The 2023 MDPI Annual Report has
been released!
 
35 pages, 779 KiB  
Review
Deep Time Series Forecasting Models: A Comprehensive Survey
by Xinhe Liu and Wenmin Wang
Mathematics 2024, 12(10), 1504; https://doi.org/10.3390/math12101504 (registering DOI) - 11 May 2024
Abstract
Deep learning, a crucial technique for achieving artificial intelligence (AI), has been successfully applied in many fields. The gradual application of the latest architectures of deep learning in the field of time series forecasting (TSF), such as Transformers, has shown excellent performance and [...] Read more.
Deep learning, a crucial technique for achieving artificial intelligence (AI), has been successfully applied in many fields. The gradual application of the latest architectures of deep learning in the field of time series forecasting (TSF), such as Transformers, has shown excellent performance and results compared to traditional statistical methods. These applications are widely present in academia and in our daily lives, covering many areas including forecasting electricity consumption in power systems, meteorological rainfall, traffic flow, quantitative trading, risk control in finance, sales operations and price predictions for commercial companies, and pandemic prediction in the medical field. Deep learning-based TSF tasks stand out as one of the most valuable AI scenarios for research, playing an important role in explaining complex real-world phenomena. However, deep learning models still face challenges: they need to deal with the challenge of large-scale data in the information age, achieve longer forecasting ranges, reduce excessively high computational complexity, etc. Therefore, novel methods and more effective solutions are essential. In this paper, we review the latest developments in deep learning for TSF. We begin by introducing the recent development trends in the field of TSF and then propose a new taxonomy from the perspective of deep neural network models, comprehensively covering articles published over the past five years. We also organize commonly used experimental evaluation metrics and datasets. Finally, we point out current issues with the existing solutions and suggest promising future directions in the field of deep learning combined with TSF. This paper is the most comprehensive review related to TSF in recent years and will provide a detailed index for researchers in this field and those who are just starting out. Full article
8 pages, 3124 KiB  
Communication
Strong Acceptors Based on Derivatives of Benzothiadiazoloimidazole
by Hanyun Du, Bin Chen and Fengyuan Zhang
Molecules 2024, 29(10), 2262; https://doi.org/10.3390/molecules29102262 (registering DOI) - 11 May 2024
Abstract
Despite the rapid progression of organic semiconductors, developing high-air-stability n-type organic semiconductors are still challenging. Herein, novel strong acceptors based on benzothiadiazoloimidazole units are reported. The results reveal that the strong acceptor BTI-NDI-BTI-a has good solubility and high electron affinity (3.94 eV), accompanied [...] Read more.
Despite the rapid progression of organic semiconductors, developing high-air-stability n-type organic semiconductors are still challenging. Herein, novel strong acceptors based on benzothiadiazoloimidazole units are reported. The results reveal that the strong acceptor BTI-NDI-BTI-a has good solubility and high electron affinity (3.94 eV), accompanied by 1D slipped-stacking crystals. Notably, the material presents promising potential for developing into air-stable n-type organic semiconductor materials. Full article
Show Figures

Figure 1

17 pages, 3137 KiB  
Article
Oxidative Stress, Lipid Peroxidation and Ferroptosis Are Major Pathophysiological Signatures in the Placental Tissue of Women with Late-Onset Preeclampsia
by Miguel A. Ortega, Luis M. Garcia-Puente, Oscar Fraile-Martinez, Tatiana Pekarek, Cielo García-Montero, Julia Bujan, Leonel Pekarek, Silvestra Barrena-Blázquez, Raquel Gragera, Inmaculada C. Rodríguez-Rojo, Patrocinio Rodríguez-Benitez, Laura López-González, Raul Díaz-Pedrero, Melchor Álvarez-Mon, Natalio García-Honduvilla, Juan A. De León-Luis, Coral Bravo and Miguel A. Saez
Antioxidants 2024, 13(5), 591; https://doi.org/10.3390/antiox13050591 (registering DOI) - 11 May 2024
Abstract
Preeclampsia, a serious and potentially life-threatening medical complication occurring during pregnancy, is characterized by hypertension and often accompanied by proteinuria and multiorgan dysfunction. It is classified into two subtypes based on the timing of diagnosis: early-onset (EO-PE) and late-onset preeclampsia (LO-PE). Despite being [...] Read more.
Preeclampsia, a serious and potentially life-threatening medical complication occurring during pregnancy, is characterized by hypertension and often accompanied by proteinuria and multiorgan dysfunction. It is classified into two subtypes based on the timing of diagnosis: early-onset (EO-PE) and late-onset preeclampsia (LO-PE). Despite being less severe and exhibiting distinct pathophysiological characteristics, LO-PE is more prevalent than EO-PE, although both conditions have a significant impact on placental health. Previous research indicates that different pathophysiological events within the placenta may contribute to the development of preeclampsia across multiple pathways. In our experimental study, we investigated markers of oxidative stress, ferroptosis, and lipid peroxidation pathways in placental tissue samples obtained from women with LO-PE (n = 68) compared to healthy control pregnant women (HC, n = 43). Through a comprehensive analysis, we observed an upregulation of specific molecules associated with these pathways, including NADPH oxidase 1 (NOX-1), NADPH oxidase 2 (NOX-2), transferrin receptor protein 1 (TFRC), arachidonate 5-lipoxygenase (ALOX-5), acyl-CoA synthetase long-chain family member 4 (ACSL-4), glutathione peroxidase 4 (GPX4) and malondialdehyde (MDA) in women with LO-PE. Furthermore, increased ferric tissue deposition (Fe3+) was observed in placenta samples stained with Perls’ Prussian blue. The assessment involved gene and protein expression analyses conducted through RT-qPCR experiments and immunohistochemistry assays. Our findings underscore the heightened activation of inflammatory pathways in LO-PE compared to HC, highlighting the pathological mechanisms underlying this pregnancy disorder. Full article
14 pages, 3603 KiB  
Article
Effect of Immunosuppression on the Immune Response to SARS-CoV-2 Infection and Vaccination
by Emma J. Leacy, Jia Wei Teh, Aoife M. O’Rourke, Gareth Brady, Siobhan Gargan, Niall Conlon, Jennifer Scott, Jean Dunne, Thomas Phelan, Matthew D. Griffin, Julie Power, Aoife Mooney, Aifric Naughton, Rachel Kiersey, Mary Gardiner, Caroline O’Brien, Ronan Mullan, Rachael Flood, Michael Clarkson, Liam Townsend, Michelle O’Shaughnessy, Adam H. Dyer, Barry Moran, Jean M. Fletcher, Lina Zgaga and Mark A. Littleadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2024, 25(10), 5239; https://doi.org/10.3390/ijms25105239 (registering DOI) - 11 May 2024
Abstract
Immunosuppressive treatment in patients with rheumatic diseases can maintain disease remission but also increase risk of infection. Their response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is frequently blunted. In this study we evaluated the effect of immunosuppression exposure on humoral [...] Read more.
Immunosuppressive treatment in patients with rheumatic diseases can maintain disease remission but also increase risk of infection. Their response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is frequently blunted. In this study we evaluated the effect of immunosuppression exposure on humoral and T cell immune responses to SARS-CoV-2 infection and vaccination in two distinct cohorts of patients; one during acute SARS-CoV-2 infection and 3 months later during convalescence, and another prior to SARS-CoV-2 vaccination, with follow up sampling 6 weeks after vaccination. Results were compared between rituximab-exposed (in previous 6 months), immunosuppression-exposed (in previous 3 months), and non-immunosuppressed groups. The immune cell phenotype was defined by flow cytometry and ELISA. Antigen specific T cell responses were estimated using a whole blood stimulation interferon-γ release assay. A focused post-vaccine assessment of rituximab-treated patients using high dimensional spectral cytometry was conducted. Acute SARS-CoV-2 infection was characterised by T cell lymphopenia, and a reduction in NK cells and naïve CD4 and CD8 cells, without any significant differences between immunosuppressed and non-immunosuppressed patient groups. Conversely, activated CD4 and CD8 cell counts increased in non-immunosuppressed patients with acute SARS-CoV-2 infection but this response was blunted in the presence of immunosuppression. In rituximab-treated patients, antigen-specific T cell responses were preserved in SARS-CoV-2 vaccination, but patients were unable to mount an appropriate humoral response. Full article
(This article belongs to the Special Issue COVID-19 Pandemic: Therapeutic Strategies and Vaccines 2.0)
Show Figures

Figure 1

29 pages, 1697 KiB  
Review
Leukocytospermia and/or Bacteriospermia: Impact on Male Infertility
by Ralf Henkel
J. Clin. Med. 2024, 13(10), 2841; https://doi.org/10.3390/jcm13102841 (registering DOI) - 11 May 2024
Abstract
Infertility is a globally underestimated public health concern affecting almost 190 million people, i.e., about 17.5% of people during their lifetime, while the prevalence of male factor infertility is about 7%. Among numerous other causes, the prevalence of male genital tract infections reportedly [...] Read more.
Infertility is a globally underestimated public health concern affecting almost 190 million people, i.e., about 17.5% of people during their lifetime, while the prevalence of male factor infertility is about 7%. Among numerous other causes, the prevalence of male genital tract infections reportedly ranges between 10% and 35%. Leukocytospermia is found in 30% of infertile men and up to 20% in fertile men. Bacterial infections cause an inflammatory response attracting leukocytes, which produce reactive oxygen species (ROS) and release cytokines, both of which can cause damage to sperm, rendering them dysfunctional. Although leukocytospermia and bacteriospermia are both clinical conditions that can negatively affect male fertility, there is still debate about their impact on assisted reproduction outcomes and management. According to World Health Organization (WHO) guidelines, leukocytes should be determined by means of the Endtz test or with monoclonal antibodies against CD15, CD68 or CD22. The cut-off value proposed by the WHO is 1 × 106 peroxidase-positive cells/mL. For bacteria, Gram staining and semen culture are regarded as the “gold standard”, while modern techniques such as PCR and next-generation sequencing (NGS) are allowing clinicians to detect a wider range of pathogens. Whereas the WHO manual does not specify a specific value as a cut-off for bacterial contamination, several studies consider semen samples with more than 103 colony-forming units (cfu)/mL as bacteriospermic. The pathogenic mechanisms leading to sperm dysfunction include direct interaction of bacteria with the male germ cells, bacterial release of spermatotoxic substances, induction of pro-inflammatory cytokines and ROS, all of which lead to oxidative stress. Clinically, bacterial infections, including “silent” infections, are treatable, with antibiotics being the treatment of choice. Yet, non-steroidal antiphlogistics or antioxidants should also be considered to alleviate inflammatory lesions and improve semen quality. In an assisted reproduction set up, sperm separation techniques significantly reduce the bacterial load in the semen. Nonetheless, contamination of the semen sample with skin commensals should be prevented by applying relevant hygiene techniques. In patients where leukocytospermia is detected, the causes (e.g. infection, inflammation, varicocele, smoking, etc.) of the leukocyte infiltration have to be identified and addressed with antibiotics, anti-inflammatories or antioxidants in cases where high oxidative stress levels are detected. However, no specific strategy is available for the management of leukocytospermia. Therefore, the relationship between bacteriospermia and leukocytospermia as well as their specific impact on functional sperm parameters and reproductive outcome variables such as fertilization or clinical pregnancy must be further investigated. The aim of this narrative review is to provide an update on the current knowledge on leukocytospermia and bacteriospermia and their impact on male fertility. Full article
Show Figures

Figure 1

27 pages, 6171 KiB  
Article
Economic and Accessible Portable Homemade Magnetic Hyperthermia System: Influence of the Shape, Characteristics and Type of Nanoparticles in Its Effectiveness
by Teresa Castelo-Grande, Paulo A. Augusto, Lobinho Gomes, Ana Rita Castro Lopes, João Pedro Araújo and Domingos Barbosa
Materials 2024, 17(10), 2279; https://doi.org/10.3390/ma17102279 (registering DOI) - 11 May 2024
Abstract
Currently, one of the main causes of death in the world is cancer; therefore, it is urgent to obtain a precocious diagnosis, as well as boost research and development of new potential treatments, which should be more efficient and much less invasive for [...] Read more.
Currently, one of the main causes of death in the world is cancer; therefore, it is urgent to obtain a precocious diagnosis, as well as boost research and development of new potential treatments, which should be more efficient and much less invasive for the patient. Magnetic hyperthermia (MH) is an emerging cancer therapy using nanoparticles, which has proved to be effective when combined with chemotherapy, radiotherapy and/or surgery, or even by itself, depending on the type and location of the tumor’s cells. This article presents the results obtained by using a previously developed economic homemade hyperthermia device with different types of magnetite nanoparticles, with sizes ranging between 12 ± 5 and 36 ± 11 nm and presenting different shapes (spherical and cubic particles). These magnetic nanoparticles (MNPs) were synthesized by three different methods (co-precipitation, solvothermal and hydrothermal processes), with their final form being naked, or possessing different kinds of covering layers (polyethylene glycol (PEG) or citric acid (CA)). The parameters used to characterize the heating by magnetic hyperthermia, namely the Specific Absorption Rate (SAR) and the intrinsic loss power (ILP), have been obtained by two different methods. Among other results, these experiments allowed for the determination of which synthesized MNPs showed the best performance concerning hyperthermia. From the results, it may be concluded that, as expected, the shape of MNPs is an important factor, as well as the time that the MNPs can remain suspended in solution (which is directly related to the concentration and covering layer of the MNPs). The MNPs that gave the best results in terms of the SAR were the cubic particles covered with PEG, while in terms of total heating the spherical particles covered with citric acid proved to be better. Full article
Show Figures

Figure 1

42 pages, 9029 KiB  
Review
Comprehensive Investigation of Unmanned Aerial Vehicles (UAVs): An In-Depth Analysis of Avionics Systems
by Khaled Osmani and Detlef Schulz
Sensors 2024, 24(10), 3064; https://doi.org/10.3390/s24103064 (registering DOI) - 11 May 2024
Abstract
The evolving technologies regarding Unmanned Aerial Vehicles (UAVs) have led to their extended applicability in diverse domains, including surveillance, commerce, military, and smart electric grid monitoring. Modern UAV avionics enable precise aircraft operations through autonomous navigation, obstacle identification, and collision prevention. The structures [...] Read more.
The evolving technologies regarding Unmanned Aerial Vehicles (UAVs) have led to their extended applicability in diverse domains, including surveillance, commerce, military, and smart electric grid monitoring. Modern UAV avionics enable precise aircraft operations through autonomous navigation, obstacle identification, and collision prevention. The structures of avionics are generally complex, and thorough hierarchies and intricate connections exist in between. For a comprehensive understanding of a UAV design, this paper aims to assess and critically review the purpose-classified electronics hardware inside UAVs, each with the corresponding performance metrics thoroughly analyzed. This review includes an exploration of different algorithms used for data processing, flight control, surveillance, navigation, protection, and communication. Consequently, this paper enriches the knowledge base of UAVs, offering an informative background on various UAV design processes, particularly those related to electric smart grid applications. As a future work recommendation, an actual relevant project is openly discussed. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

83 pages, 571 KiB  
Article
Collider Bias Assessment in Colombian Indigenous Wiwa and Kogui Populations with Chronic Gastroenteric Disorder of Likely Infectious Etiology Suggests Complex Microbial Interactions Rather Than Clear Assignments of Etiological Relevance
by Hagen Frickmann, Joy Backhaus, Achim Hoerauf, Ralf Matthias Hagen and Simone Kann
Microorganisms 2024, 12(5), 970; https://doi.org/10.3390/microorganisms12050970 (registering DOI) - 11 May 2024
Abstract
Multiple microbial detections in stool samples of indigenous individuals suffering from chronic gastroenteric disorder of a likely infectious origin, characterized by recurring diarrhea of variable intensity, in the rural north-east of Colombia are common findings, making the assignment of etiological relevance to individual [...] Read more.
Multiple microbial detections in stool samples of indigenous individuals suffering from chronic gastroenteric disorder of a likely infectious origin, characterized by recurring diarrhea of variable intensity, in the rural north-east of Colombia are common findings, making the assignment of etiological relevance to individual pathogens challenging. In a population of 773 indigenous people from either the tribe Wiwa or Kogui, collider bias analysis was conducted comprising 32 assessed microorganisms including 10 bacteria (Aeromonas spp., Campylobacter spp., enteroaggregative Escherichia coli (EAEC), enteropathogenic Escherichia coli (EPEC), enterotoxigenic Escherichia coli (ETEC), Salmonella spp., Shiga toxin-producing Escherichia coli (STEC), Shigella spp./enteroinvasive Escherichia coli (EIEC), Tropheryma whipplei and Yersinia spp.), 11 protozoa (Blastocystis spp., Cryptosporidium spp., Cyclospora spp., Dientamoeba fragilis, Entamoeba coli, Entamoeba bangladeshi/dispar/histolytica/moshkovskii complex, Entamoeba histolytica, Endolimax nana, Giardia duodenalis, Iodamoeba buetschlii and Pentatrichomonas hominis), 8 helminths (Ascaris spp., Enterobius vermicularis, Hymenolepis spp., Necator americanus, Schistosoma spp., Strongyloides spp., Taenia spp. and Trichuris spp.), microsporidia (Encephalocytozoon spp.) and fungal elements (microscopically observed conidia and pseudoconidia). The main results indicated that negative associations potentially pointing towards collider bias were infrequent events (n = 14), while positive associations indicating increased likelihood of co-occurrence of microorganisms quantitatively dominated (n = 88). Microorganisms showing the most frequent negative associations were EPEC (n = 6) and Blastocystis spp. (n = 3), while positive associations were most common for Trichuris spp. (n = 16), Dientamoeba fragilis (n = 15), Shigella spp./EIEC (n = 12), Ascaris spp. (n = 11) and Blastocystis spp. (n = 10). Of note, positive associations quantitively dominated for Blastocystis spp. In conclusion, collider bias assessment did not allow clear-cut assignment of etiological relevance for detected enteric microorganisms within the assessed Colombian indigenous population. Instead, the results suggested complex microbial interactions with potential summative effects. Future studies applying alternative biostatistical approaches should be considered to further delineate respective interactions. Full article
(This article belongs to the Special Issue Novel Strategies in the Study of the Human Gut Microbiota 2.0)
13 pages, 2097 KiB  
Article
Microfluidic Electroporation Arrays for Investigating Electroporation-Induced Cellular Rupture Dynamics
by Insu Park, Seungyeop Choi, Youngwoo Gwak, Jingwon Kim, Gyeongjun Min, Danyou Lim and Sang Woo Lee
Biosensors 2024, 14(5), 242; https://doi.org/10.3390/bios14050242 (registering DOI) - 11 May 2024
Abstract
Electroporation is pivotal in bioelectrochemistry for cellular manipulation, with prominent applications in drug delivery and cell membrane studies. A comprehensive understanding of pore generation requires an in-depth analysis of the critical pore size and the corresponding energy barrier at the onset of cell [...] Read more.
Electroporation is pivotal in bioelectrochemistry for cellular manipulation, with prominent applications in drug delivery and cell membrane studies. A comprehensive understanding of pore generation requires an in-depth analysis of the critical pore size and the corresponding energy barrier at the onset of cell rupture. However, many studies have been limited to basic models such as artificial membranes or theoretical simulations. Challenging this paradigm, our study pioneers using a microfluidic electroporation chip array. This tool subjects live breast cancer cell species to a diverse spectrum of alternating current electric field conditions, driving electroporation-induced cell rupture. We conclusively determined the rupture voltages across varying applied voltage loading rates, enabling an unprecedented characterization of electric cell rupture dynamics encompassing critical pore radius and energy barrier. Further bolstering our investigation, we probed cells subjected to cholesterol depletion via methyl-β-cyclodextrin and revealed a strong correlation with electroporation. This work not only elucidates the dynamics of electric rupture in live cell membranes but also sets a robust foundation for future explorations into the mechanisms and energetics of live cell electroporation. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

17 pages, 2213 KiB  
Article
Genetic Variants Underlying Plasticity in Natural Populations of Spadefoot Toads: Environmental Assessment versus Phenotypic Response
by Andrew J. Isdaner, Nicholas A. Levis, Ian M. Ehrenreich and David W. Pfennig
Genes 2024, 15(5), 611; https://doi.org/10.3390/genes15050611 (registering DOI) - 11 May 2024
Abstract
Many organisms facultatively produce different phenotypes depending on their environment, yet relatively little is known about the genetic bases of such plasticity in natural populations. In this study, we describe the genetic variation underlying an extreme form of plasticity––resource polyphenism––in Mexican spadefoot toad [...] Read more.
Many organisms facultatively produce different phenotypes depending on their environment, yet relatively little is known about the genetic bases of such plasticity in natural populations. In this study, we describe the genetic variation underlying an extreme form of plasticity––resource polyphenism––in Mexican spadefoot toad tadpoles, Spea multiplicata. Depending on their environment, these tadpoles develop into one of two drastically different forms: a carnivore morph or an omnivore morph. We collected both morphs from two ponds that differed in which morph had an adaptive advantage and performed genome-wide association studies of phenotype (carnivore vs. omnivore) and adaptive plasticity (adaptive vs. maladaptive environmental assessment). We identified four quantitative trait loci associated with phenotype and nine with adaptive plasticity, two of which exhibited signatures of minor allele dominance and two of which (one phenotype locus and one adaptive plasticity locus) did not occur as minor allele homozygotes. Investigations into the genetics of plastic traits in natural populations promise to provide novel insights into how such complex, adaptive traits arise and evolve. Full article
(This article belongs to the Special Issue Genomics of Evolution and Adaptation in Animals)
Show Figures

Figure 1

11 pages, 10190 KiB  
Review
Diagnostics of Exercise-Induced Laryngeal Obstruction Using Machine Learning: A Narrative Review
by Rune Mæstad, Haakon Kristian Kvidaland, Hege Clemm, Ola Drange Røksund and Reza Arghandeh
Electronics 2024, 13(10), 1880; https://doi.org/10.3390/electronics13101880 (registering DOI) - 11 May 2024
Abstract
Objective: This paper explores machine learning methods for exercise-induced laryngeal obstruction (EILO) diagnostics. Traditional diagnostic approaches like CLE scoring face subjectivity, limiting precise objective assessments. Machine learning is introduced as a theoretical solution to potentially overcome these limitations and improve diagnostic precision. Methods: [...] Read more.
Objective: This paper explores machine learning methods for exercise-induced laryngeal obstruction (EILO) diagnostics. Traditional diagnostic approaches like CLE scoring face subjectivity, limiting precise objective assessments. Machine learning is introduced as a theoretical solution to potentially overcome these limitations and improve diagnostic precision. Methods: A narrative review was conducted to explore the integration of machine learning techniques in the diagnostics of EILO. Result: Three machine learning methods for the segmentation of laryngeal images were discovered: fully convolutional network, Mask R-CNN, and 3D VOSNet. Our findings reveal that the integration of machine learning with EILO diagnostics remains a largely untapped research domain, providing significant room for further exploration. Conclusions: The integration of ML techniques for EILO diagnostics has the potential to be a helpful tool for clinicians. The application of computer vision ML methods, such as image segmentation, to delineate laryngeal structures paves the way for a more objective assessment. While challenges persist, especially in differences in patients’ laryngeal anatomy, the synergy of ML and medical expertise is an important field to explore in the years to come. Full article
Show Figures

Figure 1

19 pages, 1035 KiB  
Review
Review on Dust Control Technologies in Coal Mines of China
by Rongting Huang, Yichun Tao, Jianglin Chen, Shihang Li and Shiyuan Wang
Sustainability 2024, 16(10), 4038; https://doi.org/10.3390/su16104038 (registering DOI) - 11 May 2024
Abstract
China faces a challenge in the sustainable development of the coal industry due to pneumoconiosis problems. Dust control technologies are crucial for safe production and miners’ health, ensuring the industry’s longevity. This article reviews the development process of dust prevention and control in [...] Read more.
China faces a challenge in the sustainable development of the coal industry due to pneumoconiosis problems. Dust control technologies are crucial for safe production and miners’ health, ensuring the industry’s longevity. This article reviews the development process of dust prevention and control in underground coal mines in China, summarizes various technologies, and divides them into dust suppression, open-space dust reduction, and mine dust collectors according to different stages and environments of use. In dust suppression technologies, coal-seam water injection can reduce total dust generation by 60%, wet rock drilling can reduce drilling dust in the presence of stable water sources and high-pressure bearing equipment, and water-seal blasting can reduce blasting dust by 50–70%. In open-space dust reduction technologies, spray dust suppression can remove total dust by 50–95% and the removal efficiencies of foam dedusting for total and respirable dust are reported to reach 95% and 85% under the right conditions, respectively. In dust collector technologies, dry collectors can remove 80–95% of total dust. Wet collectors achieve up to 90% efficiency, dependent on water supply and waste processing. This article also discusses vapor heterogeneous condensation technology as a promising method for improving respirable dust removal in humid mine environments. Full article
19 pages, 9180 KiB  
Article
In-Situ Grown Nanohydroxyapatite on Graphene Oxide Nanoscrolls for Modulated Physicochemical Properties of Poly (Caprolactone) Composites
by Lillian Tsitsi Mambiri, Gabrielle Broussard, Ja’Caleb Smith and Dilip Depan
Macromol 2024, 4(2), 285-303; https://doi.org/10.3390/macromol4020017 (registering DOI) - 11 May 2024
Abstract
Polymer composites with exceptional bioactivity and controlled in vitro degradation are crucial in tissue engineering. A promising approach involves combining graphene oxide nanoscrolls (GONSs) and nanohydroxyapatite (nHA) with polycaprolactone (PCL). The synergy of these components enables the mineralization of nHA within GONSs through [...] Read more.
Polymer composites with exceptional bioactivity and controlled in vitro degradation are crucial in tissue engineering. A promising approach involves combining graphene oxide nanoscrolls (GONSs) and nanohydroxyapatite (nHA) with polycaprolactone (PCL). The synergy of these components enables the mineralization of nHA within GONSs through a two-step process: first, oxygen-containing anionic groups in the GONSs anchor Ca2+ ions, followed by the formation of dispersed nHA through chelation with CaHPO42− via electrovalent bonding. A thermal analysis of the scaffolds’ morphology and microstructure was conducted via DSC and SEM imaging. Its enhanced physical properties are attributed to interactions between PCL and nHA–GONSs, as confirmed by an FTIR analysis showing strong interfacial bonding. Enzymatic degradation studies demonstrated reduced weight loss in PCL–nHA–GONS composites over 21 days, highlighting GONSs’ role in enhancing dimensional stability and reinforcement. An EDS analysis post-degradation revealed increased Ca2+ deposition on scaffolds with nHA–GONSs, indicating improved biopolymer–bioceramic interaction facilitated by the GONSs’ scrolled structure. This research offers a straightforward yet effective method for functionalizing GONSs with biologically beneficial nHA, potentially advancing graphene-based biomaterial development. Full article
(This article belongs to the Collection Advances in Biodegradable Polymers)
Show Figures

Graphical abstract

29 pages, 459 KiB  
Review
The Platform Technology Approach to mRNA Product Development and Regulation
by John H. Skerritt, Carolyn Tucek-Szabo, Brett Sutton and Terry Nolan
Vaccines 2024, 12(5), 528; https://doi.org/10.3390/vaccines12050528 (registering DOI) - 11 May 2024
Abstract
mRNA-lipid nanoparticle (LNP) medicinal products can be considered a platform technology because the development process is similar for different diseases and conditions, with similar noncoding mRNA sequences and lipid nanoparticles and essentially unchanged manufacturing and analytical methods often utilised for different products. It [...] Read more.
mRNA-lipid nanoparticle (LNP) medicinal products can be considered a platform technology because the development process is similar for different diseases and conditions, with similar noncoding mRNA sequences and lipid nanoparticles and essentially unchanged manufacturing and analytical methods often utilised for different products. It is critical not to lose the momentum built using the platform approach during the development, regulatory approval and rollout of vaccines for SARS-CoV-2 and its variants. This review proposes a set of modifications to existing regulatory requirements for mRNA products, based on a platform perspective for quality, manufacturing, preclinical, and clinical data. For the first time, we address development and potential regulatory requirements when the mRNA sequences and LNP composition vary in different products as well. In addition, we propose considerations for self-amplifying mRNA, individualised oncology mRNA products, and mRNA therapeutics. Providing a predictable development pathway for academic and commercial groups so that they can know in detail what product characterisation and data are required to develop a dossier for regulatory submission has many potential benefits. These include: reduced development and regulatory costs; faster consumer/patient access and more agile development of products in the face of pandemics; and for rare diseases where alternatives may not exist or to increase survival and the quality of life in cancer patients. Therefore, achieving consensus around platform approaches is both urgent and important. This approach with mRNA can be a template for similar platform frameworks for other therapeutics and vaccines to enable more efficient development and regulatory review. Full article
(This article belongs to the Section DNA and mRNA Vaccines)
15 pages, 7222 KiB  
Article
Recycled-Textile-Waste-Based Sustainable Bricks: A Mechanical, Thermal, and Qualitative Life Cycle Overview
by Hafsa Jamshaid, Ambar Shah, Muhammad Shoaib and Rajesh Kumar Mishra
Sustainability 2024, 16(10), 4036; https://doi.org/10.3390/su16104036 (registering DOI) - 11 May 2024
Abstract
The textile industry, renowned for its comfort-providing role, is undergoing a significant transformation to address its environmental impact. The escalating environmental impact of the textile industry, characterised by substantial contributions to global carbon emissions, wastewater, and the burgeoning issue of textile waste, demands [...] Read more.
The textile industry, renowned for its comfort-providing role, is undergoing a significant transformation to address its environmental impact. The escalating environmental impact of the textile industry, characterised by substantial contributions to global carbon emissions, wastewater, and the burgeoning issue of textile waste, demands urgent attention. This study aims at identifying the feasibility of the future use of textile scraps in the construction and architecture industry by analysing the effect of different binders. In this study, synthetic knitted post-consumer-waste fabrics were taken from a waste market for use as a reinforcement, and different binders were used as the matrix. In the experiment phase, the waste fabrics were mixed with synthetic binders and hydraulic binders to form brick samples. The mechanical and thermal properties of these samples were tested and compared with those of clay bricks. In terms of mechanical properties, unsaturated polyester resin (UPR) samples showed the highest mechanical strength, while acrylic glue (GL) samples had the lowest mechanical strength. White cement (WC) samples showed moderate mechanical properties. Through several tests, it was observed that UPR samples showed the highest values of tensile, bending, and compressive strengths, i.e., 0.111 MPa, 0.134 MPa, and 3.114 MPa, respectively. For WC, the tensile, bending, and compressive strengths were 0.064 MPa, 0.106 MPa, and 2.670 MPa, respectively. For GL, the least favourable mechanical behaviour was observed, i.e., 0.0162 MPa, 0.0492 MPa, and 1.542 MPa, respectively. In terms of thermal conductivity, WC samples showed exceptional resistance to heat transfer. They showed a minimum temperature rise of 54.3 °C after 15 min, as compared to 57.3 °C for GL-based samples and 58.1 °C for UPR. When it comes to polymeric binders, UPR showed better thermal insulation properties, whereas GL allowed for faster heat transfer for up to 10 min of heating. This study explores a circular textile system by assessing the potential of using textile waste as a building material, contributing to greener interior design. This study demonstrated the usefulness of adding short, recycled PET fibres as a reinforcement in UPR composites. The use of the PET fibre avoids the need to use a surface treatment to improve interfacial adhesion to the UPR matrix because of the chemical affinity between the two polyesters, i.e., the PET fibre and the unsaturated polyester resin. This can find application in the construction field, such as in the reinforcement of wooden structural elements, infill walls, and partition walls, or in furniture or for decorative purposes. Full article
Show Figures

Figure 1

13 pages, 972 KiB  
Article
The Impact of Technological Innovation on Agricultural Green Total Factor Productivity: The Mediating Role of Environmental Regulation in China
by Lihuan Huang and Ying Ping
Sustainability 2024, 16(10), 4035; https://doi.org/10.3390/su16104035 (registering DOI) - 11 May 2024
Abstract
This study delves into the effects of agricultural technological innovation on agricultural green total factor productivity (AGTFP) and the intermediating role of environmental regulation (ER) in 30 Chinese provinces from 2010 to 2021. Employing mediation analysis methods such as the three-step approach, Sobel–Goodman [...] Read more.
This study delves into the effects of agricultural technological innovation on agricultural green total factor productivity (AGTFP) and the intermediating role of environmental regulation (ER) in 30 Chinese provinces from 2010 to 2021. Employing mediation analysis methods such as the three-step approach, Sobel–Goodman test, and Bootstrap methods, the findings are robust: technological innovation significantly enhances AGTFP, as evidenced by a 1% level significant coefficient of 0.030. Additionally, ER acts as a potent mediator, where its inclusion as an independent variable alongside agricultural technological innovation (AST) boosts the coefficient to 0.031, further confirming its synergistic effect on AGTFP. These data points underline the importance of innovation in agricultural sustainability and the reinforcing role of environmental regulation. Consequently, this study advocates for intensified agricultural innovation support, tailored environmental regulation policies, augmented environmental education, and a meticulous evaluation system for environmental legislation to foster sustainable agricultural practices. Full article
16 pages, 4869 KiB  
Article
Channel Knowledge Map Construction Based on a UAV-Assisted Channel Measurement System
by Yanheng Qiu, Xiaomin Chen, Kai Mao, Xuchao Ye, Hanpeng Li, Farman Ali, Yang Huang and Qiuming Zhu
Drones 2024, 8(5), 191; https://doi.org/10.3390/drones8050191 (registering DOI) - 11 May 2024
Abstract
With the fast development of unmanned aerial vehicles (UAVs), reliable UAV communication is becoming increasingly vital. The channel knowledge map (CKM) is a crucial bridge connecting the environment and the propagation channel that may visually depict channel characteristics. This paper presents a comprehensive [...] Read more.
With the fast development of unmanned aerial vehicles (UAVs), reliable UAV communication is becoming increasingly vital. The channel knowledge map (CKM) is a crucial bridge connecting the environment and the propagation channel that may visually depict channel characteristics. This paper presents a comprehensive scheme based on a UAV-assisted channel measurement system for constructing the CKM in real-world scenarios. Firstly, a three-dimensional (3D) CKM construction scheme for real-world scenarios is provided, which involves channel knowledge extraction, mapping, and completion. Secondly, an algorithm of channel knowledge extraction and completion is proposed. The sparse channel knowledge is extracted based on the sliding correlation and constant false alarm rate (CFAR) approaches. The 3D Kriging interpolation is used to complete the sparse channel knowledge. Finally, a UAV-assisted channel measurement system is developed and CKM measurement campaigns are conducted in campus and farmland scenarios. The path loss (PL) and root mean square delay spread (RMS-DS) are measured at different heights to determine CKMs. The measured and analyzed results show that the proposed construction scheme can effectively and accurately construct the CKMs in real-world scenarios. Full article
39 pages, 15198 KiB  
Review
Recent Advances in Manganese(III)-Assisted Radical Cyclization for the Synthesis of Natural Products: A Comprehensive Review
by Emre Biçer and Mehmet Yılmaz
Molecules 2024, 29(10), 2264; https://doi.org/10.3390/molecules29102264 (registering DOI) - 11 May 2024
Abstract
Natural products play an important part in synthetic chemistry since they have many pharmacological properties and are used as active drug compounds in pharmaceutical chemistry. However, synthesis of these complex molecules is difficult due to the requirement of various synthetic steps, which include [...] Read more.
Natural products play an important part in synthetic chemistry since they have many pharmacological properties and are used as active drug compounds in pharmaceutical chemistry. However, synthesis of these complex molecules is difficult due to the requirement of various synthetic steps, which include highly regio- and stereoselectivity. Therefore, oxidative radical cyclization assisted by manganese(III) acetate serves as an important step in obtaining spiro-, tricyclic, tetracyclic, and polycyclic derivatives of these compounds. Manganese(III)-based reactions offer a single-step regio- and stereoselective cyclizations and α-acetoxidations, reducing the number of synthetic steps. Also, the manganese(III)-mediated oxidative free radical cyclization method has been successfully applied for the synthesis of cyclic structures found in many natural products. This article presents a broad overview of manganese(III)-based radical reactions of natural products as a key step in overall synthesis. The authors have classified natural product synthesis processes assisted by manganese(III) acetate as intermolecular, intramolecular, oxidation, acetoxidation, aromatization, and polymerization reactions, respectively. Full article
Show Figures

Scheme 1

12 pages, 1641 KiB  
Article
The Development of a Sensitive Droplet Digital Polymerase Chain Reaction Test for Quantitative Detection of Goose Astrovirus
by Jianzhou Shi, Qianyue Jin, Xiaozhan Zhang, Jinbing Zhao, Na Li, Bingxue Dong, Jinran Yu and Lunguang Yao
Viruses 2024, 16(5), 765; https://doi.org/10.3390/v16050765 (registering DOI) - 11 May 2024
Abstract
(1) Goose astrovirus (GAstV) is a novel emerging pathogen that causes significant economic losses in waterfowl farming. A convenient, sensitive, and specific detection method for GAstV in field samples is important in order to effectively control GAstV. Droplet digital polymerase chain reaction (ddPCR) [...] Read more.
(1) Goose astrovirus (GAstV) is a novel emerging pathogen that causes significant economic losses in waterfowl farming. A convenient, sensitive, and specific detection method for GAstV in field samples is important in order to effectively control GAstV. Droplet digital polymerase chain reaction (ddPCR) is a novel, sensitive, good-precision, and absolute quantitation PCR technology which does not require calibration curves. (2) In this study, we developed a ddPCR system for the sensitive and accurate quantification of GAstV using the conserved region of the ORF2 gene. (3) The detection limit of ddPCR was 10 copies/µL, ~28 times greater sensitivity than quantitative real-time PCR (qPCR). The specificity of the test was determined by the failure of amplification of other avian viruses. Both ddPCR and qPCR tests showed good repeatability and linearity, and the established ddPCR method had high sensitivity and good specificity to GAstV. Clinical sample test results showed that the positive rate of ddPCR (88.89%) was higher than that of qPCR (58.33%). (4) As a result, our results suggest that the newly developed ddPCR method might offer improved analytical sensitivity and specificity in its GAstV measurements. The ddPCR could be widely applied in clinical tests for GAstV infections. Full article
(This article belongs to the Special Issue Viral Diseases of Livestock and Diagnostics)
Show Figures

Figure 1

12 pages, 3863 KiB  
Article
Insights into the Origin of Activity Enhancement via Tuning Electronic Structure of Cu2O towards Electrocatalytic Ammonia Synthesis
by Meimei Kou, Ying Yuan, Ruili Zhao, Youkui Wang, Jiamin Zhao, Qing Yuan and Jinsheng Zhao
Molecules 2024, 29(10), 2261; https://doi.org/10.3390/molecules29102261 (registering DOI) - 11 May 2024
Abstract
The insight of the activity phase and reaction mechanism is vital for developing high-performance ammonia synthesis electrocatalysts. In this study, the origin of the electronic-dependent activity for the model Cu2O catalyst toward ammonia electrosynthesis with nitrate was probed. The modulation of [...] Read more.
The insight of the activity phase and reaction mechanism is vital for developing high-performance ammonia synthesis electrocatalysts. In this study, the origin of the electronic-dependent activity for the model Cu2O catalyst toward ammonia electrosynthesis with nitrate was probed. The modulation of the electronic state and oxygen vacancy content of Cu2O was realized by doping with halogen elements (Cl, Br, I). The electrocatalytic experiments showed that the activity of the ammonia production depends strongly on the electronic states in Cu2O. With increased electronic state defects in Cu2O, the ammonia synthesis performance increased first and then decreased. The Cu2O/Br with electronic defects in the middle showed the highest ammonia yield of 11.4 g h−1 g−1 at −1.0 V (vs. RHE), indicating that the pattern of change in optimal ammonia activity is consistent with the phenomenon of volcano curves in reaction chemistry. This work highlights a promising route for designing NO3RR to NH3 catalysts. Full article
Show Figures

Figure 1

22 pages, 1952 KiB  
Review
The Role of Autophagy in Vascular Endothelial Cell Health and Physiology
by Meghan Hu, Joseph M. Ladowski and He Xu
Cells 2024, 13(10), 825; https://doi.org/10.3390/cells13100825 (registering DOI) - 11 May 2024
Abstract
Autophagy is a highly conserved cellular recycling process which enables eukaryotes to maintain both cellular and overall homeostasis through the catabolic breakdown of intracellular components or the selective degradation of damaged organelles. In recent years, the importance of autophagy in vascular endothelial cells [...] Read more.
Autophagy is a highly conserved cellular recycling process which enables eukaryotes to maintain both cellular and overall homeostasis through the catabolic breakdown of intracellular components or the selective degradation of damaged organelles. In recent years, the importance of autophagy in vascular endothelial cells (ECs) has been increasingly recognized, and numerous studies have linked the dysregulation of autophagy to the development of endothelial dysfunction and vascular disease. Here, we provide an overview of the molecular mechanisms underlying autophagy in ECs and our current understanding of the roles of autophagy in vascular biology and review the implications of dysregulated autophagy for vascular disease. Finally, we summarize the current state of the research on compounds to modulate autophagy in ECs and identify challenges for their translation into clinical use. Full article
(This article belongs to the Special Issue Autophagy and Inflammasome)
Show Figures

Figure 1

12 pages, 2645 KiB  
Article
Dedicated Echoendoscope for Interventional Endoscopic Ultrasound: Comparison with a Conventional Echoendoscope
by Toshio Fujisawa, Shigeto Ishii, Yousuke Nakai, Hirofumi Kogure, Ko Tomishima, Yusuke Takasaki, Koichi Ito, Sho Takahashi, Akinori Suzuki and Hiroyuki Isayama
J. Clin. Med. 2024, 13(10), 2840; https://doi.org/10.3390/jcm13102840 (registering DOI) - 11 May 2024
Abstract
Interventional endoscopic ultrasound (I-EUS) is technically difficult and has risks of severe adverse events due to the scarcity of dedicated endoscopes and tools. A new EUS scope was developed for I-EUS and was modified to increase the puncture range, reduce the blind area, [...] Read more.
Interventional endoscopic ultrasound (I-EUS) is technically difficult and has risks of severe adverse events due to the scarcity of dedicated endoscopes and tools. A new EUS scope was developed for I-EUS and was modified to increase the puncture range, reduce the blind area, and overcome guidewire difficulties. We evaluated the usefulness and safety of a new EUS scope compared to a conventional EUS scope. Methods: All I-EUS procedures were performed at Juntendo University Hospital from April 2020 to April 2022. The primary outcomes included the procedure time and fluoroscopy time. The secondary outcomes included the technical success rate and the rates of procedure-related adverse events. Clinical data were retrospectively reviewed and statistically analyzed between the new and conventional EUS scopes. Results: In total, 143 procedures in 120 patients were analyzed. The procedure time was significantly shorter with the new EUS scope, but the fluoroscopy time was not different. Among the patients only undergoing EUS-guided biliary drainage (EUS-BD), 79 procedures in 74 patients were analyzed. Both the procedure time and fluoroscopy time were significantly shorter with the new EUS scope. Multivariate analysis revealed that a new EUS scope and use of covered metal stents could reduce the fluoroscopy time. The technical success rate and the adverse event rate were not significantly different between the total I-EUS and the EUS-BD only groups. However, the conventional scope showed stent deviation during stent placement, which did not happen with the new scope. Conclusions: The new EUS scope reduced procedure time for total I-EUS and fluoroscopy time for EUS-BD compared to a conventional EUS scope because of the improvement suitable for I-EUS. Full article
12 pages, 470 KiB  
Article
Fundamental Stability Skills: Reliability Analysis Using the Alfamov Assessment Tool
by Eva Santos-Miranda, Aida Carballo-Fazanes, Ezequiel Rey, Inés Piñeiro-García-Tuñón and Cristian Abelairas-Gómez
Children 2024, 11(5), 583; https://doi.org/10.3390/children11050583 (registering DOI) - 11 May 2024
Abstract
Fundamental movement skills (FMS), considered as building blocks of movement, have received growing interest due to their significant impact on both present and future health. FMS are categorized into locomotor, object control and stability skills. While there has been extensive research on assessing [...] Read more.
Fundamental movement skills (FMS), considered as building blocks of movement, have received growing interest due to their significant impact on both present and future health. FMS are categorized into locomotor, object control and stability skills. While there has been extensive research on assessing the proficiency and reliability of locomotor and object control skills, stability skills have received comparatively less attention. For this reason, this study aimed to assess the test–retest, intrarater and interrater reliability of five stability skills included in the Alfamov app. The performance of eighty-four healthy primary school children (60.8% girls), aged 6 to 12 years (mean ± standard deviation of 8.7 ± 1.8 years), in five stability skills was evaluated and scored by four raters, including two experts and two novices. The Alfamov tool, integrating various process-oriented tests, was used for the assessment. Reliability analyses were conducted through the computation of the intraclass correlation coefficient (ICC) along with the corresponding 95% confidence intervals. Good-to-excellent intrarater reliability, excellent interrater reliability and moderate-to-good reliability in the test–retest were achieved. The results proved that Alfamov is a robust test for evaluating stability skills and can be suitable for use by different professionals with less experience in assessing children’s motor competence. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop