The 2023 MDPI Annual Report has
been released!
 
14 pages, 749 KiB  
Article
Efficiency of Virucidal Disinfectants on Wood Surfaces in Animal Husbandry
by Martin J. Oettler, Franz J. Conraths, Uwe Roesler, Sven Reiche, Timo Homeier-Bachmann and Nicolai Denzin
Microorganisms 2024, 12(5), 1019; https://doi.org/10.3390/microorganisms12051019 - 17 May 2024
Abstract
The aim of this study was to test the inactivation of viruses on germ carriers of different types of wood using a disinfectant in order to assess the biosafety of wood as a building material in animal husbandry. The laboratory disinfectant efficacy tests [...] Read more.
The aim of this study was to test the inactivation of viruses on germ carriers of different types of wood using a disinfectant in order to assess the biosafety of wood as a building material in animal husbandry. The laboratory disinfectant efficacy tests were based on German testing guidelines and current European standards. Five different types of wood germ carriers, i.e., spruce (Picea abies), pine (Pinus sylvestris), poplar (Populus sp.), beech (Fagus sylvatica) and Douglas fir (Pseudotsuga menziesii), were inoculated with enveloped or non-enveloped viruses and then treated with one of three different disinfectants. The results revealed that intact, fine-sawn timber with a low roughness depth can be effectively inactivated. Peracetic acid proved to be the most effective disinfectant across all tests. Regardless of the pathogen and the type of wood, a concentration of 0.1% of the pure substance at a temperature of 10 °C and an exposure time of one hour can be recommended. At a temperature of −10 °C, a concentration of 0.75% is recommended. The basic chemicals formic acid and glutaraldehyde demonstrated only limited effectiveness overall. The synergistic effects of various wood components on the inactivation of viruses offer potential for further investigation. Disinfectant tests should also be conclusively verified in field trials to ensure that the results from standardised laboratory tests can be transferred to real stable conditions. Full article
(This article belongs to the Special Issue Disinfection and Sterilization of Microorganisms)
22 pages, 11057 KiB  
Article
Preparation and Performance of Cement-Stabilized Base External Curing Agent in a Desert Environment
by Chenhao Wei, Zewen He, Jiachen Ma, Xiaohui Sun, Yana Shi, Qiang Yi and Maoqing Li
Buildings 2024, 14(5), 1465; https://doi.org/10.3390/buildings14051465 - 17 May 2024
Abstract
To explore and deal with the difficulty in curing cement-stabilized bases in desert environments, curing agents were prepared to enhance the curing effect on the base in this research. The composite curing agent was prepared through orthogonal experiments and the durability of the [...] Read more.
To explore and deal with the difficulty in curing cement-stabilized bases in desert environments, curing agents were prepared to enhance the curing effect on the base in this research. The composite curing agent was prepared through orthogonal experiments and the durability of the curing agent coating were studied by simulating a desert environment. Subsequently, the curing effect on the performance of bases was analyzed. Finally, the hydration degree of cement was studied via scanning electron microscope (SEM), thermogravimetric analysis (TG), and X-ray diffraction analysis (XRD), and the curing mechanism of the curing agent was explored. The results show that the composite (paraffin emulsion is the main component of the film, vinyl acetate-ethylene copolymer dosage is 20%, ethanol ester-12 dosage is 10%, and sodium silicate dosage is 18%) could effectively improve the water-retention performance (water-loss ratio: 2.36%) and mechanical properties of the specimen (7 d compressive strength: 7.48 MPa; 7 d indirect tensile strength: 0.70 MPa). The dry shrinkage coefficient of the specimen with composite curing agent was reduced by 116.26% at 28 days. The compressive strength of dry and wet freeze could reach 7.48 MPa and 6.88 MPa, respectively. The durability of the curing agent-coated base met the requirements of pavement performance in desert areas. The results of XRD, TG, and SEM indicated that the curing agent promoted hydration. In addition, the number of C-S-H gel and AFt crystals significantly increased. The curing difficulty of road bases in desert areas could be reduced effectively through the application presented in this study, which contributes to the conservation of natural and human resources. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 5358 KiB  
Article
Rapid Identification of Brucella Genus and Species In Silico and On-Site Using Novel Probes with CRISPR/Cas12a
by Yan Zhang, Yufei Lyu, Dongshu Wang, Meijie Feng, Sicheng Shen, Li Zhu, Chao Pan, Xiaodong Zai, Shuyi Wang, Yan Guo, Shujuan Yu, Xiaowei Gong, Qiwei Chen, Hengliang Wang, Yuanzhi Wang and Xiankai Liu
Microorganisms 2024, 12(5), 1018; https://doi.org/10.3390/microorganisms12051018 - 17 May 2024
Abstract
Human brucellosis caused by Brucella is a widespread zoonosis that is prevalent in many countries globally. The high homology between members of the Brucella genus and Ochrobactrum spp. often complicates the determination of disease etiology in patients. The efficient and reliable identification and [...] Read more.
Human brucellosis caused by Brucella is a widespread zoonosis that is prevalent in many countries globally. The high homology between members of the Brucella genus and Ochrobactrum spp. often complicates the determination of disease etiology in patients. The efficient and reliable identification and distinction of Brucella are of primary interest for both medical surveillance and outbreak purposes. A large amount of genomic data for the Brucella genus was analyzed to uncover novel probes containing single-nucleotide polymorphisms (SNPs). GAMOSCE v1.0 software was developed based on the above novel eProbes. In conjunction with clinical requirements, an RPA-Cas12a detection method was developed for the on-site determination of B. abortus and B. melitensis by fluorescence and lateral flow dipsticks (LFDs). We demonstrated the potential of these probes for rapid and accurate detection of the Brucella genus and five significant Brucella species in silico using GAMOSCE. GAMOSCE was validated on different Brucella datasets and correctly identified all Brucella strains, demonstrating a strong discrimination ability. The RPA-Cas12a detection method showed good performance in detection in clinical blood samples and veterinary isolates. We provide both in silico and on-site methods that are convenient and reliable for use in local hospitals and public health programs for the detection of brucellosis. Full article
(This article belongs to the Section Microbial Biotechnology)
17 pages, 1504 KiB  
Article
Research on Deformation Safety Risk Warning of Super-Large and Ultra-Deep Foundation Pits Based on Long Short-Term Memory
by Yanhui Guo, Chengjin Li, Ming Yan, Rui Ma and Wei Bi
Buildings 2024, 14(5), 1464; https://doi.org/10.3390/buildings14051464 - 17 May 2024
Abstract
This paper proposes transforming actual monitoring data into risk quantities and establishing a Long Short-Term Memory (LSTM) safety risk warning model for predicting the deformation of super-large and ultra-deep foundation pits in river–round gravel strata based on safety evaluation methods. Using this model, [...] Read more.
This paper proposes transforming actual monitoring data into risk quantities and establishing a Long Short-Term Memory (LSTM) safety risk warning model for predicting the deformation of super-large and ultra-deep foundation pits in river–round gravel strata based on safety evaluation methods. Using this model, short-term deformation predictions at various monitoring points of the foundation pits are made and compared with monitoring data. The results from the LSTM safety risk warning model indicate an absolute error range between the predicted deformation values and on-site monitoring values of −0.24 to 0.16 mm, demonstrating the model’s accuracy in predicting pit deformation. Additionally, calculations reveal that both the overall risk level based on on-site monitoring data and the overall safety risk level based on predicted data are classified as level four. The acceptance criteria for the overall risk level of the foundation pit are defined as “unacceptable and requiring decision-making”, with the risk warning control scheme being “requiring decision-making, formulation of control, and warning measures”. These research findings offer valuable insights for predicting and warning about safety risks in similar foundation pit engineering projects. Full article
17 pages, 1216 KiB  
Article
Segmentation of Apparent Multi-Defect Images of Concrete Bridges Based on PID Encoder and Multi-Feature Fusion
by Yanna Liao, Chaoyang Huang and Yafang Yin
Buildings 2024, 14(5), 1463; https://doi.org/10.3390/buildings14051463 - 17 May 2024
Abstract
To address the issue of insufficient deep contextual information mining in the semantic segmentation task of multiple defects in concrete bridges, due to the diversity in texture, shape, and scale of the defects as well as significant differences in the background, we propose [...] Read more.
To address the issue of insufficient deep contextual information mining in the semantic segmentation task of multiple defects in concrete bridges, due to the diversity in texture, shape, and scale of the defects as well as significant differences in the background, we propose the Concrete Bridge Apparent Multi-Defect Segmentation Network (PID-MHENet) based on a PID encoder and multi-feature fusion. PID-MHENet consists of a PID encoder, skip connection, and decoder. The PID encoder adopts a multi-branch structure, including an integral branch and a proportional branch with a “thick and long” design principle and a differential branch with a “thin and short” design principle. The PID Aggregation Enhancement (PAE) combines the detail information of the proportional branch and the semantic information of the differential branch to enhance the fusion of contextual information and, at the same time, introduces the self-learning parameters, which can effectively extract the information of the boundary details of the lesions, the texture, and the background differences. The Multi-Feature Fusion Enhancement Decoding Block (MFEDB) in the decoding stage enhances the information and globally fuses the different feature maps introduced by the three-channel skip connection, which improves the segmentation accuracy of the network for the background similarity and the micro-defects. The experimental results show that the mean Pixel accuracy (mPa) and mean Intersection over Union (mIoU) values of PID-MHENet on the concrete bridge multi-defect semantic segmentation dataset improved by 5.17% and 5.46%, respectively, compared to the UNet network. Full article
17 pages, 2861 KiB  
Article
Learning from the Past, Looking to Resilience: Housing in Serbia in the Post-Pandemic Era
by Milica Zivkovic, Mirko Stanimirovic, Marija Stamenkovic, Slavisa Kondic and Vladana Petrovic
Buildings 2024, 14(5), 1461; https://doi.org/10.3390/buildings14051461 - 17 May 2024
Abstract
The COVID-19 pandemic has profoundly reshaped life across the globe, significantly influencing the future of housing. The enactment and densification of diverse activities within one place have resulted in varying degrees of conflict between the built and social environment. This conflict is directly [...] Read more.
The COVID-19 pandemic has profoundly reshaped life across the globe, significantly influencing the future of housing. The enactment and densification of diverse activities within one place have resulted in varying degrees of conflict between the built and social environment. This conflict is directly related to the degree of housing adaptability to new life, work, and leisure conditions. Movement restrictions and distance learning have significantly impacted the young population, which is susceptible to ‘enforced togetherness’ conditions. However, studies on post-pandemic housing in Serbia are rare. This paper investigates the relationship between the built and social environment, focusing on current trends in multi-family housing from the perspective of the progressive change of life standards in the post-pandemic era. It also includes a survey of the living conditions of architecture students in Serbia during lockdown and distance learning, offering insights into the impact of the physical environment on virus transmission and social dynamics. The main objective of this study is to formulate guidelines for developing a resilient housing model in Serbia that will address both current and future crises. From the findings, it can be concluded that radical changes in housing policy are necessary to enable less interdependence among layers within the system striving to be resilient. Full article
Show Figures

Figure 1

20 pages, 6641 KiB  
Review
Effects of Niobium Addition on the Mechanical Properties and Corrosion Resistance of Microalloyed Steels: A Review
by André Vitor Benedito, Carlos Alberto Benedetty Torres, Rebecca Mansur de Castro Silva, Pablo Augusto Krahl, Daniel Carlos Taissum Cardoso, Flávio de Andrade Silva and Carlos Humberto Martins
Buildings 2024, 14(5), 1462; https://doi.org/10.3390/buildings14051462 - 17 May 2024
Abstract
Steel structures are prone to corrosion, a chemical reaction between steel and the atmosphere that gradually weakens the material. Over time, this reaction can significantly reduce the structural integrity and lifespan of steel elements. Without intervention, corrosion can cause structures to fail, leading [...] Read more.
Steel structures are prone to corrosion, a chemical reaction between steel and the atmosphere that gradually weakens the material. Over time, this reaction can significantly reduce the structural integrity and lifespan of steel elements. Without intervention, corrosion can cause structures to fail, leading to financial, environmental, and potential human losses. Enhancing steel’s corrosion resistance is crucial, and one method involves adding niobium (Nb). Niobium microalloyed steels are known for their increased strength, and some research indicates that Nb may also improve corrosion resistance by making the grain structure of the steel finer. However, the complete potential of Nb in corrosion prevention remains underexplored, with significant research gaps across various scales, from microstructural impacts on durability to macroscopic effects on mechanical properties. The research community has utilized numerous experimental approaches to test corrosion resistance under different conditions, but there is a lack of comprehensive studies that aggregate and analyze these findings. This paper seeks to fill that void by reviewing the impact of Nb on the strength and corrosion resistance of structural steels, examining how steel beams’ ultimate capacity degrades over time and identifying key areas where further research is needed to understand Nb’s role in mitigating corrosion. Full article
(This article belongs to the Special Issue Corrosion and Corrosion Protection for Buildings and Structures)
24 pages, 4008 KiB  
Review
Humans vs. Fungi: An Overview of Fungal Pathogens against Humans
by Kasun M. Thambugala, Dinushani A. Daranagama, Danushka S. Tennakoon, Dona Pamoda W. Jayatunga, Sinang Hongsanan and Ning Xie
Pathogens 2024, 13(5), 426; https://doi.org/10.3390/pathogens13050426 - 17 May 2024
Abstract
Human fungal diseases are infections caused by any fungus that invades human tissues, causing superficial, subcutaneous, or systemic diseases. Fungal infections that enter various human tissues and organs pose a significant threat to millions of individuals with weakened immune systems globally. Over recent [...] Read more.
Human fungal diseases are infections caused by any fungus that invades human tissues, causing superficial, subcutaneous, or systemic diseases. Fungal infections that enter various human tissues and organs pose a significant threat to millions of individuals with weakened immune systems globally. Over recent decades, the reported cases of invasive fungal infections have increased substantially and research progress in this field has also been rapidly boosted. This review provides a comprehensive list of human fungal pathogens extracted from over 850 recent case reports, and a summary of the relevant disease conditions and their origins. Details of 281 human fungal pathogens belonging to 12 classes and 104 genera in the divisions ascomycota, basidiomycota, entomophthoromycota, and mucoromycota are listed. Among these, Aspergillus stands out as the genus with the greatest potential of infecting humans, comprising 16 species known to infect humans. Additionally, three other genera, Curvularia, Exophiala, and Trichophyton, are recognized as significant genera, each comprising 10 or more known human pathogenic species. A phylogenetic analysis based on partial sequences of the 28S nrRNA gene (LSU) of human fungal pathogens was performed to show their phylogenetic relationships and clarify their taxonomies. In addition, this review summarizes the recent advancements in fungal disease diagnosis and therapeutics. Full article
(This article belongs to the Special Issue An Update on Fungal Infections)
Show Figures

Figure 1

12 pages, 405 KiB  
Article
Molecular Screening for Digital Dermatitis-Associated Treponemes in Bovine Ischaemic Teat Necrosis Lesions and Milk in Dairy Cattle
by Hayley E. Crosby-Durrani, Stuart D. Carter, Roger W. Blowey and Nicholas J. Evans
Pathogens 2024, 13(5), 427; https://doi.org/10.3390/pathogens13050427 - 17 May 2024
Abstract
Bovine ischaemic teat necrosis (ITN) is a disease affecting the skin of the teats of dairy cows with an unknown aetiopathogenesis. Digital dermatitis (DD)-associated treponemes have previously been suggested as a potential aetiological agent in ITN, although the sample size was small. The [...] Read more.
Bovine ischaemic teat necrosis (ITN) is a disease affecting the skin of the teats of dairy cows with an unknown aetiopathogenesis. Digital dermatitis (DD)-associated treponemes have previously been suggested as a potential aetiological agent in ITN, although the sample size was small. The current study, using established PCR techniques, aimed to examine the association with the presence of DD-associated treponemes in a large number of ITN samples from a wider geographical area, and surveyed the potential of milk as an infection reservoir. From 95 ITN lesions, 35.8% (n = 34) were positive for at least one DD-associated treponeme compared with only 5.6% (n = 1) of 18 non-lesioned teats from cows with ITN lesions on a different teat using a nested PCR approach. All 10 age- and production-matched control cows were negative for DD-associated treponemes via PCR. No DD-associated treponemes could be detected from foremilk of cows with (n = 19) and without (n = 31) a DD lesion on the hind feet. DD-associated treponemes could be detected via PCR after incubation in milk for up to 2 h. Therefore, milk does not appear to be a competent reservoir for transmission of DD-associated treponemes. Moreover, in the current study DD-associated treponemes were only detected in a subset of ITN samples, so it is unlikely these opportunistic skin-associated pathogens are the major or sole agent of ITN. Full article
(This article belongs to the Section Bacterial Pathogens)
18 pages, 1597 KiB  
Article
Homogenization Path Based on 250 mm × 280 mm Bloom under Mixed Light and Heavy Presses: Simulation and Industrial Studies
by Aiguo Dang, Mingyue Wang, Haida Wang, Xiaoming Feng and Wei Liu
Metals 2024, 14(5), 591; https://doi.org/10.3390/met14050591 - 17 May 2024
Abstract
This study proposed a new method for homogenizing continuous casting blooms based on solidification simulation calculations and industrial tests. The text describes a theoretical analysis of the solidification route of a cast billet of high-carbon alloy steel (B300A) under different process conditions. It [...] Read more.
This study proposed a new method for homogenizing continuous casting blooms based on solidification simulation calculations and industrial tests. The text describes a theoretical analysis of the solidification route of a cast billet of high-carbon alloy steel (B300A) under different process conditions. It summarizes the changing law of different under-pressure process parameters and under-pressure efficiency. The text also presents a solution to the seriousness of center shrinkage defects in the continuous casting of a large square billet of high-carbon alloy steel with the synergistic control technology of mixed light and heavy mixing under pressure. The study indicates that the center carbon segregation index of a high carbon steel continuous casting billet is 1.05, with a carbon extreme difference of not more than 0.08% and a proportion of 98.4%. Additionally, the center shrinkage is not more than a 0.5 level with a proportion of 99.5%. Meanwhile, the internal quality of cast billets has been improved, allowing for the rolling of large-size bars with a low consolidation ratio. The pass rate for internal ultrasonic flaw detection using the GB/T4162A grade is now higher than 99.95%, significantly reducing process costs and improving production efficiency for continuous casting and rolling. Full article
16 pages, 4851 KiB  
Article
Tensile Properties of a Non-Equiatomic Ni–Co–V Medium Entropy Alloy at Cryogenic Temperature
by Dawei Zhou, Caijuan Shi, Caixia Wang, Ruixin Sheng, Weidong Li and Yang Tong
Metals 2024, 14(5), 590; https://doi.org/10.3390/met14050590 - 17 May 2024
Abstract
The development of strong and ductile alloys for application in cryogenic temperatures has long been sought after. In this work, we have developed a face-centered cubic Ni10Co56.5V33.5 multi-principal element alloy (MPEA) that exhibits a balanced combination of high [...] Read more.
The development of strong and ductile alloys for application in cryogenic temperatures has long been sought after. In this work, we have developed a face-centered cubic Ni10Co56.5V33.5 multi-principal element alloy (MPEA) that exhibits a balanced combination of high strength and good ductility at 77 K, based on the considerations of large local lattice distortion (LLD) and low stacking fault energy. The small-grained Ni10Co56.5V33.5 MPEA exhibits a yield strength of 1400 MPa and an ultimate tensile strength of 1890 MPa, while preserving a good ductility of 23%. Moreover, precession electron diffraction and transmission electron microscopy revealed multiple deformation mechanisms, including wavy dislocations, atypically severely twisted dislocation bands, hierarchical stacking faults, and deformation twins, which are implicated in the alloy’s outstanding mechanical performance. These insights offer a strategic guide for the design of strong and ductile alloys, particularly for utilization in extreme environments. Full article
(This article belongs to the Section Entropic Alloys and Meta-Metals)
9 pages, 1303 KiB  
Communication
Impact of Titanium Skull Plate on Transcranial Magnetic Stimulation: Analysis of Induced Electric Fields
by Mai Lu and Shoogo Ueno
Life 2024, 14(5), 642; https://doi.org/10.3390/life14050642 - 17 May 2024
Abstract
Background: Implanted titanium skull plates (TSPs) in cranioplasty are used to replace or reconstruct areas of the skull that have been damaged or removed due to trauma, surgery, or other medical conditions. However, the presence of a TSP in the head may influence [...] Read more.
Background: Implanted titanium skull plates (TSPs) in cranioplasty are used to replace or reconstruct areas of the skull that have been damaged or removed due to trauma, surgery, or other medical conditions. However, the presence of a TSP in the head may influence the distribution of the electric field induced during transcranial magnetic stimulation (TMS) procedures. The purpose of this study was to determine how the presence of TSP would interfere with TMS-induced cortical electric fields. Methods: The TMS with a figure-of-eight coil was applied to a realistic head model with TSPs. The distribution of the induced electric field in head tissues was calculated by employing the impedance method, and the results were compared with that of a normal head without TSP. Results: Simulation results show that the distribution of the induced electric field has changed greatly for the head model with TSP. The maximum value of the induced electric field in head tissues was present under one of the circular coil wings rather than in the tissues beneath the junction of the two wings of the Fo8 coil. Conclusions: The induced electric field in deep brain regions was increased for the head model with TSP, which could potentially lead to deep brain stimulation. Since the presence of metallic TSP can greatly influence the distribution of the induced electric field in TMS applications, it is important to adjust the treatment scheme when considering TMS for individuals with cranial titanium plates. Full article
(This article belongs to the Special Issue State-of-the-Art in Non-invasive Brain Stimulation)
20 pages, 1769 KiB  
Article
Molecular Diversity and Combining Ability in Newly Developed Maize Inbred Lines under Low-Nitrogen Conditions
by Mohamed M. Kamara, Elsayed Mansour, Ahmed E. A. Khalaf, Mohamed A. M. Eid, Abdallah A. Hassanin, Ahmed M. Abdelghany, Ahmed M. S. Kheir, Ahmed A. Galal, Said I. Behiry, Cristina Silvar and Salah El-Hendawy
Life 2024, 14(5), 641; https://doi.org/10.3390/life14050641 - 17 May 2024
Abstract
Nitrogen is an essential element for maize growth, but excessive application can lead to various environmental and ecological issues, including water pollution, air pollution, greenhouse gas emissions, and biodiversity loss. Hence, developing maize hybrids resilient to low-N conditions is vital for sustainable agriculture, [...] Read more.
Nitrogen is an essential element for maize growth, but excessive application can lead to various environmental and ecological issues, including water pollution, air pollution, greenhouse gas emissions, and biodiversity loss. Hence, developing maize hybrids resilient to low-N conditions is vital for sustainable agriculture, particularly in nitrogen-deficient soils. Combining ability and genetic relationships among parental lines is crucial for breeding superior hybrids under diverse nitrogen levels. This study aimed to assess the genetic diversity of maize inbred lines using simple sequence repeat (SSR) markers and evaluate their combining ability to identify superior hybrids under low-N and recommended conditions. Local and exotic inbred lines were genotyped using SSR markers, revealing substantial genetic variation with high gene diversity (He = 0.60), moderate polymorphism information content (PIC = 0.54), and an average of 3.64 alleles per locus. Twenty-one F1 hybrids were generated through a diallel mating design using these diverse lines. These hybrids and a high yielding commercial check (SC-131) were field-tested under low-N and recommended N conditions. Significant variations (p < 0.01) were observed among nitrogen levels, hybrids, and their interaction for all recorded traits. Additive genetic variances predominated over non-additive genetic variances for grain yield and most traits. Inbred IL3 emerged as an effective combiner for developing early maturing genotypes with lower ear placement. Additionally, inbreds IL1, IL2, and IL3 showed promise as superior combiners for enhancing grain yield and related traits under both low-N and recommended conditions. Notably, hybrids IL1×IL4, IL2×IL5, IL2×IL6, and IL5×IL7 exhibited specific combining abilities for increasing grain yield and associated traits under low-N stress conditions. Furthermore, strong positive associations were identified between grain yield and specific traits like plant height, ear length, number of rows per ear, and number of kernels per row. Due to their straightforward measurability, these relationships underscore the potential of using these traits as proxies for indirect selection in early breeding generations, particularly under low-N stress. This research contributes to breeding nitrogen-efficient maize hybrids and advances our understanding of the genetic foundations for tolerance to nitrogen limitations. Full article
(This article belongs to the Special Issue Effects of Environmental Factors on Challenges of Plant Breeding)
34 pages, 1147 KiB  
Review
Neurotoxicity of Some Environmental Pollutants to Zebrafish
by Teodora Maria Buzenchi Proca, Carmen Solcan and Gheorghe Solcan
Life 2024, 14(5), 640; https://doi.org/10.3390/life14050640 - 17 May 2024
Abstract
The aquatic environment encompasses a wide variety of pollutants, from plastics to drug residues, pesticides, food compounds, and other food by-products, and improper disposal of waste is the main cause of the accumulation of toxic substances in water. Monitoring, assessing, and attempting to [...] Read more.
The aquatic environment encompasses a wide variety of pollutants, from plastics to drug residues, pesticides, food compounds, and other food by-products, and improper disposal of waste is the main cause of the accumulation of toxic substances in water. Monitoring, assessing, and attempting to control the effects of contaminants in the aquatic environment are necessary and essential to protect the environment and thus human and animal health, and the study of aquatic ecotoxicology has become topical. In this respect, zebrafish are used as model organisms to study the bioaccumulation, toxicity, and influence of environmental pollutants due to their structural, functional, and material advantages. There are many similarities between the metabolism and physiological structures of zebrafish and humans, and the nervous system structure, blood–brain barrier function, and social behavior of zebrafish are characteristics that make them an ideal animal model for studying neurotoxicity. The aim of the study was to highlight the neurotoxicity of nanoplastics, microplastics, fipronil, deltamethrin, and rotenone and to highlight the main behavioral, histological, and oxidative status changes produced in zebrafish exposed to them. Full article
(This article belongs to the Special Issue Veterinary Pathology and Veterinary Anatomy)
21 pages, 355 KiB  
Article
Exponential Stability of the Numerical Solution of a Hyperbolic System with Nonlocal Characteristic Velocities
by Rakhmatillo Djuraevich Aloev, Abdumauvlen Suleimanovich Berdyshev, Vasila Alimova and Kymbat Slamovna Bekenayeva
Axioms 2024, 13(5), 334; https://doi.org/10.3390/axioms13050334 - 17 May 2024
Abstract
In this paper, we investigate the problem of the exponential stability of a stationary solution for a hyperbolic system with nonlocal characteristic velocities and measurement error. The formulation of the initial boundary value problem of boundary control for the specified hyperbolic system is [...] Read more.
In this paper, we investigate the problem of the exponential stability of a stationary solution for a hyperbolic system with nonlocal characteristic velocities and measurement error. The formulation of the initial boundary value problem of boundary control for the specified hyperbolic system is given. A difference scheme is constructed for the numerical solution of the considered initial boundary value problem. The definition of the exponential stability of the numerical solution in 2-norm with respect to a discrete perturbation of the equilibrium state of the initial boundary value difference problem is given. A discrete Lyapunov function for a numerical solution is constructed, and a theorem on the exponential stability of a stationary solution of the initial boundary value difference problem in 2-norm with respect to a discrete perturbation is proved. Full article
(This article belongs to the Special Issue Difference, Functional, and Related Equations)
16 pages, 285 KiB  
Article
Best Proximity Point Results via Simulation Function with Application to Fuzzy Fractional Differential Equations
by Ghada Ali, Nawab Hussain and Abdelhamid Moussaoui
Symmetry 2024, 16(5), 627; https://doi.org/10.3390/sym16050627 - 17 May 2024
Abstract
In this study, we prove the existence and uniqueness of a best proximity point in the setting of non-Archimedean modular metric spaces via the concept of simulation functions. A non-Archimedean metric modular is shaped as a parameterized family of classical metrics; therefore, for [...] Read more.
In this study, we prove the existence and uniqueness of a best proximity point in the setting of non-Archimedean modular metric spaces via the concept of simulation functions. A non-Archimedean metric modular is shaped as a parameterized family of classical metrics; therefore, for each value of the parameter, the positivity, the symmetry, the triangle inequality, or the continuity is ensured. Also, we demonstrate how analogous theorems in modular metric spaces may be used to generate the best proximity point results in triangular fuzzy metric spaces. The utility of our findings is further demonstrated by certain examples, illustrated consequences, and an application to fuzzy fractional differential equations. Full article
(This article belongs to the Special Issue Symmetry in Metric Spaces and Topology)
21 pages, 511 KiB  
Article
The Impact of the Digital Economy on Supply Chain Security: Evidence from China’s Wooden Furniture Industry
by Yiyi Luo, Yilin Chen, Chenlu Tao, Chao Yang, Futao Xiang, Chang Xu and Fanli Lin
Forests 2024, 15(5), 879; https://doi.org/10.3390/f15050879 - 17 May 2024
Abstract
Supply chain security is a major prerequisite for China’s successful industrial modernization, while the digital economy has significantly contributed to industrial transformation and upgrading. This study considers China’s wooden furniture industry as its research object, constructing an evaluation index system of the digital [...] Read more.
Supply chain security is a major prerequisite for China’s successful industrial modernization, while the digital economy has significantly contributed to industrial transformation and upgrading. This study considers China’s wooden furniture industry as its research object, constructing an evaluation index system of the digital economy and supply chain security of the wooden furniture industry. Then, it studies the impact of the digital economy on supply chain security through theoretical analysis and empirical methods using the two-way fixed model of provinces and time. The findings demonstrate that the digital economy effectively enhances the level of supply chain security in China’s wooden furniture industry, further validating the digital economy’s positive externality impact on the traditional real economy. The impact mechanism test shows that inventory turnover capacity is the focal point for the digital economy to improve the supply chain security of the wood furniture industry, specifying the starting point for that industry’s digital transformation. The heterogeneity findings show that the role of the digital economy in improving the wood furniture industry’s level of supply chain security is more significant in inland areas than in coastal areas. Additional analyses found a threshold effect of the digital economy’s impact on supply chain security, indicating its limitations. This study explores the impact of the digital economy on the real economy from a traditional manufacturing industry, enriching research on the positive externalities of the digital economy as well as providing a reference for traditional manufacturing industries, such as that of wooden furniture, to probe the embedding points of the digital economy and appropriate digital transformation. Full article
(This article belongs to the Special Issue Impact of Global Economic Changes on the Wood-Based Industry)
17 pages, 1054 KiB  
Article
The Influence of Spatial Heterogeneity of Urban Green Space on Surface Temperature
by Mengru Zhang, Jianguo Wang and Fei Zhang
Forests 2024, 15(5), 878; https://doi.org/10.3390/f15050878 - 17 May 2024
Abstract
Urban green space (UGS) has been recognized as a key factor in enhancing the urban ecosystem balance, particularly in arid areas. It is often considered an effective means to mitigate the urban heat island (UHI) effect. In this study, the reference comparison method [...] Read more.
Urban green space (UGS) has been recognized as a key factor in enhancing the urban ecosystem balance, particularly in arid areas. It is often considered an effective means to mitigate the urban heat island (UHI) effect. In this study, the reference comparison method was utilized to optimize the process of nighttime lighting data; the random forest classification method was employed to extract UGS data; and the radiative transfer method was applied in land surface temperature (LST) inversion. Additionally, moving window analysis was conducted to assess the robustness of the results. The objective of this research was to analyze the spatial distribution characteristics of UGS and LST and to explore their bivariate local spatial autocorrelations by calculating four landscape metrics, including the aggregation index (AI), edge density (ED), patch density (PD), and area-weighted mean shape index (Shape_am). It was found that the distribution of UGS in the study area was uneven, with higher temperatures in the eastern and western regions and lower temperatures in the central and southern regions. The results also revealed that ED, PD, and Shape_am were negatively correlated with LST, with correlation coefficients being −0.469, −0.388, and −0.411, respectively, indicating that UGS in these regions were more effective in terms of cooling effect. Conversely, AI was found to be positively correlated with LST (Moran’ I index of 0.449), indicating that surface temperatures were relatively higher in regions of high aggregation. In essence, the fragmented, complex, and evenly distributed green patches in the study area provided a better cooling effect. These findings should persuade decision makers and municipal planners to allocate more UGS in cities for UHI alleviation to improve quality of life and enhance recreational opportunities. Full article
19 pages, 1561 KiB  
Article
Generic Carbon Budget Model for Assessing National Carbon Dynamics toward Carbon Neutrality: A Case Study of South Korea
by Youngjin Ko, Cholho Song, Max Fellows, Moonil Kim, Mina Hong, Werner A. Kurz, Juha Metsaranta, Jiwon Son and Woo-Kyun Lee
Forests 2024, 15(5), 877; https://doi.org/10.3390/f15050877 - 17 May 2024
Abstract
Forests play a crucial role in South Korea’s carbon neutrality goal and require sustainable management strategies to overcome age-class imbalances. The Generic Carbon Budget Model (GCBM) offers a spatially explicit approach to simulate carbon dynamics at a regional scale. In this study, we [...] Read more.
Forests play a crucial role in South Korea’s carbon neutrality goal and require sustainable management strategies to overcome age-class imbalances. The Generic Carbon Budget Model (GCBM) offers a spatially explicit approach to simulate carbon dynamics at a regional scale. In this study, we utilized the GCBM to analyze the carbon budget of forests in South Korea and produce spatiotemporal maps for distribution of the forest biomass. The growth parameters of five representative tree species (Pinus densiflora Siebold & Zucc., Larix kaempferi Carr., Pinus koraiensis Siebold & Zucc., Quercus mongolica Fisch. ex Ledeb., Quercus variabilis Blume), which are the main species in South Korea, were used to operate the model. In addition, spatial data for harvest and thinning management activities were used to analyze the effects of anthropogenic activities. In 2020, the aboveground and belowground biomass were 112.98 and 22.84 tC ha−1, and the net primary productivity was 8.30 tC ha−1 year−1. These results were verified using comparison with statistics, a literature review, and MODIS NPP. In particular, broadleaf is higher than conifer forest in net primary production. The Canadian GCBM with Korean forest inventory data and yield curves successfully estimated the aboveground and belowground biomass of forests in South Korea. Our study demonstrates that these estimates can be mapped in detail, thereby supporting decision-makers and stakeholders in analyzing the carbon budget of the forests in South Korea and developing novel schemes that can serve regional and national aims related to forest management, wood utilization, and ecological preservation. Further studies are needed to improve the initialization of dead organic matter pools, given the large-scale afforestation efforts in recent decades that have established South Korea’s forests on predominantly non-forest sites. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
27 pages, 11184 KiB  
Article
Exploring the Multi-Sensory Coupling Relationship of Open Space on a Winter Campus
by Shumin Li, Yijing Zhang, Qiqi Zhang, Pingting Xue, Hao Wu, Wenjian Xu, Jing Ye, Lingyan Chen, Tianyou He and Yushan Zheng
Forests 2024, 15(5), 876; https://doi.org/10.3390/f15050876 - 17 May 2024
Abstract
Exploring the combined effects of multisensory interactions in open spaces can help improve the comfort of campus environments. Nine typical spaces on a university campus in Fuzhou were selected for this study. Subjects perceived the environment and then completed an on-site subjective questionnaire. [...] Read more.
Exploring the combined effects of multisensory interactions in open spaces can help improve the comfort of campus environments. Nine typical spaces on a university campus in Fuzhou were selected for this study. Subjects perceived the environment and then completed an on-site subjective questionnaire. At the same time, meteorological data (global radiation, air temperature, globe temperature, wind speed, relative humidity, and illumination intensity) were measured to determine the interactions between visual and acoustic and thermal perceptions. Differences in the meteorological parameters between the measuring points were described using a one-way ANOVA and Tukey’s post hoc test, and a chi-square test of independence was used to determine significant associations between thermal, acoustic, and visual comfort, which in turn led to the study of interactions between visual, acoustic, and thermal comfort using a two-way ANOVA. The following conclusions were drawn: (1) the Thermal Comfort Vote (TCV) increased with the increasing Acoustic Comfort Vote (ACV) at all levels of thermal stress. (2) The highest and lowest Acoustic Sensation Vote (ASV) values for each sound type were derived from either “slightly cold” or “warm” conditions. Both the Thermal Comfort Vote (TCV) and the Acoustic Comfort Vote (ACV) were positively correlated. (3) When “neutral”, the Thermal Sensation Vote (TSV) increased with increasing illumination intensity (LUX). (4) The Sunlight Sensation Vote (SSV) increased with the increasing Universal Thermal Climate Index (UTCI) when illumination intensity (LUX) was moderate and bright. (5) The highest and lowest Acoustic Sensation Vote (ASV) values for each sound type came from either “slightly cold” or “warm” conditions. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

16 pages, 715 KiB  
Article
Fractionation of Inorganic Phosphorus in Cold Temperate Forest Soils: Associating Mechanisms of Soil Aggregate Protection and Recovery Periods after Forest Fire Disturbance
by Bing Wang, Ruihua Li, Zihao Wang and Rula Sa
Forests 2024, 15(5), 875; https://doi.org/10.3390/f15050875 - 17 May 2024
Abstract
The soil aggregate is the fundamental unit of soil structure. The fractionation characteristics and influencing factors of phosphorus (P) in soil aggregates inherently link its geochemical characteristics and recycling mechanism. This work investigated the fractionation characteristics of inorganic P in cold temperate forest [...] Read more.
The soil aggregate is the fundamental unit of soil structure. The fractionation characteristics and influencing factors of phosphorus (P) in soil aggregates inherently link its geochemical characteristics and recycling mechanism. This work investigated the fractionation characteristics of inorganic P in cold temperate forest soils and studied the impacts of recovery periods after forest fires and soil aggregate protection mechanisms on P fractionation. Our results showed that the TP, active P, stable P, and total organic carbon (TOC) contents varied with increasing recovery years after forest fire disturbance. The TP content in the coarse particulate organic matter fraction (cPOM) exhibited an increasing trend with the number of recovery years. Redundancy analysis (RDA) and correlation analysis indicated that TOC played a crucial role in influencing the dynamics of P fractionation during the recovery process. The order of TP levels in different soil aggregate fractions was as follows: μClay > dClay > LF > cPOM > dSilt > μSilt > iPOM, with significant contributions from the cPOM and dSilt fractions. The ranking of P fractions in bulk soils was as follows: ACa-P > Fe-P > Oc-P > Or-P > De-P > Al-P > Ex-P. The protective mechanism of soil aggregates had a more significant effect on TOC than TP, with the order of protective abilities being: Phy×biochem-protected > Biochem-protected > Phy-protected > Non-protected mechanism. TOC and recovery years emerged as critical factors influencing the dynamics of different P fractions during post-fire recovery. Soil aggregate protection mechanisms demonstrated significantly higher effects on TOC than on TP. This study provides insights into the fractionation mechanisms of P in the soil–forest ecosystem of the Greater Khingan Mountains, contributing to the sustainable development and utilization of cold temperate forest ecosystems. Full article
(This article belongs to the Section Forest Soil)
20 pages, 1719 KiB  
Article
Aboveground Spatiotemporal Carbon Storage Model in the Changing Landscape of Jatigede, West Java, Indonesia
by Susanti Withaningsih, Annas Dwitri Malik and Parikesit Parikesit
Forests 2024, 15(5), 874; https://doi.org/10.3390/f15050874 - 17 May 2024
Abstract
Land use and land cover (LULC) change is the variable with the maximum influence on carbon storage in terrestrial ecosystems, due to a fundamental alteration of the ecosystem, structure, function, and variability over time. Understanding the dynamics of aboveground carbon stocks in underway [...] Read more.
Land use and land cover (LULC) change is the variable with the maximum influence on carbon storage in terrestrial ecosystems, due to a fundamental alteration of the ecosystem, structure, function, and variability over time. Understanding the dynamics of aboveground carbon stocks in underway constructions and urban expansions is crucial to provide a basis for land use management and planning. The objective of this study was to analyze the spatiotemporal dynamics of aboveground carbon storage and assess how the LULC change is affected by human intervention, as well as how aboveground carbon stocks respond to these changes in the tropical highland landscape of Jatigede. In this study, changes in aboveground carbon stocks were investigated between 2014 and 2021 by using the integrated valuation of ecosystem services and tradeoffs (InVEST) model. The results revealed that the total aboveground carbon stock decreased between 2014 and 2021. Forests showed the greatest decline in the aboveground carbon stock in terms of space. The primary cause of the reduction in the aboveground carbon stock was the conversion of vegetated land to agricultural and urban land cover. The aboveground carbon stock change was also caused by the continuing construction, which resulted in the extension of construction zones. However, an increase in the aboveground carbon stock was mostly observed in mixed gardens that were close to forest areas. The preservation of mixed gardens as a tree-based agroforestry system can be suggested for enhancing the aboveground carbon stock, as mixed gardens play a significant role in carbon storage in the midst of the increasingly massive deforestation due to the expansion of urban areas. Full article
17 pages, 4095 KiB  
Article
Epithelial Cell Adhesion Molecule (EpCAM) Expression in Human Tumors: A Comparison with Pan-Cytokeratin and TROP2 in 14,832 Tumors
by Anne Menz, Nora Lony, Maximilian Lennartz, Sebastian Dwertmann Rico, Ria Schlichter, Simon Kind, Viktor Reiswich, Florian Viehweger, David Dum, Andreas M. Luebke, Martina Kluth, Natalia Gorbokon, Claudia Hube-Magg, Christian Bernreuther, Ronald Simon, Till S. Clauditz, Guido Sauter, Andrea Hinsch, Frank Jacobsen, Andreas H. Marx, Stefan Steurer, Sarah Minner, Eike Burandt, Till Krech, Patrick Lebok and Sören Weidemannadd Show full author list remove Hide full author list
Diagnostics 2024, 14(10), 1044; https://doi.org/10.3390/diagnostics14101044 - 17 May 2024
Abstract
EpCAM is expressed in many epithelial tumors and is used for the distinction of malignant mesotheliomas from adenocarcinomas and as a surrogate pan-epithelial marker. A tissue microarray containing 14,832 samples from 120 different tumor categories was analyzed by immunohistochemistry. EpCAM staining was compared [...] Read more.
EpCAM is expressed in many epithelial tumors and is used for the distinction of malignant mesotheliomas from adenocarcinomas and as a surrogate pan-epithelial marker. A tissue microarray containing 14,832 samples from 120 different tumor categories was analyzed by immunohistochemistry. EpCAM staining was compared with TROP2 and CKpan. EpCAM staining was detectable in 99 tumor categories. Among 78 epithelial tumor types, the EpCAM positivity rate was ≥90% in 60 categories—including adenocarcinomas, neuroendocrine neoplasms, and germ cell tumors. EpCAM staining was the lowest in hepatocellular carcinomas, adrenocortical tumors, renal cell neoplasms, and in poorly differentiated carcinomas. A comparison of EpCAM and CKpan staining identified a high concordance but EpCAM was higher in testicular seminomas and neuroendocrine neoplasms and CKpan in hepatocellular carcinomas, mesotheliomas, and poorly differentiated non-neuroendocrine tumors. A comparison of EpCAM and TROP2 revealed a higher rate of TROP2 positivity in squamous cell carcinomas and lower rates in many gastrointestinal adenocarcinomas, testicular germ cell tumors, neuroendocrine neoplasms, and renal cell tumors. These data confirm EpCAM as a surrogate epithelial marker for adenocarcinomas and its diagnostic utility for the distinction of malignant mesotheliomas. In comparison to CKpan and TROP2 antibodies, EpCAM staining is particularly common in seminomas and in neuroendocrine neoplasms. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop