The 2023 MDPI Annual Report has
been released!
 
9 pages, 5915 KiB  
Article
Simulation of a Radio-Frequency Wave Based Bacterial Biofilm Detection Method in Dairy Processing Facilities
by Ranajoy Bhattacharya, Ken Cornell and Jim Browning
Appl. Sci. 2024, 14(11), 4342; https://doi.org/10.3390/app14114342 (registering DOI) - 21 May 2024
Abstract
This paper describes the principles behind the radio-frequency (RF) sensing of bacterial biofilms in pipes and heat exchangers in a dairy processing plant using an electromagnetic simulation. Biofilm formation in dairy processing plants is a common issue where the absence of timely detection [...] Read more.
This paper describes the principles behind the radio-frequency (RF) sensing of bacterial biofilms in pipes and heat exchangers in a dairy processing plant using an electromagnetic simulation. Biofilm formation in dairy processing plants is a common issue where the absence of timely detection and subsequent cleaning can cause serious illness. Biofilms are known for causing health issues and cleaning requires a large volume of water and harsh chemicals. In this work, milk transportation pipes are considered circular waveguides, and pasteurizers/heat exchangers are considered resonant cavities. Simulations were carried out using the CST studio suite high-frequency solver to determine the effectiveness of the real-time RF sensing. The respective dielectric constants and loss tangents were applied to milk and biofilm. In our simulation, it was observed that a 1 µm thick layer of biofilm in a milk-filled pipe shifted the reflection coefficient of a 10.16 cm diameter stainless steel circular waveguide from 0.229 GHz to 0.19 GHz. Further sensitivity analysis revealed a shift in frequency from 0.8 GHz to 1.2 GHz for a film thickness of 5 µm to 10 µm with the highest wave reflection (S11) peak of ≈−120 dB for a 6 µm thick biofilm. A dielectric patch antenna to launch the waves into the waveguide through a dielectric window was also designed and simulated. Simulation using the antenna demonstrated a similar S11 response, where a shift in reflection coefficient from 0.229 GHz to 0.19 GHz was observed for a 1 µm thick biofilm. For the case of the resonant cavity, the same antenna approach was used to excite the modes in a 0.751 m × 0.321 m × 170 m rectangular cavity with heat exchange fins and filled with milk and biofilm. The simulated resonance frequency shifted from 1.52 GHz to 1.54 GHz, for a film thickness varying from 1 µm to 10 µm. This result demonstrated the sensitivity of the microwave detection method. Overall, these results suggest that microwave sensing has promise in the rapid, non-invasive, and real-time detection of biofilm formation in dairy processing plants. Full article
Show Figures

Figure 1

16 pages, 505 KiB  
Article
Does the Workforce and Sustainability Reporting Strengthen the Relationship between Gender Diversity and Sustainability Performance Reporting?
by Albertina Paula Monteiro, Catarina Cepêda and Amélia Ferreira da Silva
Adm. Sci. 2024, 14(6), 105; https://doi.org/10.3390/admsci14060105 (registering DOI) - 21 May 2024
Abstract
The relevance of gender diversity and environmental, social, and governance (ESG) performance reporting is critical to corporate sustainability. This study aims to analyze the impact of gender diversity on ESG performance reporting and analyze the mediating effect of the workforce and sustainability reports, [...] Read more.
The relevance of gender diversity and environmental, social, and governance (ESG) performance reporting is critical to corporate sustainability. This study aims to analyze the impact of gender diversity on ESG performance reporting and analyze the mediating effect of the workforce and sustainability reports, considering that these variables are crucial for ESG performance reporting. To achieve the objective, an empirical analysis was conducted with 207 European-listed companies belonging to the healthcare sector for the economic years 2017–2021. Our results prove that board gender diversity influences ESG performance reporting. In addition, this research shows that the workforce and sustainability reports have a positive impact on ESG performance reporting. This study does not show that the workforce and sustainability reports act as mediating variables in the relationship between gender diversity and ESG information transparency, but its inclusiveness has a significant impact on ESG performance reporting. Our results are useful for companies, investors, governments, and organizations in developing sustainability reporting standards. Full article
Show Figures

Figure 1

26 pages, 6588 KiB  
Article
Microencapsulation of Grape Pomace Extracts with Alginate-Based Coatings by Freeze-Drying: Release Kinetics and In Vitro Bioaccessibility Assessment of Phenolic Compounds
by Josipa Martinović, Rita Ambrus, Mirela Planinić, Gordana Šelo, Ana-Marija Klarić, Gabriela Perković and Ana Bucić-Kojić
Gels 2024, 10(6), 353; https://doi.org/10.3390/gels10060353 (registering DOI) - 21 May 2024
Abstract
The phenols from grape pomace have remarkable beneficial effects on health prevention due to their biological activity, but these are often limited by their bioaccessibility in the gastrointestinal tract. Encapsulation could protect the phenolics during digestion and influence the controlled release in such [...] Read more.
The phenols from grape pomace have remarkable beneficial effects on health prevention due to their biological activity, but these are often limited by their bioaccessibility in the gastrointestinal tract. Encapsulation could protect the phenolics during digestion and influence the controlled release in such an intestine where their potential absorption occurs. The influence of freeze-drying encapsulation with sodium alginate (SA) and its combination with gum Arabic (SA-GA) and gelatin (SA-GEL) on the encapsulation efficiency (EE) of phenol-rich grape pomace extract and the bioaccessibility index (BI) of phenolics during simulated digestion in vitro was investigated. The addition of a second coating to SA improved the EE, and the highest EE was obtained with SA-GEL (97.02–98.30%). The release of phenolics followed Fick’s law of diffusion and the Korsmeyer–Peppas model best fitted the experimental data. The highest BI was found for the total phenolics (66.2–123.2%) and individual phenolics (epicatechin gallate 958.9%, gallocatechin gallate 987.3%) using the SA-GEL coating were used. This study shows that freeze-dried encapsulated extracts have the potential to be used for the preparation of various formulations containing natural phenolic compounds with the aim of increasing their bioaccessibility compared to formulations containing non-encapsulated extracts. Full article
(This article belongs to the Special Issue Recent Advance in Food Gels (2nd Edition))
Show Figures

Graphical abstract

11 pages, 2160 KiB  
Communication
A Uni-Micelle Approach for the Controlled Synthesis of Monodisperse Gold Nanocrystals
by Liangang Shan, Wenchao Wang, Lei Qian, Jianguo Tang and Jixian Liu
Nanomaterials 2024, 14(11), 900; https://doi.org/10.3390/nano14110900 (registering DOI) - 21 May 2024
Abstract
Small-size gold nanoparticles (AuNPs) are showing large potential in various fields, such as photothermal conversion, sensing, and medicine. However, current synthesis methods generally yield lower, resulting in a high cost. Here, we report a novel uni-micelle method for the controlled synthesis of monodisperse [...] Read more.
Small-size gold nanoparticles (AuNPs) are showing large potential in various fields, such as photothermal conversion, sensing, and medicine. However, current synthesis methods generally yield lower, resulting in a high cost. Here, we report a novel uni-micelle method for the controlled synthesis of monodisperse gold nanocrystals, in which there is only one kind micelle containing aqueous solution of reductant while the dual soluble Au (III) precursor is dissolved in oil phase. Our synthesis includes the reversible phase transfer of Au (III) and “uni-micelle” synthesis, employing a Au (III)-OA complex as an oil-soluble precursor. Size-controlled monodisperse AuNPs with a size of 4–11 nm are synthesized by tuning the size of the micelles, in which oleylamine (OA) is adsorbed on the shell of micelles and enhances the rigidity of the micelles, depressing micellar coalescence. Monodisperse AuNPs can be obtained through a one-time separation process with a higher yield of 61%. This method also offers a promising way for the controlled synthesis of small-size alloy nanoparticles and semiconductor heterojunction quantum dots. Full article
(This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles: 2nd Edition)
Show Figures

Figure 1

16 pages, 8893 KiB  
Article
SntB Affects Growth to Regulate Infecting Potential in Penicillium italicum
by Chunyan Li, Shuzhen Yang, Meihong Zhang, Yanting Yang, Zhengzheng Li and Litao Peng
J. Fungi 2024, 10(6), 368; https://doi.org/10.3390/jof10060368 (registering DOI) - 21 May 2024
Abstract
Penicillium italicum, a major postharvest pathogen, causes blue mold rot in citrus fruits through the deployment of various virulence factors. Recent studies highlight the role of the epigenetic reader, SntB, in modulating the pathogenicity of phytopathogenic fungi. Our research revealed that [...] Read more.
Penicillium italicum, a major postharvest pathogen, causes blue mold rot in citrus fruits through the deployment of various virulence factors. Recent studies highlight the role of the epigenetic reader, SntB, in modulating the pathogenicity of phytopathogenic fungi. Our research revealed that the deletion of the SntB gene in P. italicum led to significant phenotypic alterations, including delayed mycelial growth, reduced spore production, and decreased utilization of sucrose. Additionally, the mutant strain exhibited increased sensitivity to pH fluctuations and elevated iron and calcium ion stress, culminating in reduced virulence on Gannan Novel oranges. Ultrastructural analyses disclosed notable disruptions in cell membrane integrity, disorganization within the cellular matrix, and signs of autophagy. Transcriptomic data further indicated a pronounced upregulation of hydrolytic enzymes, oxidoreductases, and transport proteins, suggesting a heightened energy demand. The observed phenomena were consistent with a carbon starvation response potentially triggering apoptotic pathways, including iron-dependent cell death. These findings collectively underscored the pivotal role of SntB in maintaining the pathogenic traits of P. italicum, proposing that targeting PiSntB could offer a new avenue for controlling citrus fungal infections and subsequent fruit decay. Full article
(This article belongs to the Special Issue Control of Postharvest Fungal Diseases)
Show Figures

Figure 1

18 pages, 1917 KiB  
Article
Oilfield Brine as a Source of Water and Valuable Raw Materials—Proof of Concept on a Laboratory Scale
by Grzegorz Rotko, Ewa Knapik, Marcin Piotrowski and Marta Marszałek
Water 2024, 16(11), 1461; https://doi.org/10.3390/w16111461 (registering DOI) - 21 May 2024
Abstract
Oilfield brine is the largest byproduct stream generated during the extraction of crude oil and natural gas and may be considered a resource for the production of potable water and valuable raw materials. The high salinity of such waters limits the application of [...] Read more.
Oilfield brine is the largest byproduct stream generated during the extraction of crude oil and natural gas and may be considered a resource for the production of potable water and valuable raw materials. The high salinity of such waters limits the application of typical membrane-based techniques. In most oilfields, waste cold energy from the process of the low-temperature separation of natural gas is available and may be used as a source of cold for the freezing desalination (FD) of brine. As a result of the FD process, two streams are obtained: partially desalinated water and concentrated brine. The partially desalinated water may be suitable for non-potable applications or as a feed for membrane desalination. The concentrated brine from the FD could be used as a feed for the recovery of selected chemicals. This paper focuses on verifying the above-described concept of the freezing desalination of oilfield brine on a laboratory scale. The brine from a Polish oilfield located in the Carpathian Foredeep was used as a feed. Four freezing–thawing stages were applied to obtain low-salinity water, which subsequently was treated by reverse osmosis. The obtained permeate meets the criteria recommended for irrigation and livestock watering. The concentrated brine enriched with iodine (48 mg/L) and lithium (14 mg/L) was subjected to recovery tests. Ion exchange resin Diaion NSA100 allowed us to recover 58% of iodine. Lithium recovery using Mn- and Ti-based sorbents varies from 52 to 93%. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

14 pages, 1117 KiB  
Review
Management Considerations for Cervical Corpectomy: Updated Indications and Future Directions
by Marco Foreman, Devon Foster, Wiley Gilliam, Christopher Ciesla, Chris Lamprecht and Brandon Lucke-Wold
Life 2024, 14(6), 651; https://doi.org/10.3390/life14060651 (registering DOI) - 21 May 2024
Abstract
Together, lower back and neck pain are among the leading causes of acquired disability worldwide and have experienced a marked increase over the past 25 years. Paralleled with the increasing aging population and the rise in chronic disease, this trend is only predicted [...] Read more.
Together, lower back and neck pain are among the leading causes of acquired disability worldwide and have experienced a marked increase over the past 25 years. Paralleled with the increasing aging population and the rise in chronic disease, this trend is only predicted to contribute to the growing global burden. In the context of cervical neck pain, this symptom is most often a manifestation of cervical degenerative disc disease (DDD). Traditionally, multilevel neck pain related to DDD that is recalcitrant to both physical and medical therapy can be treated with a procedure known as cervical corpectomy. Presently, there are many flavors of cervical corpectomy; however, the overarching goal is the removal of the pain-generating disc via the employment of the modern anterior approach. In this review, we will briefly detail the pathophysiological mechanism behind DDD, overview the development of the anterior approach, and discuss the current state of treatment options for said pathology. Furthermore, this review will also add to the current body of literature surrounding updated indications, surgical techniques, and patient outcomes related to cervical corpectomy. Finally, our discussion ends with highlighting the future direction of cervical corpectomy through the introduction of the “skip corpectomy” and distractable mesh cages. Full article
Show Figures

Figure 1

17 pages, 3784 KiB  
Article
Health-Promoting Properties of Natural Flavonol Glycosides Isolated from Staphylea pinnata L.
by Ida Paolillo, Giuseppina Roscigno, Michele Innangi, Jesús G. Zorrilla, Gianmarco Petraglia, Maria Teresa Russo, Federica Carraturo, Marco Guida, Alessandra Pollice, Alessio Cimmino, Marco Masi and Viola Calabrò
Int. J. Mol. Sci. 2024, 25(11), 5582; https://doi.org/10.3390/ijms25115582 (registering DOI) - 21 May 2024
Abstract
Staphylea, also called bladdernuts, is a genus of plants belonging to the family Staphyleaceae, widespread in tropical or temperate climates of America, Europe, and the Far East. Staphylea spp. produce bioactive metabolites with antioxidant properties, including polyphenols which have not been completely [...] Read more.
Staphylea, also called bladdernuts, is a genus of plants belonging to the family Staphyleaceae, widespread in tropical or temperate climates of America, Europe, and the Far East. Staphylea spp. produce bioactive metabolites with antioxidant properties, including polyphenols which have not been completely investigated for their phytotherapeutic potential, even though they have a long history of use for food. Here, we report the isolation of six flavonol glycosides from the hydroalcoholic extract of aerial parts of Staphylea pinnata L., collected in Italy, using a solid-phase extraction technique. They were identified using spectroscopic, spectrometric, and optical methods as three quercetin and three isorhamnetin glycosides. Among the flavonol glycosides isolated, isoquercetin and quercetin malonyl glucoside showed powerful antioxidant, antimicrobial, and wound healing promoting activity and thus are valuable as antiaging ingredients for cosmeceutical applications and for therapeutic applications in skin wound repair. Full article
Show Figures

Figure 1

21 pages, 718 KiB  
Review
Using ChatGPT in Software Requirements Engineering: A Comprehensive Review
by Nuno Marques, Rodrigo Rocha Silva and Jorge Bernardino
Future Internet 2024, 16(6), 180; https://doi.org/10.3390/fi16060180 (registering DOI) - 21 May 2024
Abstract
Large language models (LLMs) have had a significant impact on several domains, including software engineering. However, a comprehensive understanding of LLMs’ use, impact, and potential limitations in software engineering is still emerging and remains in its early stages. This paper analyzes the role [...] Read more.
Large language models (LLMs) have had a significant impact on several domains, including software engineering. However, a comprehensive understanding of LLMs’ use, impact, and potential limitations in software engineering is still emerging and remains in its early stages. This paper analyzes the role of large language models (LLMs), such as ChatGPT-3.5, in software requirements engineering, a critical area in software engineering experiencing rapid advances due to artificial intelligence (AI). By analyzing several studies, we systematically evaluate the integration of ChatGPT into software requirements engineering, focusing on its benefits, challenges, and ethical considerations. This evaluation is based on a comparative analysis that highlights ChatGPT’s efficiency in eliciting requirements, accuracy in capturing user needs, potential to improve communication among stakeholders, and impact on the responsibilities of requirements engineers. The selected studies were analyzed for their insights into the effectiveness of ChatGPT, the importance of human feedback, prompt engineering techniques, technological limitations, and future research directions in using LLMs in software requirements engineering. This comprehensive analysis aims to provide a differentiated perspective on how ChatGPT can reshape software requirements engineering practices and provides strategic recommendations for leveraging ChatGPT to effectively improve the software requirements engineering process. Full article
Show Figures

Figure 1

11 pages, 1102 KiB  
Article
Isolation and Molecular Evidence of Tunisian Sheep-like Pestivirus (Pestivirus N) in Persistently Infected Sheep in Northern Italy, 2023
by Enrica Sozzi, Gabriele Leo, Fatbardha Lamcja, Massimiliano Lazzaro, Cristian Salogni, Davide Lelli, Cristina Bertasio, Giulia Magagna, Ana Moreno, Giovanni Loris Alborali, Moira Bazzucchi and Antonio Lavazza
Viruses 2024, 16(6), 815; https://doi.org/10.3390/v16060815 (registering DOI) - 21 May 2024
Abstract
Over the last few decades, several pestiviruses have been discovered in ruminants, pigs, and, more recently, in non-ungulate hosts. Consequently, the nomenclature and taxonomy of pestiviruses have been updated. The Tunisian sheep-like pestivirus (TSV, Pestivirus N) is an additional ovine pestivirus genetically [...] Read more.
Over the last few decades, several pestiviruses have been discovered in ruminants, pigs, and, more recently, in non-ungulate hosts. Consequently, the nomenclature and taxonomy of pestiviruses have been updated. The Tunisian sheep-like pestivirus (TSV, Pestivirus N) is an additional ovine pestivirus genetically closely related to classical swine fever virus (CSFV). In this study, during a survey of pestivirus infections in ovine farms in the Lombardy region of Northern Italy, we identified and isolated a pestivirus strain from a sheep that was found to belong to Pestivirus N species based on its genomic nucleotide identity. The sheep itself and its lamb were found to be persistently infected. We performed molecular characterization and phylogenetic analysis of three viral genomic regions (a fragment of 5′-UTR, partial Npro, and the whole E2 region). In conclusion, these results confirmed circulating TSV in Northern Italy after notification in Sicily, Italy, and France. Correlation with Italian, Tunisian, and French strains showed that detection might have resulted from the trading of live animals between countries, which supports the need for health control measures. Full article
(This article belongs to the Special Issue Pestivirus 2023)
Show Figures

Figure 1

8 pages, 2313 KiB  
Article
Protein Deposition on Sport Mouthguards and the Effectiveness of Two Different Cleaning Protocols
by Kirsten van Vliet, Annina van Splunter, Jan de Lange, Frank Lobbezoo and Henk Brand
J. Clin. Med. 2024, 13(11), 3023; https://doi.org/10.3390/jcm13113023 (registering DOI) - 21 May 2024
Abstract
Objective: To determine which salivary proteins adhere onto sport mouthguards, and to evaluate the effectiveness of different cleaning strategies in removing deposited protein. Methods: Fifteen healthy volunteers used a mouthguard for 1 h. The deposited salivary proteins were analyzed using gel [...] Read more.
Objective: To determine which salivary proteins adhere onto sport mouthguards, and to evaluate the effectiveness of different cleaning strategies in removing deposited protein. Methods: Fifteen healthy volunteers used a mouthguard for 1 h. The deposited salivary proteins were analyzed using gel electrophoresis and Western blotting techniques and compared with the protein composition of unstimulated saliva. In addition, the effectiveness of two different cleaning strategies to remove proteins from the mouthguards were compared: rinsing the mouthguards after use with cold tap water and cleaning the mouthguard with a soluble effervescent tablet. Results: Gel electrophoresis showed deposition of proteins of 50–60 kDa and 14 kDa on the mouthguards used in the mouth for 1 h. Western blotting identified these bands as amylase and lysozyme, respectively. Rinsing the mouthguard with cold tap water after use removed 91% of the total amount of deposited proteins, while cleaning with an effervescent tablet removed 99%. Conclusions: During the use of mouthguards, salivary proteins are deposited on their surface. Because salivary proteins can potentially affect bacterial adhesion to mouthguards, proper cleaning after use is recommended. Cleaning the mouthguard with cold tap water or using an effervescent tablet both seem to be effective strategies to remove proteins deposited on sport mouthguards. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

22 pages, 4609 KiB  
Article
The Effects of Smoking on Telomere Length, Induction of Oncogenic Stress, and Chronic Inflammatory Responses Leading to Aging
by Shreya Deb, Joseph Berei, Edward Miliavski, Muhammad J. Khan, Taylor J. Broder, Thomas A. Akurugo, Cody Lund, Sara E. Fleming, Robert Hillwig, Joseph Ross and Neelu Puri
Cells 2024, 13(11), 884; https://doi.org/10.3390/cells13110884 (registering DOI) - 21 May 2024
Abstract
Telomeres, potential biomarkers of aging, are known to shorten with continued cigarette smoke exposure. In order to further investigate this process and its impact on cellular stress and inflammation, we used an in vitro model with cigarette smoke extract (CSE) and observed the [...] Read more.
Telomeres, potential biomarkers of aging, are known to shorten with continued cigarette smoke exposure. In order to further investigate this process and its impact on cellular stress and inflammation, we used an in vitro model with cigarette smoke extract (CSE) and observed the downregulation of telomere stabilizing TRF2 and POT1 genes after CSE treatment. hTERT is a subunit of telomerase and a well-known oncogenic marker, which is overexpressed in over 85% of cancers and may contribute to lung cancer development in smokers. We also observed an increase in hTERT and ISG15 expression levels after CSE treatment, as well as increased protein levels revealed by immunohistochemical staining in smokers’ lung tissue samples compared to non-smokers. The effects of ISG15 overexpression were further studied by quantifying IFN-γ, an inflammatory protein induced by ISG15, which showed greater upregulation in smokers compared to non-smokers. Similar changes in gene expression patterns for TRF2, POT1, hTERT, and ISG15 were observed in blood and buccal swab samples from smokers compared to non-smokers. The results from this study provide insight into the mechanisms behind smoking causing telomere shortening and how this may contribute to the induction of inflammation and/or tumorigenesis, which may lead to comorbidities in smokers. Full article
(This article belongs to the Special Issue Understanding Aging Mechanisms to Prevent Age-Related Diseases)
Show Figures

Figure 1

15 pages, 15798 KiB  
Technical Note
A Lidar Biomass Index of Tidal Marshes from Drone Lidar Point Cloud
by Cuizhen Wang, James T. Morris and Erik M. Smith
Remote Sens. 2024, 16(11), 1823; https://doi.org/10.3390/rs16111823 (registering DOI) - 21 May 2024
Abstract
Accompanying climate change and sea level rise, tidal marsh mortality in coastal wetlands has been globally observed that urges the documentation of high-resolution, 3D marsh inventory to assist resilience planning. Drone Lidar has proven useful in extracting the fine-scale bare earth terrain and [...] Read more.
Accompanying climate change and sea level rise, tidal marsh mortality in coastal wetlands has been globally observed that urges the documentation of high-resolution, 3D marsh inventory to assist resilience planning. Drone Lidar has proven useful in extracting the fine-scale bare earth terrain and canopy height. Beyond that, this study performed marsh biomass mapping from drone Lidar point cloud in a S. alterniflora-dominated estuary on the Southeast U.S. coast. Three point classes (ground, low-veg, and high-veg) were classified via point cloud deep learning. Considering only vegetation points in the vertical profile, a profile area-weighted height (HPA) was extracted at a grid size of 50 cm × 50 cm. Vegetation point densities were also extracted at each grid. Adopting the plant-level allometric equations of stem biomass from long-term S. alterniflora surveys, a Lidar biomass index (Lidar_BI) was built to represent the relative quantity of marsh biomass in a range of [0, 1] across the estuary. Compared with the clipped dry biomass samples, it achieved a comparable and slightly better performance (R2 = 0.5) than the commonly applied spectral index approaches (R2 = 0.4) in the same marsh field. This study indicates the feasibility of the drone Lidar point cloud for marsh biomass mapping. More advantageously, the drone Lidar approach yields information on plant community architecture, such as canopy height and plant density distributions, which are key factors in evaluating marsh habitat and its ecological services. Full article
(This article belongs to the Special Issue Remote Sensing in Coastal Vegetation Monitoring)
Show Figures

Figure 1

18 pages, 15580 KiB  
Article
Investigation on the Reduced-Order Model for the Hydrofoil of the Blended-Wing-Body Underwater Glider Flow Control with Steady-Stream Suction and Jets Based on the POD Method
by Huan Wang, Xiaoxu Du and Yuli Hu
Actuators 2024, 13(6), 194; https://doi.org/10.3390/act13060194 (registering DOI) - 21 May 2024
Abstract
The rapid acquisition of flow field characterization information is crucial for closed-loop active flow control. The proper orthogonal decomposition (POD) method is a widely used flow field downscaling modeling method to obtain flow characteristics effectively. Based on the POD method, a flow field [...] Read more.
The rapid acquisition of flow field characterization information is crucial for closed-loop active flow control. The proper orthogonal decomposition (POD) method is a widely used flow field downscaling modeling method to obtain flow characteristics effectively. Based on the POD method, a flow field reduced-order model (ROM) is constructed in this paper for the flow field control of a hydrofoil of a blended-wing-body underwater glider (BWB-UG) with stabilized suction and blowing forces. Compared with the computational fluid dynamics (CFD) simulation, the computational time required to predict the target flow field using the established POD-ROM is only about 0.1 s, which is significantly less than the CFD simulation time. The average relative error of the predicted surface pressure is not more than 6.9%. These results confirm the accuracy and efficiency of the POD-ROM in reconstructing flow characteristics. The timeliness problem of fast flow field prediction in BWB-UG active flow control is solved by establishing a fast prediction model in an innovative way. Full article
Show Figures

Figure 1

21 pages, 1885 KiB  
Article
Exploring the Potential of Large Language Models in Radiological Imaging Systems: Improving User Interface Design and Functional Capabilities
by Luyao Zhang, Jianhua Shu, Jili Hu, Fangfang Li, Junjun He, Peng Wang and Yiqing Shen
Electronics 2024, 13(11), 2002; https://doi.org/10.3390/electronics13112002 (registering DOI) - 21 May 2024
Abstract
Large language models (LLMs) have demonstrated remarkable capabilities in natural language processing tasks, including conversation, in-context learning, reasoning, and code generation. This paper explores the potential application of LLMs in radiological information systems (RIS) and assesses the impact of integrating LLMs on RIS [...] Read more.
Large language models (LLMs) have demonstrated remarkable capabilities in natural language processing tasks, including conversation, in-context learning, reasoning, and code generation. This paper explores the potential application of LLMs in radiological information systems (RIS) and assesses the impact of integrating LLMs on RIS development and human–computer interaction. We present ChatUI-RIS, a prototype chat-based user interface that leverages LLM capabilities to enhance RIS functionality and user experience. Through an exploratory study involving 26 medical students, we investigate the efficacy of natural language dialogue for learning and operating RIS. Our findings suggest that LLM integration via a chat interface can significantly improve operational efficiency, reduce learning time, and facilitate rapid expansion of RIS capabilities. By interacting with ChatUI-RIS using natural language instructions, medical students can access and retrieve radiology information in a conversational manner. The LLM-powered chat interface not only streamlines user interactions, but also enables more intuitive and efficient navigation of complex RIS functionalities. Furthermore, the natural language processing capabilities of LLMs can be harnessed to automatically generate code snippets and database queries, accelerating RIS development and customization. Preliminary observations indicate that integrating LLMs in RIS has the potential to revolutionize user interface design, enhance system capabilities, and ultimately improve the overall user experience for radiologists and medical professionals. Full article
Show Figures

Figure 1

15 pages, 6453 KiB  
Article
A Study on the Heterogeneity and Anisotropy of the Porous Grout Body Created in the Stabilization of a Methane Hydrate Reservoir through Grouting
by Yuchen Liu and Masanori Kurihara
Methane 2024, 3(2), 331-345; https://doi.org/10.3390/methane3020018 (registering DOI) - 21 May 2024
Abstract
To solve the sand problem during the depressurization of methane hydrate (MH), we proposed a method to build a porous grout body with sufficient permeability and strength around the wellbore through inhibitor pre-injection and grouting, and verified its effectiveness and potential in our [...] Read more.
To solve the sand problem during the depressurization of methane hydrate (MH), we proposed a method to build a porous grout body with sufficient permeability and strength around the wellbore through inhibitor pre-injection and grouting, and verified its effectiveness and potential in our previous research using artificial cores created with silica sand and alternative hydrates such as TBAB- hydrate and iso-butane hydrate. However, all of the artificial cores mentioned above were created with high homogeneity, injected, cured, and had their physical properties measured in the vertical direction, which differs from real reservoir conditions. To investigate the effects of grouting in a more realistic fluid flow, we conducted further experiments using horizontal 1D cores, 1D cubic models, and a 2D cross-sectional model mimicking the near wellbore. These experiments revealed that (1) the generated gas somewhat suppressed the effects of grouting as in the case of previous experiments, and (2) grouted reservoirs would be heterogenous and anisotropic due to the fluid densities and the distribution of grout particles and turbidite sediments, but sufficient permeability and satisfactory strength could still be attained. The above series of experiments demonstrated that our method has the potential to effectively produce actual MH, preventing sand problems even in heterogeneous and anisotropic grouted reservoirs. Full article
Show Figures

Figure 1

17 pages, 8177 KiB  
Article
Enhancing Visual Data Security: A Novel FSM-Based Image Encryption and Decryption Methodology
by Gulmira Shakhmetova, Alibek Barlybayev, Zhanat Saukhanova, Altynbek Sharipbay, Sayat Raykul and Altay Khassenov
Appl. Sci. 2024, 14(11), 4341; https://doi.org/10.3390/app14114341 (registering DOI) - 21 May 2024
Abstract
The paper presents a comprehensive exploration of a novel image encryption and decryption methodology, leveraging finite state machines (FSM) for the secure transformation of visual data. The study meticulously evaluates the effectiveness of the proposed encryption algorithm using a diverse image dataset. The [...] Read more.
The paper presents a comprehensive exploration of a novel image encryption and decryption methodology, leveraging finite state machines (FSM) for the secure transformation of visual data. The study meticulously evaluates the effectiveness of the proposed encryption algorithm using a diverse image dataset. The encryption algorithm demonstrates high proficiency in obfuscating the original content of images, producing cipher images that resemble noise, thereby substantiating the encryption’s effectiveness. The robustness of the proposed methodology is further evidenced by its performance in the National Institute of Standards and Technology Statistical Test Suite (NIST STS). Such achievements highlight the algorithm’s capability to maintain the stochastic integrity of encrypted data, a critical aspect of data security and confidentiality. Histogram analysis revealed that the encryption process achieves a uniform distribution of pixel values across the encrypted images, masking any identifiable patterns and enhancing the security level. Correlation analysis corroborated the success of the encryption technique, showing a substantial reduction in the correlation among adjacent pixel values, thereby disrupting spatial relationships essential for deterring unauthorized data analysis. This improvement indicates the algorithm’s efficiency in altering pixel patterns to secure image data. Additionally, a comparative analysis of correlation coefficients using various encryption methods on the Lenna image offered insights into the relative effectiveness of different techniques, emphasizing the importance of method selection based on specific security requirements and data characteristics. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

10 pages, 1481 KiB  
Article
Sodium Metabisulfite Inhibits Acanthamoeba Trophozoite Growth through Thiamine Depletion
by Ronnie Mooney, Elisa Giammarini, Erin Corbett, Scott Thomson, Kevin McKinley, Paula Sinisterra Sebastian, Kiri Rodgers, Jana O’Donnell, Charles McGinness, Craig W. Roberts, Kanna Ramaesh and Fiona L. Henriquez
Pathogens 2024, 13(6), 431; https://doi.org/10.3390/pathogens13060431 (registering DOI) - 21 May 2024
Abstract
Acanthamoeba keratitis (AK) is a severe infection of the cornea. Prevention and treatment are difficult due to the inefficacy of currently available compounds. The impact of many commonly used compounds for routine examinations of Acanthamoeba is unexplored but might offer insight useful in [...] Read more.
Acanthamoeba keratitis (AK) is a severe infection of the cornea. Prevention and treatment are difficult due to the inefficacy of currently available compounds. The impact of many commonly used compounds for routine examinations of Acanthamoeba is unexplored but might offer insight useful in combatting AK. In this study, we demonstrate that sodium metabisulfite, a common preservation constituent of eye care solutions, was found to be active against Acanthamoeba trophozoites at concentrations lower than that commonly found in eye drops (IC50 0.03 mg/mL). We demonstrate that sodium metabisulfite depletes thiamine from growth medium and that Acanthamoeba is a thiamine auxotroph, requiring thiamine salvage for growth. The inhibitory effects of sodium metabisulfite can be overcome by thiamine supplementation. These results are consistent with the lack of key enzymes for thiamine biosynthesis in the genome of Acanthamoeba, an area which might prove exploitable using new or existing compounds. Indeed, this study highlights sodium metabisulfite as a useful inhibitor of Acanthamoeba castellanii trophozoites in vitro and that it acts, at least in part, by limiting available thiamine. Full article
(This article belongs to the Special Issue Advances in Ocular Surface Infections)
Show Figures

Figure 1

16 pages, 4439 KiB  
Article
Fabrication of Ciprofloxacin-Loaded Sodium Alginate Nanobeads Coated with Thiol-Anchored Chitosan Using B-390 Encapsulator Following Optimization by DoE
by Mahwash Mukhtar, Ildikó Csóka, Josipa Martinović, Gordana Šelo, Ana Bucić-Kojić, László Orosz, Dóra Paróczai, Katalin Burian and Rita Ambrus
Pharmaceutics 2024, 16(6), 691; https://doi.org/10.3390/pharmaceutics16060691 (registering DOI) - 21 May 2024
Abstract
Most infectious diseases of the gastrointestinal tract can easily be treated by exploiting the already available antibiotics with the change in administration approach and delivery system. Ciprofloxacin (CIP) is used as a drug of choice for many bacterial infections; however, long-term therapy and [...] Read more.
Most infectious diseases of the gastrointestinal tract can easily be treated by exploiting the already available antibiotics with the change in administration approach and delivery system. Ciprofloxacin (CIP) is used as a drug of choice for many bacterial infections; however, long-term therapy and off-site drug accumulation lead to an increased risk of tendinitis and peripheral neuropathy. To overcome this issue, nanotechnology is being exploited to encapsulate antibiotics within polymeric structures, which not only facilitates dose maintenance at the infection site but also limits off-site side effects. Here, sodium alginate (SA) and thiol-anchored chitosan (TC) were used to encapsulate CIP via a calcium chloride (CaCl2) cross-linker. For this purpose, the B-390 encapsulator was employed in the preparation of nanobeads using a simple technique. The hydrogel-like sample was then freeze-dried, using trehalose or mannitol as a lyoprotectant, to obtain a fine dry powder. Design of Experiment (DoE) was utilized to optimize the nanobead production, in which the influence of different independent variables was studied for their outcome on the polydispersity index (PDI), particle size, zeta potential, and percentage encapsulation efficiency (% EE). In vitro dissolution studies were performed in simulated saliva fluid, simulated gastric fluid, and simulated intestinal fluid. Antibacterial and anti-inflammatory studies were also performed along with cytotoxicity profiling. By and large, the study presented positive outcomes, proving the advantage of using nanotechnology in fabricating new delivery approaches using already available antibiotics. Full article
Show Figures

Figure 1

19 pages, 2499 KiB  
Article
Design of a Millimeter-Wave Broadband Linearizer Based on an Extended Design Space
by Peng Hao, Minxian Song, Peng Wang and Ce Shen
Electronics 2024, 13(11), 2000; https://doi.org/10.3390/electronics13112000 (registering DOI) - 21 May 2024
Abstract
In this study, a broadband linearizer design method based on an extended design space is proposed to optimize the design complexity and linearization performance of conventional linearizers for broadband operation. The gain characteristics of the power amplifier (PA) and linearizer are fitted to [...] Read more.
In this study, a broadband linearizer design method based on an extended design space is proposed to optimize the design complexity and linearization performance of conventional linearizers for broadband operation. The gain characteristics of the power amplifier (PA) and linearizer are fitted to simplify the analyses and to quickly derive the ideal objective function of the linearizer design. Then, the 1 dB compression point of a nonlinear system is redefined and used to further extend the design space of the linearizer. To verify the proposed design method, a millimeter-wave linearizer prototype based on the extended design space was designed and fabricated. The linearizer was tested with continuous-wave and 100 MHz two-tone signals from 40 GHz to 43 GHz. The measurement results of the linearized PA showed that the output 1 dB power point (OP1dB) was improved by more than 1.7 dB, the phase error was reduced by more than 15°, and the third-order intermodulation distortion (IMD3) was suppressed by 8.6 dB–13.1 dB over the working frequencies. The proposed linearizer achieved good linearization performance, low power consumption, and simple design implementation, and it was not necessary to tune the bias during broadband operation, making it applicable in complex communication scenarios. Full article
(This article belongs to the Special Issue Microwave Devices and Their Applications)
Show Figures

Figure 1

18 pages, 3190 KiB  
Article
Effect of Shearing and Annealing on the Pasting Properties of Different Starches
by Abdellatif A. Mohamed, Mohamed Saleh Alamri, Hesham Al-Quh, Shahzad Hussain, Mohamed A. Ibraheem, Abdur Rehman and Akram A. Qasem
Gels 2024, 10(6), 350; https://doi.org/10.3390/gels10060350 (registering DOI) - 21 May 2024
Abstract
The functional characteristics of starch can be altered by shear force, which makes the impact on its microstructure of great importance to the food industry. This study investigated the effects of freeze-drying on the gel texture, pasting capabilities, and swelling power of starches [...] Read more.
The functional characteristics of starch can be altered by shear force, which makes the impact on its microstructure of great importance to the food industry. This study investigated the effects of freeze-drying on the gel texture, pasting capabilities, and swelling power of starches made from sweet potatoes (SP), chickpeas (CP), and wheat (WS) combined with Cordia (CG) and Ziziphus gum (ZG). The samples were annealed in water without shearing and in a rapid visco-analyzer (RVA) for 30 min at 60 °C while being spun at 690 rpm. Both native and freeze-dried samples were mixed with 1% or 3% ZG and CG. After annealing, the starches were examined using a texture analyzer and RVA. The results showed that freeze-drying had a substantial (p > 0.05) impact on the starch granule, in addition to the effect of annealing. The peak viscosity of freeze-dried native CP and SP starches increased, but the peak viscosity of freeze-dried wheat starch decreased. The setbacks for CP and WS increased, whereas the setbacks for SP varied slightly. Furthermore, it was demonstrated that annealing in an RVA exhibited a substantially lower peak viscosity than annealing in a water bath; the RVA’s shearing effect may have been the cause of this difference. Cordia gum fared better than ZG in terms of peak viscosity, although ZG significantly reduced setback in comparison to CG. Among the various blends, the native WB sample had the lowest hardness (100 ± 4.9 g), while the freeze-dried WB SP sample had the greatest (175.5 ± 4.8 g). Shearing of starches broke up the granules into smaller pieces, which made them gel at lower temperatures. This could be a good thing when they are needed for food uses that require little cooking. Full article
(This article belongs to the Special Issue Recent Advance in Food Gels (2nd Edition))
Show Figures

Figure 1

21 pages, 2666 KiB  
Review
Anti-Th/To Antibodies in Scleroderma: Good Prognosis or Serious Concern?
by Maria Możdżan, Andrzej Węgiel, Laura Biskup, Olga Brzezińska and Joanna Makowska
J. Clin. Med. 2024, 13(11), 3022; https://doi.org/10.3390/jcm13113022 (registering DOI) - 21 May 2024
Abstract
Systemic sclerosis (SSc) represents a rare and intricate autoimmune connective tissue disease, the pathophysiology of which has not been fully understood. Its key features include progressive fibrosis of the skin and internal organs, vasculopathy and aberrant immune activation. While various anti-nuclear antibodies can [...] Read more.
Systemic sclerosis (SSc) represents a rare and intricate autoimmune connective tissue disease, the pathophysiology of which has not been fully understood. Its key features include progressive fibrosis of the skin and internal organs, vasculopathy and aberrant immune activation. While various anti-nuclear antibodies can serve as biomarkers for the classification and prognosis of SSc, their direct role in organ dysfunction remains unclear. Anti-Th/To antibodies are present in approximately 5% of SSc patients, and are particularly prevalent among those with the limited subtype of the disease. Although the presence of these autoantibodies is associated with a mild course of the disease, there is a strong connection between them and severe clinical manifestations of SSc, including interstitial lung disease, pulmonary arterial hypertension and gastrointestinal involvement. Also, the additional clinical correlations, particularly with malignancies, need further research. Moreover, the disease’s course seems to be influenced by antibodies, specific serum cytokines and TLR signaling pathways. Understanding the relationships between presence of anti-Th/To, its molecular aspects and response to treatment options is crucial for the development of novel, personalized therapeutic techniques and should undergo profound analysis in future studies. Full article
Show Figures

Figure 1

21 pages, 5333 KiB  
Article
An Advanced Terrain Vegetation Signal Detection Approach for Forest Structural Parameters Estimation Using ICESat-2 Data
by Yifan Li, Xin Shen and Lin Cao
Remote Sens. 2024, 16(11), 1822; https://doi.org/10.3390/rs16111822 (registering DOI) - 21 May 2024
Abstract
Accurate forest structural parameters (such as forest height and canopy cover) support forest carbon monitoring, sustainable forest management, and the implementation of silvicultural practices. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2), which is a spaceborne Light Detection and Ranging (LiDAR) satellite, offers [...] Read more.
Accurate forest structural parameters (such as forest height and canopy cover) support forest carbon monitoring, sustainable forest management, and the implementation of silvicultural practices. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2), which is a spaceborne Light Detection and Ranging (LiDAR) satellite, offers significant potential for acquiring precise and extensive information on forest structural parameters. However, the ICESat-2 ATL08 product is significantly influenced by the geographical environment and forest characteristics, maintaining considerable potential for enhancing the accuracy of forest height estimation. Meanwhile, it does not focus on providing canopy cover data. To acquire accurate forest structural parameters, the Terrain Signal Neural Network (TSNN) framework was proposed, integrating Computer Vision (CV), Ordering Points to Identify the Clustering Structure (OPTICS), and deep learning. It encompassed an advanced approach for detecting terrain vegetation signals and constructing deep learning models for estimating forest structural parameters using ICESat-2 ATL03 raw data. First, the ATL03 footprints were visualized as Profile Raster Images of Footprints (PRIF), implementing image binarization through adaptive thresholding and median filtering denoising to detect the terrain. Second, the rough denoising buffers were created based on the terrain, combining with the OPTICS clustering and Gaussian denoising algorithms to recognize the terrain vegetation signal footprints. Finally, deep learning models (convolutional neural network (CNN), ResNet50, and EfficientNetB3) were constructed, training standardized PRIF to estimate forest structural parameters (including forest height and canopy cover). The results indicated that the TSNN achieved high accuracy in terrain detection (coefficient of determination (R2) = 0.97) and terrain vegetation signal recognition (F-score = 0.72). The EfficientNetB3 model achieved the highest accuracy in forest height estimation (R2 = 0.88, relative Root Mean Squared Error (rRMSE) = 13.5%), while the CNN model achieved the highest accuracy in canopy cover estimation (R2 = 0.80, rRMSE = 18.5%). Our results have significantly enhanced the accuracy of acquiring ICESat-2 forest structural parameters, while also proposing an original approach combining CV and deep learning for utilizing spaceborne LiDAR data. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop