we can extend endocrine breast cancer treatments to LGSOC. This review aims to highlight the underlying molecular mechanisms possibly driving endocrine resistance in ovarian cancer, while also exploring the available therapeutic opportunities to overcome this resistance. By unraveling the potential pathways involved and examining emerging strategies, this review explores valuable insights for advancing treatment options and improving patient outcomes in LGSOC, which has limited therapeutic options available. Full article
(This article belongs to the Special Issue Rare Gynecological Cancers)
29 pages, 2040 KiB  
Article
Semi-TSGAN: Semi-Supervised Learning for Highlight Removal Based on Teacher-Student Generative Adversarial Network
by Yuanfeng Zheng, Yuchen Yan and Hao Jiang
Sensors 2024, 24(10), 3090; https://doi.org/10.3390/s24103090 (registering DOI) - 13 May 2024
Abstract
Despite recent notable advancements in highlight image restoration techniques, the dearth of annotated data and the lightweight deployment of highlight removal networks pose significant impediments to further advancements in the field. In this paper, to the best of our knowledge, we first propose [...] Read more.
Despite recent notable advancements in highlight image restoration techniques, the dearth of annotated data and the lightweight deployment of highlight removal networks pose significant impediments to further advancements in the field. In this paper, to the best of our knowledge, we first propose a semi-supervised learning paradigm for highlight removal, merging the fusion version of a teacher–student model and a generative adversarial network, featuring a lightweight network architecture. Initially, we establish a dependable repository to house optimal predictions as pseudo ground truth through empirical analyses guided by the most reliable No-Reference Image Quality Assessment (NR-IQA) method. This method serves to assess rigorously the quality of model predictions. Subsequently, addressing concerns regarding confirmation bias, we integrate contrastive regularization into the framework to curtail the risk of overfitting on inaccurate labels. Finally, we introduce a comprehensive feature aggregation module and an extensive attention mechanism within the generative network, considering a balance between network performance and computational efficiency. Our experimental evaluations encompass comprehensive assessments on both full-reference and non-reference highlight benchmarks. The results demonstrate conclusively the substantive quantitative and qualitative enhancements achieved by our proposed algorithm in comparison to state-of-the-art methodologies. Full article
(This article belongs to the Special Issue Image Processing and Analysis for Object Detection: 2nd Edition)
8 pages, 3904 KiB  
Article
The Effect of “Proanthocyanidin” on Ischemia–Reperfusion Injury in Skeletal Muscles of Rats
by Abdullah Özer, Başak Koçak, Şaban Cem Sezen, Mustafa Arslan and Mustafa Kavutçu
Medicina 2024, 60(5), 804; https://doi.org/10.3390/medicina60050804 (registering DOI) - 13 May 2024
Abstract
Background and Objectives: Lower limb skeletal muscle ischemia–reperfusion (IR) injury is associated with increased morbidity and mortality, and it is common in several clinical situations such as aortic aneurysms repairment, peripheral arterial surgery, vascular injury repairment, and shock. Although it is generally [...] Read more.
Background and Objectives: Lower limb skeletal muscle ischemia–reperfusion (IR) injury is associated with increased morbidity and mortality, and it is common in several clinical situations such as aortic aneurysms repairment, peripheral arterial surgery, vascular injury repairment, and shock. Although it is generally accepted that oxidative stress mediators have a significant role in IR injury, its precise mechanism is still unknown. Anecdotally, it is sustained not only by structural and functional changes in the organ it affects but also by damage to distant organs. The purpose of this report is to illustrate the effect of proanthocyanidin on IR injury. Materials and Methods: In our study, 18 male Wistar albino rats were used. The subjects were divided into three groups containing six mice each (control, C; ischemia–reperfusion, IR; ischemia–reperfusion and proanthocyanidin; IR-PRO). Intraperitoneal proanthocyanidin was given to the IR and proanthocyanidin groups 30 min before laparotomy, and 1 h ischemia led to these two groups. After one hour, reperfusion started. Muscle atrophy–hypertrophy, muscle degeneration–congestion, fragmentation–hyalinization, muscle oval-central nucleus ratio, leukocyte cell infiltration, catalase enzyme activity, and TBARS were all examined in lower-limb muscle samples after one hour of reperfusion. Results: When skeletal muscle samples were evaluated histopathologically, it was discovered that muscle atrophy–hypertrophy, muscle degeneration–congestion, fragmentation–hyalinization, and leukocyte cell infiltration with oval-central nucleus standardization were significantly higher in the IR group than in the C and IR-P groups. Oval-central nucleus standardization was significantly higher in the IR and IR-PRO groups than in the control group. TBARS levels were significantly higher in the IR group than in the control and IR-PRO groups, while catalase enzyme activity was found to be significantly lower in the IR group than in the control and IR-PRO groups. Conclusions: As a consequence of our research, we discovered that proanthocyanidins administered before IR have a protective impact on skeletal muscle in rats. Further research in this area is required. Full article
(This article belongs to the Section Surgery)
24 pages, 1101 KiB  
Article
Effect of Alkyl Peroxyl Radical Oxidation on the Oxidative Stability of Walnut Protein Emulsions and Their Adsorbed Proteins
by Xue Wang, Qingzhi Wu, Xiaoying Mao and Jian Zhang
Foods 2024, 13(10), 1513; https://doi.org/10.3390/foods13101513 (registering DOI) - 13 May 2024
Abstract
Walnuts are high in protein content and rich in nutrients and are susceptible to oxidation during production and processing, leading to a decrease in the stability of walnut protein emulsions. In this paper, the effect of alkyl peroxyl radical oxidation on the stability [...] Read more.
Walnuts are high in protein content and rich in nutrients and are susceptible to oxidation during production and processing, leading to a decrease in the stability of walnut protein emulsions. In this paper, the effect of alkyl peroxyl radical oxidation on the stability of walnut protein emulsions is investigated. With the increase of 2,2-azobis (2-methylpropionamidine) dihydrochloride (AAPH) concentration, both its protein and fat were oxidized to different degrees, and the droplets of the emulsion were first dispersed and then aggregated as seen from the laser confocal, and the stability of walnut protein emulsion was best at the AAPH concentration of 0.2 mmol/L. In addition to this, the adsorption rate of adsorbed proteins showed a decreasing and then an increasing trend with the increase in the oxidized concentration. The results showed that moderate oxidation (AAPH concentration: 0–0.2 mmol/L) promoted an increase in protein flexibility and a decrease in the protein interfacial tension, leading to the decrease in emulsion droplet size and the increase of walnut protein emulsion stability, and excessive oxidation (AAPH concentration: 1–25 mmmol/L) weakened protein flexibility and electrostatic repulsion, making the walnut protein emulsion less stable. The results of this study provide theoretical references for the quality control of walnut protein emulsions. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
21 pages, 3593 KiB  
Article
Machine Learning Models for Regional Photovoltaic Power Generation Forecasting with Limited Plant-Specific Data
by Mauro Tucci, Antonio Piazzi and Dimitri Thomopulos
Energies 2024, 17(10), 2346; https://doi.org/10.3390/en17102346 (registering DOI) - 13 May 2024
Abstract
Predicting electricity production from renewable energy sources, such as solar photovoltaic installations, is crucial for effective grid management and energy planning in the transition towards a sustainable future. This study proposes machine learning approaches for predicting electricity production from solar photovoltaic installations at [...] Read more.
Predicting electricity production from renewable energy sources, such as solar photovoltaic installations, is crucial for effective grid management and energy planning in the transition towards a sustainable future. This study proposes machine learning approaches for predicting electricity production from solar photovoltaic installations at a regional level in Italy, not using data on individual installations. Addressing the challenge of diverse data availability between pinpoint meteorological inputs and aggregated power data for entire regions, we propose leveraging meteorological data from the centroid of each Italian province within each region. Particular attention is given to the selection of the best input features, which leads to augmenting the input with 1-hour-lagged meteorological data and previous-hour power data. Several ML approaches were compared and examined, optimizing the hyperparameters through five-fold cross-validation. The hourly predictions encompass a time horizon ranging from 1 to 24 h. Among tested methods, Kernel Ridge Regression and Random Forest Regression emerge as the most effective models for our specific application. We also performed experiments to assess how frequently the models should be retrained and how frequently the hyperparameters should be optimized in order to comprise between accuracy and computational costs. Our results indicate that once trained, the model can provide accurate predictions for extended periods without frequent retraining, highlighting its long-term reliability. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

29 pages, 8038 KiB  
Article
Pore Fractal Characteristics between Marine and Marine–Continental Transitional Black Shales: A Case Study of Niutitang Formation and Longtan Formation
by Shitan Ning, Peng Xia, Fang Hao, Jinqiang Tian, Yong Fu and Ke Wang
Fractal Fract. 2024, 8(5), 288; https://doi.org/10.3390/fractalfract8050288 (registering DOI) - 13 May 2024
Abstract
Marine shales from the Niutitang Formation and marine–continental transitional shales from the Longtan Formation are two sets of extremely important hydrocarbon source rocks in South China. In order to quantitatively compare the pore complexity characteristics between marine and marine–continental transitional shales, the shale [...] Read more.
Marine shales from the Niutitang Formation and marine–continental transitional shales from the Longtan Formation are two sets of extremely important hydrocarbon source rocks in South China. In order to quantitatively compare the pore complexity characteristics between marine and marine–continental transitional shales, the shale and kerogen of the Niutitang Formation and the Longtan Formation are taken as our research subjects. Based on organic petrology, geochemistry, and low-temperature gas adsorption analyses, the fractal dimension of their pores is calculated by the Frenkel–Halsey–Hill (FHH) and Sierpinski models, and the influences of total organic carbon (TOC), vitrinite reflectance (Ro), and mineral composition on the pore fractals of the shale and kerogen are discussed. Our results show the following: (1) Marine shale predominantly has wedge-shaped and slit pores, while marine–continental transitional shale has inkpot-shaped and slit pores. (2) Cylindrical pores are common in organic matter of both shale types, with marine shale having a greater gas storage space (CRV) from organic matter pores, while marine–continental transitional shale relies more on inorganic pores, especially interlayer clay mineral pores, for gas storage due to their large specific surface area and high adsorption capacity (CRA). (3) The fractal characteristics of marine and marine–continental transitional shale pores are influenced differently. In marine shale, TOC positively correlates with fractal dimensions, while in marine–continental shale, Ro and clay minerals have a stronger influence. Ro is the primary factor affecting organic matter pore complexity. (4) Our two pore fractal models show that the complexity of the shale in the Longtan Formation surpasses that of the shale in the Niutitang Formation, and type I kerogen has more complex organic matter pores than type III, aiding in evaluating pore connectivity and flow effectiveness in shale reservoirs. Full article
18 pages, 1449 KiB  
Article
Modelling a Response of Complex-Phase Steel at High Strain Rates
by Andrej Škrlec, Tadej Kocjan, Marko Nagode and Jernej Klemenc
Materials 2024, 17(10), 2302; https://doi.org/10.3390/ma17102302 (registering DOI) - 13 May 2024
Abstract
In this article, a response of the complex-phase high-strength steel SZBS800 was modelled by considering the strain-rate influence. The material’s response was first measured with a series of standard tensile tests at lower strain rates. Higher strain rates were achieved using the unconventional [...] Read more.
In this article, a response of the complex-phase high-strength steel SZBS800 was modelled by considering the strain-rate influence. The material’s response was first measured with a series of standard tensile tests at lower strain rates. Higher strain rates were achieved using the unconventional test of shooting the ball into flat specimens. A viscoplastic formulation of the Cowper–Symonds material model was applied to consider the strain-rate effects. The parameters SIGY, p, and C of the material model were estimated using a step-wise procedure. First, rough estimates of the three parameters were obtained from the tensile tests using the grid search method. Then, the parameters p and C were fine-tuned using the reverse engineering approach. With the help of explicit dynamic simulations and all the experimental data, a multi-criteria cost function was defined and applied to obtain a smooth response function for the parameters p and C. Its optimum was determined by a real-valued genetic algorithm. The optimal values of the estimated parameters model the material response well, although a domain of optimum candidates spans two orders of magnitude for the parameter p and a few orders of magnitude for the parameter C. Full article
(This article belongs to the Section Metals and Alloys)
16 pages, 716 KiB  
Article
Influence of Clinical Aspects and Genetic Factors on Feline HCM Severity and Development
by Victoria Korobova and Yulia Kruglova
Vet. Sci. 2024, 11(5), 214; https://doi.org/10.3390/vetsci11050214 (registering DOI) - 13 May 2024
Abstract
Hypertrophic cardiomyopathy (HCM), which is associated with thickening of the left ventricular wall, is one of the most common heart pathologies in cats. This disease has a hereditary etiology and is primarily related to mutations in the MYBPC3 and MYH7 genes. This study [...] Read more.
Hypertrophic cardiomyopathy (HCM), which is associated with thickening of the left ventricular wall, is one of the most common heart pathologies in cats. This disease has a hereditary etiology and is primarily related to mutations in the MYBPC3 and MYH7 genes. This study aims to determine the effect of the presence of heterozygosity or homozygosity for the p. A31P mutation (c.91G > C) in the MYBPC3 gene in cats (Maine Coon) of different ages referring to the HCM severity and development, and to compare echocardiographic data and various clinical aspects for the most objective detection of disease in cats of different breeds. The incidence of HCM was 59% of the 103 cases of heart disease in cats in this study. In 23 cats diagnosed with HCM, cats heterozygous for the mutation accounted for 34%, and homozygous cats accounted for 26%. Cats homozygous for this mutation had moderate to severe HCM, suggesting an association with high penetrance of HCM and a significant risk of cardiac death in this group. The penetrance of the heterozygous type was lower than that of the homozygous genotype. This study also indicates that HCM has some age-related penetrance. The disease did not occur in the study group of cats aged up to 1 year, whereas at the age of 7 and older, the percentage of animals diagnosed with HCM was the highest and amounted to 44.3% of the total number of studied cats with HCM. Full article
12 pages, 246 KiB  
Article
The Effects of Digitalization on the Sustainability of Small Farms
by Kristina Šermukšnytė-Alešiūnienė and Rasa Melnikienė
Sustainability 2024, 16(10), 4076; https://doi.org/10.3390/su16104076 (registering DOI) - 13 May 2024
Abstract
Digitalization of agriculture is one of the priorities of the EU’s rural development strategy “From Field to Table”, which promotes the creation of more added value and climate change mitigation in agriculture. A growing body of the literature argues that digitalization enables better [...] Read more.
Digitalization of agriculture is one of the priorities of the EU’s rural development strategy “From Field to Table”, which promotes the creation of more added value and climate change mitigation in agriculture. A growing body of the literature argues that digitalization enables better information management, reduces production costs, and increases the potential for farm income growth, but only a few papers provide empirical studies on how digitalization improves the performance of small farms. To fill this gap in the literature, this paper presents a case study as empirical evidence of the impact of digital innovation on smallholder performance through a sustainable development lens. This paper reports research based on a pilot digitalization project implemented on a small organic farm. It examines the identification of logical links between the digitalization processes introduced and the impact of digitalization on the economic, social, and environmental performance of the small farm. The case study data were collected through semi-structured interviews and based on the results of a pilot project. The findings of this study provide evidence that the introduction of digital technologies has improved the economic performance of the farm, including a reduction in labor costs, improved customer relations, improvements in farmers’ investment planning, and process redesign. Based on this study, recommendations are made to policymakers on how to promote the uptake of digital technologies in smallholder farming. Full article
(This article belongs to the Special Issue Innovations in Agricultural and Rural Development in a Changing World)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop