The 2023 MDPI Annual Report has
been released!
 
8 pages, 268 KiB  
Article
Developing Christ as Consolatory Example in the Christ Encomium
by Alex W. Muir
Religions 2024, 15(5), 607; https://doi.org/10.3390/rel15050607 (registering DOI) - 15 May 2024
Abstract
While Paul Holloway’s scholarship on Philippians has been important, his classification of Philippians as a letter of consolation has gained relatively little traction. Interestingly, however, Holloway follows Karl Barth in labelling a large section of the letter, Phil 1:27–2:16, a ‘hortatory digression’, which [...] Read more.
While Paul Holloway’s scholarship on Philippians has been important, his classification of Philippians as a letter of consolation has gained relatively little traction. Interestingly, however, Holloway follows Karl Barth in labelling a large section of the letter, Phil 1:27–2:16, a ‘hortatory digression’, which could be seen to diminish the extent of consolation in this part of the letter. In this article, I seek to develop Holloway’s work to argue that the Christ encomium in Phil 2:6–11 has elements of consolatory discourse that relates to other parts of the letter. Phil 2:6–11 illustrates and exemplifies how comfort (παράκλησις), consolation (παραμύθιον), and joy (χαρά) can be derived by individuals and communities in the face of opposition or destitution (cf. Phil 1:27–2:4). I propose that Christ undergoes a form of voluntary desolation in 2:6–8 but then receives something different from consolation in his glorious exaltation and the bestowal of the divine name. Although Paul and the Philippians will not receive universal worship like Christ, they can imitate him by following in this trajectory of becoming like God, thus receiving divine consolation and transformation. Full article
(This article belongs to the Special Issue Current Trends in Pauline Research: Philippians)
23 pages, 7992 KiB  
Article
Experimental Investigation of Parameters Influencing the Formation of Dry Bands and Related Electric Field
by Marc-Alain Andoh and Christophe Volat
Energies 2024, 17(10), 2373; https://doi.org/10.3390/en17102373 (registering DOI) - 15 May 2024
Abstract
This paper presents an experimental investigation conducted to determine the influence of parameters such as the ambient temperature, pollution level, and substrate material on the formation of dry bands on polluted layers. To investigate these parameters, we applied a simplified insulator geometry, developed [...] Read more.
This paper presents an experimental investigation conducted to determine the influence of parameters such as the ambient temperature, pollution level, and substrate material on the formation of dry bands on polluted layers. To investigate these parameters, we applied a simplified insulator geometry, developed in our previous work, to experimentally control the complex process of dry band formation on a polluted surface. The simple geometry of the experimental model enabled the use of Plexiglas, RTV, and glass as construction substrate materials. RTV and glass were used to simulate a composite and ceramic insulator surface, respectively. Moreover, an electrooptic (EO) probe enabled the measurement of the axial E-field evolution at the surface of the dry band during dry band formation. The results indicated that the substrate material, ambient temperature, and pollution level substantially influence dry band formation. The effects of the first two parameters are directly associated with heat transfer phenomena in the substrate material and at the ambient air/substrate interface. The effect of the third parameter is associated with absorption and evaporation of the pollution layer. In addition, the appearance of the dry band can be clearly identified by a rapid increase in both the pollution layer resistance and the axial E-field in the dry band area. The value of the axial E-field is influenced primarily by the width of the dry band and by the pollution layer resistance, which is directly dependent on the humidification duration. Finally, because most of the results obtained herein were in accordance with those in the literature, we conclude that the proposed experimental model may provide an effective and inexpensive testing method for developing new materials and solutions for improving the dielectric performance of insulators used in polluted environments. Similarly, the simple geometry of the experimental model and the ability to easily control the experimental parameters may enable this tool to validate the results of various numerical models in studies of the thermoelectrical behavior of polluted insulators. Full article
(This article belongs to the Topic High Voltage Engineering)
Show Figures

Figure 1

10 pages, 1614 KiB  
Article
Malaria during COVID-19 Travel Restrictions in Makkah, Saudi Arabia
by Sami Melebari, Abdul Hafiz, Kamal H. Alzabeedi, Abdullah A. Alzahrani, Yehya Almalki, Renad J. Jadkarim, Fadel Qabbani, Rowaida Bakri, Naif A. Jalal, Hutaf Mashat, Aisha Alsaadi, Ashwaq Hakim, Feras Hashim Malibari, Ahmed Alkhyami and Othman Fallatah
Trop. Med. Infect. Dis. 2024, 9(5), 112; https://doi.org/10.3390/tropicalmed9050112 (registering DOI) - 15 May 2024
Abstract
Malaria is a parasitic infection that may result in an acute, life-threatening illness. It is a major public health problem in the tropical world. The disease is caused by the parasites of the genus Plasmodium and is transmitted by female Anopheles mosquitoes. Saudi [...] Read more.
Malaria is a parasitic infection that may result in an acute, life-threatening illness. It is a major public health problem in the tropical world. The disease is caused by the parasites of the genus Plasmodium and is transmitted by female Anopheles mosquitoes. Saudi Arabia is in the elimination phase of malaria control. Several parts of Saudi Arabia report cases of imported malaria among travelers and visitors. The city of Makkah in Saudi Arabia has a population of about 2.3 million. Moreover, over 6 million religious visitors from different parts of the world visit Makkah annually. During the COVID-19 outbreak, travel restrictions were enforced in Makkah to contain the spread of COVID-19. We compare the total reported cases of malaria in Makkah before, during, and after COVID-19 travel restrictions in this retrospective cross-sectional study. Data on demographics, clinical data, and laboratory parameters were collected from the medical records of the Ministry of Health, Saudi Arabia. The annual malaria incidence rates in Makkah were 29.13/million people (2018), 37.82/million people (2019), 15.65/million people (2020), 12.61/million people (2021), and 48.69/million people (2022). Most of the malaria cases in Makkah were caused by Plasmodium falciparum, followed by P. vivax. Sudan, Nigeria, Yamen, Pakistan, and India are the top five countries contributing to malaria cases in Makkah. Weekly malaria case analyses revealed that COVID-19-related travel restrictions resulted in zero malaria cases in Makkah, indicating the magnitude of the travel-related malaria burden in the city. Full article
(This article belongs to the Special Issue Epidemiology, Detection and Treatment of Malaria)
Show Figures

Figure 1

12 pages, 2036 KiB  
Review
Clinical Application of Unidirectional Porous Hydroxyapatite to Bone Tumor Surgery and Other Orthopedic Surgery
by Toshiyuki Kunisada, Eiji Nakata, Tomohiro Fujiwara, Toshiaki Hata, Kohei Sato, Haruyoshi Katayama, Ayana Kondo and Toshifumi Ozaki
Biomimetics 2024, 9(5), 294; https://doi.org/10.3390/biomimetics9050294 (registering DOI) - 15 May 2024
Abstract
Unidirectional porous hydroxyapatite (UDPHAp) was developed as a remarkable scaffold characterized by a distinct structure with unidirectional pores oriented in the horizontal direction and connected through interposes. We evaluated the radiographic changes, clinical outcomes, and complications following UDPHAp implantation for the treatment of [...] Read more.
Unidirectional porous hydroxyapatite (UDPHAp) was developed as a remarkable scaffold characterized by a distinct structure with unidirectional pores oriented in the horizontal direction and connected through interposes. We evaluated the radiographic changes, clinical outcomes, and complications following UDPHAp implantation for the treatment of bone tumors. Excellent bone formation within and around the implant was observed in all patients treated with intralesional resection and UDPHAp implantation for benign bone tumors. The absorption of UDPHAp and remodeling of the bone marrow space was observed in 45% of the patients at a mean of 17 months postoperatively and was significantly more common in younger patients. Preoperative cortical thinning was completely regenerated in 84% of patients at a mean of 10 months postoperatively. No complications related to the implanted UDPHAp were observed. In a pediatric patient with bone sarcoma, when the defect after fibular resection was filled with UDPHAp implants, radiography showed complete resorption of the implant and clear formation of cortex and marrow in the resected part of the fibula. The patient could walk well without crutches and participate in sports activities. UDPHAp is a useful bone graft substitute for the treatment of benign bone tumors, and the use of this material has a low complication rate. We also review and discuss the potential of UDPHAp as a bone graft substitute in the clinical setting of orthopedic surgery. Full article
(This article belongs to the Special Issue Advances in Bioceramics for Bone Regeneration)
Show Figures

Figure 1

18 pages, 4886 KiB  
Article
Pinecone-Inspired Humidity-Responsive Paper Actuators with Bilayer Structure
by David Seelinger, Hussam Georges, Jan-Lukas Schäfer, Jasmin Huong, Rena Tajima, Christan Mittelstedt and Markus Biesalski
Polymers 2024, 16(10), 1402; https://doi.org/10.3390/polym16101402 (registering DOI) - 15 May 2024
Abstract
Many plant materials in nature have the ability to change their shape to respond to external stimuli, such as humidity or moisture, to ensure their survival or safe seed release. A well-known example for this phenomenon is the pinecone, which is able to [...] Read more.
Many plant materials in nature have the ability to change their shape to respond to external stimuli, such as humidity or moisture, to ensure their survival or safe seed release. A well-known example for this phenomenon is the pinecone, which is able to open its scales at low humidity due to the specific bilayer structures of the scale. Inspired by this, we developed a novel humidity-driven actuator based on paper. This was realized by the lamination of untreated paper made from eucalyptus fibers to a paper–carboxymethyl cellulose (CMC) composite. As observed, the hygroexpansion of the composite can be easily controlled by the amount of CMC in the impregnated paper sheet, which, thus, controls the morphologic deformation of the paper bilayer. For a more detailed understanding of these novel paper soft robots, we also studied the dynamic water vapor adsorption, polymer distribution and hygroexpansion of the paper–polymer composites. Finally, we applied a geometrically nonlinear finite element model to predict the bending behavior of paper bilayers and compared the results to experimental data. From this, we conclude that due to the complexity of structure of the paper composite, a universal prediction of the hygromorphic behavior is not a trivial matter. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites)
Show Figures

Figure 1

6 pages, 188 KiB  
Editorial
Advanced Functional Materials for Electrochemical and Biosensors
by Khursheed Ahmad
Biosensors 2024, 14(5), 248; https://doi.org/10.3390/bios14050248 (registering DOI) - 15 May 2024
Abstract
Modern science and technology are central to the smooth running of daily life [...] Full article
12 pages, 10655 KiB  
Brief Report
What Is “Apocynum sibiricum”? A Critical Comment on the Long-Term Taxonomic Homonymy
by Evgeny V. Mavrodiev, Andrey K. Sytin, Alexey P. Laktionov, Vladimir M. Vasjukov, John S. Penton, Jr. and Karina I. Panfilova
Taxonomy 2024, 4(2), 314-325; https://doi.org/10.3390/taxonomy4020015 (registering DOI) - 14 May 2024
Abstract
The necessity of the typification of the Apocynum L. s.l. (incl. Poacynum Baill. and Trachomitum Woodson) (Apocynaceae) species is crucial for future dogbane diversity estimations. Still, the original material of many taxa of the genus Apocynum s.l. is doubtful or remains to be [...] Read more.
The necessity of the typification of the Apocynum L. s.l. (incl. Poacynum Baill. and Trachomitum Woodson) (Apocynaceae) species is crucial for future dogbane diversity estimations. Still, the original material of many taxa of the genus Apocynum s.l. is doubtful or remains to be discovered. This study’s topic is resolving a long-term taxonomic homonymy around the widely used binomial “A. sibiricum”. The misusing of the name “A. sibiricum” became a reason for long-term misunderstanding of the meaning of the binomial Poacynum sarmatiense (Woodson) Mavrodiev, Laktionov & Yu.E.Alexeev (A. sarmatiense (Woodson) Wissjul.; T. sarmatiense Woodson) and therefore for the misestimation of the Apocynum s.l. diversity in Russian and other Eurasian floras. Resolving this issue, here, we designate the lectotype of A. sibiricum Jacq. and the name “A. sibiricum Pall.” was validated within Poacynum as P. pallasianum Mavrodiev, Sytin, Laktionov & Vasjukov nom. nov. (Apocynum sibiricum auct., non Jacq.) with the lectotype selected from the original collections of Peter Simon Pallas. Full article
Show Figures

Figure 1

19 pages, 512 KiB  
Article
Non-Differentiable Loss Function Optimization and Interaction Effect Discovery in Insurance Pricing Using the Genetic Algorithm
by Robin Van Oirbeek, Félix Vandervorst, Thomas Bury, Gireg Willame, Christopher Grumiau and Tim Verdonck
Risks 2024, 12(5), 79; https://doi.org/10.3390/risks12050079 - 14 May 2024
Abstract
Insurance pricing is the process of determining the premiums that policyholders pay in exchange for insurance coverage. In order to estimate premiums, actuaries use statistical based methods, assessing various factors such as the probability of certain events occurring (like accidents or damages), where [...] Read more.
Insurance pricing is the process of determining the premiums that policyholders pay in exchange for insurance coverage. In order to estimate premiums, actuaries use statistical based methods, assessing various factors such as the probability of certain events occurring (like accidents or damages), where the Generalized Linear Models (GLMs) are the industry standard method. Traditional GLM approaches face limitations due to non-differentiable loss functions and expansive variable spaces, including both main and interaction terms. In this study, we address the challenge of selecting relevant variables for GLMs used in non-life insurance pricing both for frequency or severity analyses, amidst an increasing volume of data and variables. We propose a novel application of the Genetic Algorithm (GA) to efficiently identify pertinent main and interaction effects in GLMs, even in scenarios with a high variable count and diverse loss functions. Our approach uniquely aligns GLM predictions with those of black box machine learning models, enhancing their interpretability and reliability. Using a publicly available non-life motor data set, we demonstrate the GA’s effectiveness by comparing its selected GLM with a Gradient Boosted Machine (GBM) model. The results show a strong consistency between the main and interaction terms identified by GA for the GLM and those revealed in the GBM analysis, highlighting the potential of our method to refine and improve pricing models in the insurance sector. Full article
(This article belongs to the Special Issue Statistical Applications to Insurance and Risk)
Show Figures

Figure 1

10 pages, 579 KiB  
Review
Unveiling the Potential of JAK Inhibitors in Inflammatory Bowel Disease
by Shahed Kamal, Sheng Wei Lo, Samantha McCall, Beverly Rodrigues, Andrew H. Tsoi and Jonathan P. Segal
Biologics 2024, 4(2), 177-186; https://doi.org/10.3390/biologics4020012 (registering DOI) - 14 May 2024
Abstract
Background: Janus kinase (JAK) inhibitors represent a novel class of oral therapies showing efficacy in treating ulcerative colitis (UC) and Crohn’s disease (CD), challenging conventional treatment paradigms. Summary: This review provides an overview of the potential novel uses of JAK inhibitors, focusing on [...] Read more.
Background: Janus kinase (JAK) inhibitors represent a novel class of oral therapies showing efficacy in treating ulcerative colitis (UC) and Crohn’s disease (CD), challenging conventional treatment paradigms. Summary: This review provides an overview of the potential novel uses of JAK inhibitors, focusing on their current approved indications and exploring possibilities beyond these indications. Tofacitinib and filgotinib are approved for UC, while upadacitinib is approved for both UC and CD. Additionally, their potential in acute severe UC, as steroid alternatives, and in managing fistulizing CD or extraintestinal manifestations are discussed. Key Message: JAK inhibitors play an important role in IBD (inflammatory bowel disease) treatment; however, clinicians must balance their promising efficacy with safety concerns. Individualized care and vigilance are essential for optimizing therapeutic benefits while mitigating potential adverse effects. Further research is necessary to clarify their efficacy, safety, and potential applications. Full article
Show Figures

Figure 1

16 pages, 6308 KiB  
Article
Enhanced Oxygen Mass Transfer in Mixing Bioreactor Using Silica Microparticles
by Matheus M. Pereira, Ivus Lorenzo Oliveira Matos, Filipe Moreira Mascarenhas Cordeiro, Ana Cristina Morais da Silva, Eliane Bezerra Cavalcanti and Álvaro Silva Lima
Fermentation 2024, 10(5), 255; https://doi.org/10.3390/fermentation10050255 (registering DOI) - 14 May 2024
Abstract
This work aimed to improve the oxygen transfer mass coefficient (kLa) in mixing reactors, first evaluating the effect of agitation and aeration and then evaluating the influence of the size and concentration of silica microparticles. Silicon dioxide synthesized via the sol-gel [...] Read more.
This work aimed to improve the oxygen transfer mass coefficient (kLa) in mixing reactors, first evaluating the effect of agitation and aeration and then evaluating the influence of the size and concentration of silica microparticles. Silicon dioxide synthesized via the sol-gel technique, commercial sand, and beach sand were characterized by particle size distribution, scanning electron microscopy, XRD, EDS, FTIR, TG/DTA, and BET. The particles presented average values of approximately 9.2, 76.9, 165.1, and 364.4 µm, with irregular surfaces and different roughness. Silica sol-gel is amorphous while beach and commercial sand have a crystalline structure consisting of silicon, oxygen, and carbon residues. Silica sol-gel presents a higher loss of mass and surface area than other silica microparticles, with a shallow mass loss and a smaller surface. Increasing aeration and agitation improves the kLa, as well as adding silica microparticles. The best kLa was found using silica microparticles with approximately 75 µm concentrations of 1.0 g L−1 (silica sol-gel) and 2.0 g L−1 (commercial and treated beach sand). All silica microparticles used in this work improve mass transfer performance in mixing bioreactors. Full article
(This article belongs to the Section Fermentation Process Design)
Show Figures

Figure 1

14 pages, 3676 KiB  
Article
Fluoride-Ion-Responsive Sol–Gel Transition in an L-Cysteine/AgNO3 System: Self-Assembly Peculiarities and Anticancer Activity
by Dmitry V. Vishnevetskii, Yana V. Andrianova, Elizaveta E. Polyakova, Alexandra I. Ivanova and Arif R. Mekhtiev
Gels 2024, 10(5), 332; https://doi.org/10.3390/gels10050332 (registering DOI) - 14 May 2024
Abstract
Supramolecular hydrogels based on low-molecular-weight compounds are a unique class of so-called “soft” materials, formed by weak non-covalent interactions between precursors at their millimolar concentrations. Due to the variety of structures that can be formed using different low-molecular-weight gelators, they are widely used [...] Read more.
Supramolecular hydrogels based on low-molecular-weight compounds are a unique class of so-called “soft” materials, formed by weak non-covalent interactions between precursors at their millimolar concentrations. Due to the variety of structures that can be formed using different low-molecular-weight gelators, they are widely used in various fields of technology and medicine. In this study, we report for the first time an unusual self-assembly process of mixing a hydrosol obtained from L-cysteine and silver nitrate (cysteine–silver sol—CSS) with sodium halides. Modern instrumental techniques such as viscosimetry, UV spectroscopy, dynamic light scattering, zeta potential measurements, SEM and EDS identified that adding fluoride anions to CSS is able to form stable hydrogels of a thixotropic nature, while Cl, Br and I lead to precipitation. The self-assembly process proceeds using a narrow concentration range of F. An increase in the fluoride anion content in the system leads to a change in the gel network morphology from elongated structures to spherical ones. This fact is reflected in a decrease in the gel viscosity and a number of gel–sol–gel transition cycles. The mechanism of F’s interaction with hydrosol includes the condensation of anions on the positive surface of the CSS nanoparticles, their binding via electrostatic forces and the formation of a resulting gel carcass. In vitro analysis showed that the hydrogels suppressed human squamous carcinoma cells at a micromolar sample concentration. The obtained soft gels could have potential applications against cutaneous malignancy and as carriers for fluoride anion and other bioactive substance delivery. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (2nd Edition))
Show Figures

Graphical abstract

19 pages, 10828 KiB  
Article
Intelligent Diagnosis of Concrete Defects Based on Improved Mask R-CNN
by Caiping Huang, Yongkang Zhou and Xin Xie
Appl. Sci. 2024, 14(10), 4148; https://doi.org/10.3390/app14104148 - 14 May 2024
Abstract
With the rapid development of artificial intelligence, computer vision techniques have been successfully applied to concrete defect diagnosis in bridge structural health monitoring. To enhance the accuracy of identifying the location and type of concrete defects (cracks, exposed bars, spalling, efflorescence and voids), [...] Read more.
With the rapid development of artificial intelligence, computer vision techniques have been successfully applied to concrete defect diagnosis in bridge structural health monitoring. To enhance the accuracy of identifying the location and type of concrete defects (cracks, exposed bars, spalling, efflorescence and voids), this paper proposes improvements to the existing Mask Region Convolution Neural Network (Mask R-CNN). The improvements are as follows: (i) The residual network (ResNet101), the backbone network of Mask R-CNN which has too many convolution layers, is replaced by the lightweight network MobileNetV2. This can solve the problem that the large number of parameters leads to a slow training speed of the model, and improve the ability to extract features of smaller targets. (ii) Embedding attention mechanism modules in Feature Pyramid Networks (FPNs) to better extract the target features. (iii) A path aggregation network (PANet) is added to solve the problem that the model Mask R-CNN lacks the ability to extract shallow layer feature information. To validate the superiority of the proposed improved Mask R-CNN, the multi-class concrete defect image dataset was constructed, and using the K-means clustering algorithm to determine the aspect ratio of the most suitable prior bounding box for the dataset. Following, the identification results of improved Mask-RCNN, original Mask-RCNN and other mainstream deep learning networks on five types of concrete defects (cracks, exposed bars, spalling, efflorescence and voids) in the dataset were compared. Finally, the intelligent identification system for concrete defects has been established by innovatively combining images taken by unmanned aerial vehicles (UAVs) with our improved defect identification model. The reinforced concrete bridge defects images collected by UAVs were used as test set for testing. The result is the improved Mask R-CNN with superior accuracy, and the identification accuracy is higher than the original Mask-RCNN and other deep learning networks. The improved Mask-RCNN can identify the new untrained concrete defects images taken by UAVs, and the identification accuracy can meet the requirements of bridge structural health monitoring. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

14 pages, 3927 KiB  
Article
Metal Fragments of Roman Pipes from Pompeii: Investigations on Copper-Based Alloys, Corrosion Products, and Surface Treatments
by Sofia Schiattone, Carla Martini, Marco Malagodi, Giacomo Fiocco, Eleonora Rocconi, Maria Morisco and Cristina Chiavari
Heritage 2024, 7(5), 2538-2551; https://doi.org/10.3390/heritage7050121 (registering DOI) - 14 May 2024
Abstract
This work reports the study of metal fragments from Roman pipes excavated from the archaeological site of Pompeii and currently preserved in the deposits of the National Archaeological Museum of Naples (MANN). The Roman pipe, called the tibia, is a reed wind [...] Read more.
This work reports the study of metal fragments from Roman pipes excavated from the archaeological site of Pompeii and currently preserved in the deposits of the National Archaeological Museum of Naples (MANN). The Roman pipe, called the tibia, is a reed wind musical instrument similar to the Greek aulos. It can be made of wood, bone, and/or metal. Materials consisting of metal Cu-based alloys were excavated from archaeological burial environments. This research aims to identify the composition of the alloys, characterize the corrosion patinas, and identify any ancient surface treatments on the fragments. Non-invasive and micro-invasive techniques were used to achieve this aim, i.e., optical microscopy, Raman spectroscopy, attenuated total reflectance Fourier-transform infrared spectrophotometry, scanning electron microscopy, and energy dispersive spectrometry. This research contributes to a deeper understanding of the materials and manufacturing techniques used for these instruments, as well as the degradation processes occurring over the centuries. Full article
(This article belongs to the Special Issue Conservation and Restoration of Metal Artifacts)
24 pages, 6582 KiB  
Review
Human and Murine Toll-like Receptor-Driven Disease in Systemic Lupus Erythematosus
by Susannah von Hofsten, Kristin Andreassen Fenton and Hege Lynum Pedersen
Int. J. Mol. Sci. 2024, 25(10), 5351; https://doi.org/10.3390/ijms25105351 - 14 May 2024
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is linked to the differential roles of toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. TLR7 overexpression or gene duplication, as seen with the Y-linked autoimmune accelerator (Yaa) locus or TLR7 agonist imiquimod, correlates [...] Read more.
The pathogenesis of systemic lupus erythematosus (SLE) is linked to the differential roles of toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. TLR7 overexpression or gene duplication, as seen with the Y-linked autoimmune accelerator (Yaa) locus or TLR7 agonist imiquimod, correlates with increased SLE severity, and specific TLR7 polymorphisms and gain-of-function variants are associated with enhanced SLE susceptibility and severity. In addition, the X-chromosome location of TLR7 and its escape from X-chromosome inactivation provide a genetic basis for female predominance in SLE. The absence of TLR8 and TLR9 have been shown to exacerbate the detrimental effects of TLR7, leading to upregulated TLR7 activity and increased disease severity in mouse models of SLE. The regulatory functions of TLR8 and TLR9 have been proposed to involve competition for the endosomal trafficking chaperone UNC93B1. However, recent evidence implies more direct, regulatory functions of TLR9 on TLR7 activity. The association between age-associated B cells (ABCs) and autoantibody production positions these cells as potential targets for treatment in SLE, but the lack of specific markers necessitates further research for precise therapeutic intervention. Therapeutically, targeting TLRs is a promising strategy for SLE treatment, with drugs like hydroxychloroquine already in clinical use. Full article
(This article belongs to the Special Issue Immune Mechanisms and Biomarkers in Systemic Lupus Erythematosus)
Show Figures

Figure 1

20 pages, 4254 KiB  
Article
Abnormal Morphology and Synaptogenic Signaling in Astrocytes Following Prenatal Opioid Exposure
by Ethan B. Niebergall, Daron Weekley, Anna Mazur, Nathan A. Olszewski, Kayla M. DeSchepper, N. Radant, Aishwarya S. Vijay and W. Christopher Risher
Cells 2024, 13(10), 837; https://doi.org/10.3390/cells13100837 (registering DOI) - 14 May 2024
Abstract
In recent decades, there has been a dramatic rise in the rates of children being born after in utero exposure to drugs of abuse, particularly opioids. Opioids have been shown to have detrimental effects on neurons and glia in the central nervous system [...] Read more.
In recent decades, there has been a dramatic rise in the rates of children being born after in utero exposure to drugs of abuse, particularly opioids. Opioids have been shown to have detrimental effects on neurons and glia in the central nervous system (CNS), but the impact of prenatal opioid exposure (POE) on still-developing synaptic circuitry is largely unknown. Astrocytes exert a powerful influence on synaptic development, secreting factors to either promote or inhibit synapse formation and neuronal maturation in the developing CNS. Here, we investigated the effects of the partial µ-opioid receptor agonist buprenorphine on astrocyte synaptogenic signaling and morphological development in cortical cell culture. Acute buprenorphine treatment had no effect on the excitatory synapse number in astrocyte-free neuron cultures. In conditions where neurons shared culture media with astrocytes, buprenorphine attenuated the synaptogenic capabilities of astrocyte-secreted factors. Neurons cultured from drug-naïve mice showed no change in synapses when treated with factors secreted by astrocytes from POE mice. However, this same treatment was synaptogenic when applied to neurons from POE mice, indicating a complex neuroadaptive response in the event of impaired astrocyte signaling. In addition to promoting morphological and connectivity changes in neurons, POE exerted a strong influence on astrocyte development, disrupting their structural maturation and promoting the accumulation of lipid droplets (LDs), suggestive of a maladaptive stress response in the developing CNS. Full article
(This article belongs to the Special Issue The Emerging Role of Astrocytes in Health and Neurological Diseases)
18 pages, 2454 KiB  
Article
Dendrobium nobile Polysaccharide Attenuates Blue Light-Induced Injury in Retinal Cells and In Vivo in Drosophila
by Wei-Hsiang Hsu, Chanikan Sangkhathat, Mei-Kuang Lu, Wei-Yong Lin, Hsin-Ping Liu and Yun-Lian Lin
Antioxidants 2024, 13(5), 603; https://doi.org/10.3390/antiox13050603 (registering DOI) - 14 May 2024
Abstract
Blue light is the higher-energy region of the visible spectrum. Excessive exposure to blue light is known to induce oxidative stress and is harmful to the eyes. The stems of Dendrobium nobile Lindl. (Orchidaceae), named Jinchaishihu, have long been used in traditional Chinese [...] Read more.
Blue light is the higher-energy region of the visible spectrum. Excessive exposure to blue light is known to induce oxidative stress and is harmful to the eyes. The stems of Dendrobium nobile Lindl. (Orchidaceae), named Jinchaishihu, have long been used in traditional Chinese medicine (TCM) for nourishing yin, clearing heat, and brightening the eyes. The polysaccharide is one of the major components in D. nobile. However, the effect on ocular cells remains unclear. This study aimed to investigate whether the polysaccharide from D. nobile can protect the eyes from blue light-induced injury. A crude (DN-P) and a partially purified polysaccharide (DN-PP) from D. nobile were evaluated for their protective effects on blue light-induced damage in ARPE-19 and 661W cells. The in vivo study investigated the electroretinographic response and the expression of phototransduction-related genes in the retinas of a Drosophila model. The results showed that DN-P and DN-PP could improve blue light-induced damage in ARPE-19 and 661W cells, including cell viability, antioxidant activity, reactive oxygen species (ROS)/superoxide production, and reverse opsin 3 protein expression in a concentration-dependent manner. The in vivo study indicated that DN-P could alleviate eye damage and reverse the expression of phototransduction-related genes, including ninaE, norpA, Gαq, Gβ76C, Gγ30A, TRP, and TRPL, in a dose-dependent manner in blue light-exposed Drosophila. In conclusion, this is the first report demonstrating that D. nobile polysaccharide pretreatment can protect retinal cells and retinal photoreceptors from blue light-induced damage. These results provide supporting evidence for the beneficial potential of D. nobile in preventing blue light-induced eye damage and improving eyesight. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

16 pages, 1177 KiB  
Article
Designing a Sustainable Nonlinear Model Considering a Piecewise Function for Solving the Risk of Hazardous Material Routing-Locating Problem
by Sina Abbasi, Mojdeh Ardeshir Nasabi, Ilias Vlachos, Fatemeh Eshghi, Mahdi Hazrati and Sajjad Piryaei
Sustainability 2024, 16(10), 4112; https://doi.org/10.3390/su16104112 - 14 May 2024
Abstract
The problem of lot sizing and vehicle routing are combined to form the production routing problem. The efficiency of this combination in cutting expenses has been studied in the past. To reduce the risk associated with the manufacturing and distribution of hazardous products, [...] Read more.
The problem of lot sizing and vehicle routing are combined to form the production routing problem. The efficiency of this combination in cutting expenses has been studied in the past. To reduce the risk associated with the manufacturing and distribution of hazardous products, the production routing problem is examined in this study. Researchers are paying more attention to sustainability’s social and environmental aspects. Hazardous materials are bad for the environment and human health. Mishaps using these substances frequently have unfavorable long-term effects. Risk is a criterion for measuring hazards in activities involving these materials. A mixed integer program is used to simulate the problem. The suggested model’s nonlinear risk function is dependent on the machine’s load, population risk, and hazardous substance. A piecewise linear function approximates this function since solving the mathematical model with the nonlinear objective function is more difficult. Several cases were utilized in this study to assess the model, solve it, and contrast the two linear and nonlinear models. The outcomes demonstrate that the approximation model may obtain a more accurate result simultaneously. The impact of alterations to warehousing and production capacity on risk has also been examined through sensitivity analysis. Using a nonlinear mathematical model, this study suggested a production routing problem for hazardous materials based on sustainability requirements and solved the model using a piecewise linear approximation. Full article
Show Figures

Figure 1

16 pages, 7539 KiB  
Article
Sparse Clustering Algorithm Based on Multi-Domain Dimensionality Reduction Autoencoder
by Yu Kang, Erwei Liu, Kaichi Zou, Xiuyun Wang and Huaqing Zhang
Mathematics 2024, 12(10), 1526; https://doi.org/10.3390/math12101526 - 14 May 2024
Abstract
The key to high-dimensional clustering lies in discovering the intrinsic structures and patterns in data to provide valuable information. However, high-dimensional clustering faces enormous challenges such as dimensionality disaster, increased data sparsity, and reduced reliability of the clustering results. In order to address [...] Read more.
The key to high-dimensional clustering lies in discovering the intrinsic structures and patterns in data to provide valuable information. However, high-dimensional clustering faces enormous challenges such as dimensionality disaster, increased data sparsity, and reduced reliability of the clustering results. In order to address these issues, we propose a sparse clustering algorithm based on a multi-domain dimensionality reduction model. This method achieves high-dimensional clustering by integrating the sparse reconstruction process and sparse L1 regularization into a deep autoencoder model. A sparse reconstruction module is designed based on the L1 sparse reconstruction of features under different domains to reconstruct the data. The proposed method mainly contributes in two aspects. Firstly, the spatial and frequency domains are combined by taking into account the spatial distribution and frequency characteristics of the data to provide multiple perspectives and choices for data analysis and processing. Then, a neural network-based clustering model with sparsity is conducted by projecting data points onto multi-domains and implementing adaptive regularization penalty terms to the weight matrix. The experimental results demonstrate superior performance of the proposed method in handling clustering problems on high-dimensional datasets. Full article
Show Figures

Figure 1

25 pages, 9771 KiB  
Article
Investigation on the Natural Convection Inside Thermal Corridors of Industrial Buildings
by Jing Pu, Aixin Zhu, Junqiu Wu, Fuzhong Xie and Fujian Jiang
Buildings 2024, 14(5), 1406; https://doi.org/10.3390/buildings14051406 - 14 May 2024
Abstract
The installation of successional heating devices in industrial buildings will result in thermal corridors. To improve the thermal environment in and around these corridors, buoyancy-driven ventilation is commonly utilized to dissipate heat, which is based on the natural convection design for buildings. However, [...] Read more.
The installation of successional heating devices in industrial buildings will result in thermal corridors. To improve the thermal environment in and around these corridors, buoyancy-driven ventilation is commonly utilized to dissipate heat, which is based on the natural convection design for buildings. However, the flow and heat exchange patterns of natural convection related to thermal corridors have not been clearly clarified, and no relevant correlations have been established to quantify them. The conducted numerical study aimed to analyze the flow and heat transfer characteristics of natural convection within thermal corridors in industrial buildings. Experimental data were utilized to validate a computational fluid dynamics (CFD) model developed for this purpose. The study considered the influence of various parameters on the results obtained. In the side corridor, the prevalence of reverse flow dominates much of the channel, while in the middle corridor, reverse flow near the bottom corner is observed. The ambient air temperature significantly impacts the temperature distribution in both corridors. Increasing the ambient air temperature at the inlet from 22 to 28 °C results in a substantial temperature rise within the corridor, by approximately 6–7 °C. When the outlet size is constant and the inlet size drops by 30%, the air temperature in the corridor increases by 3 °C. Finally, correlations were established based on the simulation data to predict the surface-averaged Nu¯ of the heated wall and the induced mass flow rate, m˙, of the natural convection. The correlations have relative errors of less than 16% when compared to the simulation data. Full article
Show Figures

Figure 1

14 pages, 551 KiB  
Article
Enriching Language Models with Graph-Based Context Information to Better Understand Textual Data
by Albert Roethel, Maria Ganzha and Anna Wróblewska
Electronics 2024, 13(10), 1919; https://doi.org/10.3390/electronics13101919 - 14 May 2024
Abstract
A considerable number of texts encountered daily are somehow connected. For example, Wikipedia articles refer to other articles via hyperlinks, or scientific papers relate to others via citations or (co)authors; tweets relate via users that follow each other or reshare content. Hence, a [...] Read more.
A considerable number of texts encountered daily are somehow connected. For example, Wikipedia articles refer to other articles via hyperlinks, or scientific papers relate to others via citations or (co)authors; tweets relate via users that follow each other or reshare content. Hence, a graph-like structure can represent existing connections and be seen as capturing the “context” of the texts. The question thus arises of whether extracting and integrating such context information into a language model might help facilitate a better-automated understanding of the text. In this study, we experimentally demonstrate that incorporating graph-based contextualization into the BERT model enhances its performance on an example of a classification task. Specifically, in the Pubmed dataset, we observed a reduction in balanced mean error from 8.51% to 7.96%, while increasing the number of parameters just by 1.6%. Full article
(This article belongs to the Special Issue Advances in Graph-Based Data Mining)
Show Figures

Figure 1

18 pages, 650 KiB  
Review
Role of Hypoxia and Rac1 Inhibition in the Metastatic Cascade
by Enikő Tátrai, Ivan Ranđelović, Sára Eszter Surguta and József Tóvári
Cancers 2024, 16(10), 1872; https://doi.org/10.3390/cancers16101872 (registering DOI) - 14 May 2024
Abstract
The hypoxic condition has a pivotal role in solid tumors and was shown to correlate with the poor outcome of anticancer treatments. Hypoxia contributes to tumor progression and leads to therapy resistance. Two forms of a hypoxic environment might have relevance in tumor [...] Read more.
The hypoxic condition has a pivotal role in solid tumors and was shown to correlate with the poor outcome of anticancer treatments. Hypoxia contributes to tumor progression and leads to therapy resistance. Two forms of a hypoxic environment might have relevance in tumor mass formation: chronic and cyclic hypoxia. The main regulators of hypoxia are hypoxia-inducible factors, which regulate the cell survival, proliferation, motility, metabolism, pH, extracellular matrix function, inflammatory cells recruitment and angiogenesis. The metastatic process consists of different steps in which hypoxia-inducible factors can play an important role. Rac1, belonging to small G-proteins, is involved in the metastasis process as one of the key molecules of migration, especially in a hypoxic environment. The effect of hypoxia on the tumor phenotype and the signaling pathways which may interfere with tumor progression are already quite well known. Although the role of Rac1, one of the small G-proteins, in hypoxia remains unclear, predominantly, in vitro studies performed so far confirm that Rac1 inhibition may represent a viable direction for tumor therapy Full article
(This article belongs to the Section Cancer Metastasis)
15 pages, 1005 KiB  
Article
Experimental Study on the Strength and Damage Characteristics of Cement–Fly Ash–Slag–Gangue Cemented Backfill
by Baofeng Song, Heyu Li, Ran An, Xianwei Zhang and Zefeng Zhou
Buildings 2024, 14(5), 1411; https://doi.org/10.3390/buildings14051411 (registering DOI) - 14 May 2024
Abstract
In order to achieve the goal of effectively utilizing solid waste resources and improving mining stability, it is necessary to incorporate various types of solid wastes in the production of cemented backfill. For investigating the compressive strength and damage characteristics of Cement–Fly Ash–Slag–Gangue [...] Read more.
In order to achieve the goal of effectively utilizing solid waste resources and improving mining stability, it is necessary to incorporate various types of solid wastes in the production of cemented backfill. For investigating the compressive strength and damage characteristics of Cement–Fly Ash–Slag–Gangue (CFSG) cemented backfill under loading, real-time X-ray Computed Tomography (CT) scanning was employed to capture two-dimensional (2D) grayscale slices and three-dimensional (3D) fracture models during uniaxial compression testing. The study quantitatively assessed the evolution of cracks and microstructural damage in CFSG cemented backfill. The results indicate that the specimens underwent four stages of transformation, including compaction, linear elasticity, yielding, and residual deformation, during the uniaxial compression process. The specimens exhibited a measured compressive strength of 3.44 MPa and a failure strain of 0.95%. As the axial strain increased, there was an increase in 2D porosity observed in the CT images and a greater dispersion of crack distribution. A 3D model constructed from CT slices illustrated the feature of cracking expansion, with the fracture volume gradually increasing during the elastic deformation phase and experiencing rapid growth during the yielding and residual deformation phases. The damage variable, obtained from the volume of 3D cracks, exhibited a slow-growth pattern, characterized by a rapid increase followed by a more gradual rise with the increase in axial strain. This study serves as a significant reference for comprehending the micro-mechanisms involved in the damage process and cracking characteristics of cemented backfill mixed with solid wastes under external loading conditions. Full article
(This article belongs to the Special Issue Low-Carbon Material Engineering in Construction)
12 pages, 326 KiB  
Article
HLA-DR and HLA-DQ Polymorphism Correlation with Sexually Transmitted Infection Caused by Chlamydia trachomatis
by Martina-Luciana Pintea-Trifu, Mihaela Laura Vică, Silvia-Ștefana Bâlici, Daniel-Corneliu Leucuța, Horia George Coman, Bogdan Nemeș, Dragoș-Mihail Trifu, Costel-Vasile Siserman and Horea-Vladi Matei
Medicina 2024, 60(5), 808; https://doi.org/10.3390/medicina60050808 - 14 May 2024
Abstract
Background and Objectives: Chlamydia trachomatis (C. trachomatis) represents one of the most prevalent bacterial sexually transmitted diseases. This study aims to explore the relationship between HLA alleles/genotypes/haplotypes and C. trachomatis infection to better understand high-risk individuals and potential complications. Materials and Methods [...] Read more.
Background and Objectives: Chlamydia trachomatis (C. trachomatis) represents one of the most prevalent bacterial sexually transmitted diseases. This study aims to explore the relationship between HLA alleles/genotypes/haplotypes and C. trachomatis infection to better understand high-risk individuals and potential complications. Materials and Methods: This prospective study recruited participants from Transylvania, Romania. Patients with positive NAAT tests for C. trachomatis from cervical/urethral secretion or urine were compared with controls regarding HLA-DR and -DQ alleles. DNA extraction for HLA typing was performed using venous blood samples. Results: Our analysis revealed that the presence of the DRB1*13 allele significantly heightened the likelihood of C. trachomatis infection (p = 0.017). Additionally, we observed that individuals carrying the DRB1*01/DRB1*13 and DQB1*03/DQB1*06 genotype had increased odds of C. trachomatis infection. Upon adjustment, the association between the DRB1*01/DRB1*13 genotype and C. trachomatis remained statistically significant. Conclusions: Our findings underscore the importance of specific HLA alleles and genotypes in influencing susceptibility to C. trachomatis infection. These results highlight the intricate relationship between host genetics and disease susceptibility, offering valuable insights for targeted prevention efforts and personalized healthcare strategies. Full article

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop