The 2023 MDPI Annual Report has
been released!
 
21 pages, 4602 KiB  
Review
Effects of Cryogenic- and Cool-Assisted Burnishing on the Surface Integrity and Operating Behavior of Metal Components: A Review and Perspectives
by Jordan Maximov and Galya Duncheva
Machines 2024, 12(5), 312; https://doi.org/10.3390/machines12050312 (registering DOI) - 02 May 2024
Abstract
When placed under cryogenic temperatures (below −180 °C), metallic materials undergo structural changes that can improve their service life. This process, known as cryogenic treatment (CrT), has received extensive research attention over the past five decades. CrT can be applied as either an [...] Read more.
When placed under cryogenic temperatures (below −180 °C), metallic materials undergo structural changes that can improve their service life. This process, known as cryogenic treatment (CrT), has received extensive research attention over the past five decades. CrT can be applied as either an autonomous process (for steels and non-ferrous alloys, tool materials, and finished products) or as an assisting process for conventional metalworking. Cryogenic impacts and conventional machining or static surface cold working (SCW) can also be performed simultaneously in hybrid processes. The static SCW, known as burnishing, is a widely used environmentally friendly finishing process that achieves high-quality surfaces of metal components. The present review is dedicated to the portion of the hybrid processes in which burnishing under cryogenic conditions is carried out from the viewpoint of surface engineering, namely, finishing–surface integrity (SI)–operational behavior. Analyzes and summaries of the effects of cryogenic-assisted (CrA) burnishing on SI and the operational behavior of the investigated materials are made, and perspectives for future research are proposed. Full article
(This article belongs to the Topic Advanced Manufacturing and Surface Technology)
Show Figures

Figure 1

18 pages, 742 KiB  
Article
Cephalometric Screening Assessment for Superior Airway Space Narrowing—Added Value of Three-Dimensional Imaging
by Axel Meisgeier, Florian Dürrschnabel, Simon Pienkohs, Annabell Weiser and Andreas Neff
J. Clin. Med. 2024, 13(9), 2685; https://doi.org/10.3390/jcm13092685 (registering DOI) - 02 May 2024
Abstract
Assessing the morphology of the superior airway space is a crucial diagnostic step in the treatment planning of patients with obstructive sleep apnea syndrome (OSAS) or prior to orthognathic surgery. The aim of this study is to evaluate the necessary scope of a [...] Read more.
Assessing the morphology of the superior airway space is a crucial diagnostic step in the treatment planning of patients with obstructive sleep apnea syndrome (OSAS) or prior to orthognathic surgery. The aim of this study is to evaluate the necessary scope of a two-dimensional cephalometric assessment and the necessity of three-dimensional imaging in the identification of superior airway space narrowing (SASN). Methods: The computed tomography studies of 100 non-obese, non-OSAS patients were evaluated and analyzed retrospectively. Multiplanar reconstructions were created and underwent cephalometric evaluation. The three-dimensional superior airway morphology was segmented and measured for the minimal cross-sectional area (Amin) and volume (V0). Patients were grouped according to Amin < 80 mm2 and V0 < 12 cm3. Cephalometric parameters (CPs) were analyzed according to Amin and V0 with an unpaired t-test, Pearson correlation, and ROC-curve analysis. Results: The CPs regarding sagittal airway space dimensions (IPAS, MPAS, SPAS) and mandibular body length (GoGn) show the strongest correlation to the three-dimensional minimal cross-sectional area (Amin). The ROC-curve analysis classifying for SASN led to an AUC of 0.86 for IPAS, 0.87 for MPAS, 0.88 for SPAS, and 0.63 for GoGn. Three-dimensional imaging may further improve the diagnostic accuracy in the identification of SASN for IPAS below 13.5 mm, MPAS below 10.2 mm, SPAS below 12.5 mm, and GoGn below 90.2 mm. Conclusions: Two-dimensional cephalometric sagittal airway space diameters and mandibular body length are useful initial screening parameters in the identification of superior airway space narrowing. Nevertheless, as the correlation of two-dimensional cephalometric parameters with three-dimensional upper airway space narrowing is varying and highly dependent on acquisition circumstances, indications for three-dimensional imaging, if possible, in the supine position to evaluate upper airway space morphology should be provided generously, especially in patients with low but normal airway space parameters in two-dimensional cephalometry. Full article
(This article belongs to the Special Issue Current Trends in Oral and Maxillofacial Surgery)
14 pages, 642 KiB  
Article
Changes of Solitude Behaviors among College Students: A Latent Transition Analysis
by Tour Liu, Fuyu Wan and Xurong Lu
Behav. Sci. 2024, 14(5), 385; https://doi.org/10.3390/bs14050385 (registering DOI) - 02 May 2024
Abstract
Solitude behaviors encompass four types: positive solitude, eccentricity, social avoidance, and loneliness. These four types of solitude behaviors are not entirely independent but can co-occur within individuals. Thus, the purpose of this study was to explore latent classes of solitude behaviors, their developmental [...] Read more.
Solitude behaviors encompass four types: positive solitude, eccentricity, social avoidance, and loneliness. These four types of solitude behaviors are not entirely independent but can co-occur within individuals. Thus, the purpose of this study was to explore latent classes of solitude behaviors, their developmental patterns, and relevant influencing factors among college students. The Solitude Behavior Scale—Short Version was administered to a sample of college students. A total of 417 Chinese students completed a three-time longitudinal paper questionnaire. The data analysis was performed using Mplus 8.0 and SPSS 26.0. Harman’s single-factor test, latent class analysis (LCA), and latent transition analysis (LTA) were employed for subsequent analysis. The results revealed three classes: low solitude, moderate solitude, and high solitude, which exhibited temporal changes. Social avoidance and loneliness could facilitate transitions between high solitude and moderate solitude. Females and first-grade students exhibited higher transition probabilities than males and students not in the first grade. The incidence of moderate solitude in the not-first-grade group was significantly higher than that in the first-grade group. Finally, this study offers new insights into the dynamics of solitude behaviors and their association with gender and age. Full article
(This article belongs to the Special Issue Positive Psychology Interventions in Schools)
18 pages, 593 KiB  
Article
What Is Necessary for Digital Transformation of Large Manufacturing Companies? A Necessary Condition Analysis
by Ziye Zhang, Meiying Wu and Jiajie Yin
Sustainability 2024, 16(9), 3837; https://doi.org/10.3390/su16093837 (registering DOI) - 02 May 2024
Abstract
Digital transformation is of significant importance to the sustainable development of manufacturing companies and the construction of the digital economy. However, this major change is often hindered by numerous complex antecedents. What are the key factors in the digital transformation of manufacturing companies, [...] Read more.
Digital transformation is of significant importance to the sustainable development of manufacturing companies and the construction of the digital economy. However, this major change is often hindered by numerous complex antecedents. What are the key factors in the digital transformation of manufacturing companies, and what is their relative importance? Accordingly, this paper identifies the key factors for digital transformation in large manufacturing companies from the “Ability–Motivation–Opportunity” (AMO) perspective. This study uses a necessary condition analysis (NCA) to conduct a necessity causality study on data collected from 67 listed Chinese manufacturing companies between 2016 and 2020. The results show that the digital transformation of large manufacturing companies is influenced by four necessary conditions: managerial myopia, industry concentration (very large effect), dynamic capabilities, and industrial digitalization (large effect). Managerial myopia and industry concentration have a negative necessary impact on digital transformation. The types of conditions and the level of bottlenecks required at different stages of digital transformation vary significantly. This study reveals the necessary causal relationships between organizational abilities, motivation, external opportunities, and digital transformation, providing empirical evidence to promote the digital transformation practices of manufacturing companies. Full article
24 pages, 8657 KiB  
Article
A Tumor-Specific Molecular Network Promotes Tumor Growth in Drosophila by Enforcing a Jun N-Terminal Kinase–Yorkie Feedforward Loop
by Indrayani Waghmare, Karishma Gangwani, Arushi Rai, Amit Singh and Madhuri Kango-Singh
Cancers 2024, 16(9), 1768; https://doi.org/10.3390/cancers16091768 (registering DOI) - 02 May 2024
Abstract
Cancer cells expand rapidly in response to altered intercellular and signaling interactions to achieve the hallmarks of cancer. Impaired cell polarity combined with activated oncogenes is known to promote several hallmarks of cancer, e.g., activating invasion by increased activity of Jun N-terminal kinase [...] Read more.
Cancer cells expand rapidly in response to altered intercellular and signaling interactions to achieve the hallmarks of cancer. Impaired cell polarity combined with activated oncogenes is known to promote several hallmarks of cancer, e.g., activating invasion by increased activity of Jun N-terminal kinase (JNK) and sustained proliferative signaling by increased activity of Hippo effector Yorkie (Yki). Thus, JNK, Yki, and their downstream transcription factors have emerged as synergistic drivers of tumor growth through pro-tumor signaling and intercellular interactions like cell competition. However, little is known about the signals that converge onto JNK and Yki in tumor cells and enable tumor cells to achieve the hallmarks of cancer. Here, using mosaic models of cooperative oncogenesis (RasV12,scrib) in Drosophila, we show that RasV12,scrib tumor cells grow through the activation of a previously unidentified network comprising Wingless (Wg), Dronc, JNK, and Yki. We show that RasV12,scrib cells show increased Wg, Dronc, JNK, and Yki signaling, and all these signals are required for the growth of RasV12,scrib tumors. We report that Wg and Dronc converge onto a JNK–Yki self-reinforcing positive feedback signal-amplification loop that promotes tumor growth. We found that the Wg–Dronc–Yki–JNK molecular network is specifically activated in polarity-impaired tumor cells and not in normal cells, in which apical-basal polarity remains intact. Our findings suggest that the identification of molecular networks may provide significant insights into the key biologically meaningful changes in signaling pathways and paradoxical signals that promote tumorigenesis. Full article
(This article belongs to the Section Cancer Pathophysiology)
13 pages, 1281 KiB  
Article
Natural Antibodies Produced in Vaccinated Patients and COVID-19 Convalescents Hydrolyze Recombinant RBD and Nucleocapsid (N) Proteins
by Anna M. Timofeeva, Liliya Sh. Shayakhmetova, Artem O. Nikitin, Tatyana A. Sedykh, Andrey L. Matveev, Daniil V. Shanshin, Ekaterina A. Volosnikova, Iuliia A. Merkuleva, Dmitriy N. Shcherbakov, Nina V. Tikunova, Sergey E. Sedykh and Georgy A. Nevinsky
Biomedicines 2024, 12(5), 1007; https://doi.org/10.3390/biomedicines12051007 (registering DOI) - 02 May 2024
Abstract
Antibodies are protein molecules whose primary function is to recognize antigens. However, recent studies have demonstrated their ability to hydrolyze specific substrates, such as proteins, oligopeptides, and nucleic acids. In 2023, two separate teams of researchers demonstrated the proteolytic activity of natural plasma [...] Read more.
Antibodies are protein molecules whose primary function is to recognize antigens. However, recent studies have demonstrated their ability to hydrolyze specific substrates, such as proteins, oligopeptides, and nucleic acids. In 2023, two separate teams of researchers demonstrated the proteolytic activity of natural plasma antibodies from COVID-19 convalescents. These antibodies were found to hydrolyze the S-protein and corresponding oligopeptides. Our study shows that for antibodies with affinity to recombinant structural proteins of the SARS-CoV-2: S-protein, its fragment RBD and N-protein can only hydrolyze the corresponding protein substrates and are not cross-reactive. By using strict criteria, we have confirmed that this proteolytic activity is an intrinsic property of antibodies and is not caused by impurities co-eluting with them. This discovery suggests that natural proteolytic antibodies that hydrolyze proteins of the SARS-CoV-2 virus may have a positive impact on disease pathogenesis. It is also possible for these antibodies to work in combination with other antibodies that bind specific epitopes to enhance the process of virus neutralization. Full article
17 pages, 2688 KiB  
Review
Approaches for Enhancing Wastewater Treatment of Photocatalytic Fuel Cells: A Review
by Penghui Li, Xiaohan Zhou, Haoyi Yang, Yun He, Yujiao Kan, Yang Zhang, Yanan Shang, Yizhen Zhang, Xiaoqiang Cao and Michael K. H. Leung
Materials 2024, 17(9), 2139; https://doi.org/10.3390/ma17092139 (registering DOI) - 02 May 2024
Abstract
Environmental pollution and energy crises have garnered global attention. The substantial discharge of organic waste into water bodies has led to profound environmental contamination. Photocatalytic fuel cells (PFCs) enabling the simultaneous removal of refractory contaminants and recovery of the chemical energy contained in [...] Read more.
Environmental pollution and energy crises have garnered global attention. The substantial discharge of organic waste into water bodies has led to profound environmental contamination. Photocatalytic fuel cells (PFCs) enabling the simultaneous removal of refractory contaminants and recovery of the chemical energy contained in organic pollutants provides a potential strategy to solve environmental issues and the energy crisis. This review will discuss the fundamentals, working principle, and configuration development of PFCs and photocatalytic microbial fuel cells (PMFCs). We particularly focus on the strategies for improving the wastewater treatment performance of PFCs/PMFCs in terms of coupled advanced oxidation processes, the rational design of high-efficiency electrodes, and the strengthening of the mass transfer process. The significant potential of PFCs/PMFCs in various fields is further discussed in detail. This review is intended to provide some guidance for the better implementation and widespread adoption of PFC wastewater treatment technologies. Full article
Show Figures

Figure 1

13 pages, 294 KiB  
Article
The Generalized Eta Transformation Formulas as the Hecke Modular Relation
by Nianliang Wang, Takako Kuzumaki and Shigeru Kanemitsu
Axioms 2024, 13(5), 304; https://doi.org/10.3390/axioms13050304 (registering DOI) - 02 May 2024
Abstract
The transformation formula under the action of a general linear fractional transformation for a generalized Dedekind eta function has been the subject of intensive study since the works of Rademacher, Dieter, Meyer, and Schoenberg et al. However, the (Hecke) modular relation structure was [...] Read more.
The transformation formula under the action of a general linear fractional transformation for a generalized Dedekind eta function has been the subject of intensive study since the works of Rademacher, Dieter, Meyer, and Schoenberg et al. However, the (Hecke) modular relation structure was not recognized until the work of Goldstein-de la Torre, where the modular relations mean equivalent assertions to the functional equation for the relevant zeta functions. The Hecke modular relation is a special case of this, with a single gamma factor and the corresponding modular form (or in the form of Lambert series). This has been the strongest motivation for research in the theory of modular forms since Hecke’s work in the 1930s. Our main aim is to restore the fundamental work of Rademacher (1932) by locating the functional equation hidden in the argument and to reveal the Hecke correspondence in all subsequent works (which depend on the method of Rademacher) as well as in the work of Rademacher. By our elucidation many of the subsequent works will be made clear and put in their proper positions. Full article
(This article belongs to the Section Algebra and Number Theory)
27 pages, 6459 KiB  
Review
Cultural Routes as Cultural Tourism Products for Heritage Conservation and Regional Development: A Systematic Review
by Xinyue Lin, Zhenjiang Shen, Xiao Teng and Qizhi Mao
Heritage 2024, 7(5), 2399-2425; https://doi.org/10.3390/heritage7050114 (registering DOI) - 02 May 2024
Abstract
Cultural routes are a composite set of heritage sites that refer to historical routes of human communication. As key products of cultural tourism, they provide visitors with rich cultural experiences across regions. We systematically review reports and studies related to the tourism development [...] Read more.
Cultural routes are a composite set of heritage sites that refer to historical routes of human communication. As key products of cultural tourism, they provide visitors with rich cultural experiences across regions. We systematically review reports and studies related to the tourism development of 38 cultural route cases worldwide, with a special focus on their distribution, typology, planning patterns, and tools for cultural tourism. We summarized eight tools and found some differences in how often these eight tools are used by the different types of routes and different planning patterns for route tourism. This study also developed an evaluation system based on the conservation principles of cultural routes to determine how different tourism tools affect the conservation and development of historical regions. Although tourism decision-makers have made numerous efforts to protect and develop cultural routes, there are still many problems and challenges in the process of tourism development along cultural routes. We conclude the paper by making recommendations for decision-makers and researchers concerning future route tourism planning and study. Full article
Show Figures

Figure 1

22 pages, 5052 KiB  
Article
Low-Cost, Open-Source, Experimental Setup Communication Platform for Emergencies, Based on SD-WAN Technology
by Vasileios Cheimaras, Spyridon Papagiakoumos, Nikolaos Peladarinos, Athanasios Trigkas, Panagiotis Papageorgas, Dimitrios D. Piromalis and Radu A. Munteanu
Telecom 2024, 5(2), 347-368; https://doi.org/10.3390/telecom5020018 (registering DOI) - 02 May 2024
Abstract
The rapid advancement of communication technologies underscores the urgent need for robust and adaptable emergency communication systems (ECSs), particularly crucial during crises and natural disasters. Although network-based ECSs have been extensively studied, integrating open-source technologies, such as software-defined wide area networks (SD-WAN) with [...] Read more.
The rapid advancement of communication technologies underscores the urgent need for robust and adaptable emergency communication systems (ECSs), particularly crucial during crises and natural disasters. Although network-based ECSs have been extensively studied, integrating open-source technologies, such as software-defined wide area networks (SD-WAN) with private long-term evolution (LTE) base stations, is a relatively unexplored domain. This study endeavors to fill this gap by introducing an experimental ECS platform that utilizes a hybrid network, incorporating a VoIP network to enhance open-source and on-premises communications in targeted areas. Our hypothesis posits that a hybrid network architecture, combining SD-WAN and private LTE, can substantially improve the reliability and efficiency of ECSs. Our findings, supported by the open-source OMNeT++ simulator, illuminate the enhanced communication reliability of the network. Moreover, the proposed platform, characterized by autonomous wireless 4G/LTE base stations and an Asterisk VoIP server, demonstrates improved quality of service (QoS) and quality of experience (QoE), with minimal data loss. This research not only has immediate practical applications but also bears significant implications for the development of cost-effective, open-source communication networks, optimized for emergencies, critical infrastructure, and remote areas. Full article
Show Figures

Figure 1

20 pages, 715 KiB  
Article
A MongoDB Document Reconstruction Support System Using Natural Language Processing
by Kohei Hamaji and Yukikazu Nakamoto
Software 2024, 3(2), 206-225; https://doi.org/10.3390/software3020010 (registering DOI) - 02 May 2024
Abstract
Document-oriented databases, a type of Not Only SQL (NoSQL) database, are gaining popularity owing to their flexibility in data handling and performance for large-scale data. MongoDB, a typical document-oriented database, is a database that stores data in the JSON format, where the upper [...] Read more.
Document-oriented databases, a type of Not Only SQL (NoSQL) database, are gaining popularity owing to their flexibility in data handling and performance for large-scale data. MongoDB, a typical document-oriented database, is a database that stores data in the JSON format, where the upper field involves lower fields and fields with the same related parent. One feature of this
document-oriented database is that data are dynamically stored in an arbitrary location without explicitly defining a schema in advance. This flexibility violates the above property and causes difficulties for application program readability and database maintenance. To address these issues, we propose a reconstruction support method for document structures in MongoDB. The method uses the strength of the Has-A relationship between the parent and child fields, as well as the similarity of field names in the MongoDB documents in natural language processing, to reconstruct the data structure in MongoDB. As a result, the method transforms the parent and child fields into more
coherent data structures. We evaluated our methods using real-world data and demonstrated their MongoDBeffectiveness. Full article
9 pages, 2638 KiB  
Case Report
Unusual Presentation of Acrodermatitis Chronica Atrophicans Resulting in Delay of Diagnosis and Inappropriate Treatment in Three Cases
by Thilo Gambichler, Rim Jridi, Heinz-Wolfram Bernd, Andrea von Stemm and Stefanie Boms
Dermato 2024, 4(2), 37-45; https://doi.org/10.3390/dermato4020005 (registering DOI) - 02 May 2024
Abstract
Acrodermatitis chronica atrophicans (ACA) is not an infrequent condition in Europe. However, the characteristic skin lesions are often confused by non-dermatologists with other conditions. We report three unusual cases in which we made a definitive diagnosis of ACA complicated by cutaneous marginal zone [...] Read more.
Acrodermatitis chronica atrophicans (ACA) is not an infrequent condition in Europe. However, the characteristic skin lesions are often confused by non-dermatologists with other conditions. We report three unusual cases in which we made a definitive diagnosis of ACA complicated by cutaneous marginal zone lymphoma, juxta-articular fibrotic nodules, or bilateral sensory polyneuropathy. In all cases, correct diagnosis and adequate treatment was delayed over a period of at least 12 months. We initiated systemic antibiotics resulting in full recovery in these patients. The present case reports underscore that ACA may be associated with unusual clinical presentation which potentially result in delay of correct diagnosis and treatment. Hence, ACA diagnosis may be considerably delayed leading to inappropriate therapy exposure, prolonged patients’ suffering, and causing unnecessary cost. Thus, physicians who are not familiar with skin conditions should seek a timely consultation a dermatologist. Full article
Show Figures

Figure 1

12 pages, 2248 KiB  
Communication
Automatic Shrimp Fry Counting Method Using Multi-Scale Attention Fusion
by Xiaohong Peng, Tianyu Zhou, Ying Zhang and Xiaopeng Zhao
Sensors 2024, 24(9), 2916; https://doi.org/10.3390/s24092916 (registering DOI) - 02 May 2024
Abstract
Shrimp fry counting is an important task for biomass estimation in aquaculture. Accurate counting of the number of shrimp fry in tanks can not only assess the production of mature shrimp but also assess the density of shrimp fry in the tanks, which [...] Read more.
Shrimp fry counting is an important task for biomass estimation in aquaculture. Accurate counting of the number of shrimp fry in tanks can not only assess the production of mature shrimp but also assess the density of shrimp fry in the tanks, which is very helpful for the subsequent growth status, transportation management, and yield assessment. However, traditional manual counting methods are often inefficient and prone to counting errors; a more efficient and accurate method for shrimp fry counting is urgently needed. In this paper, we first collected and labeled the images of shrimp fry in breeding tanks according to the constructed experimental environment and generated corresponding density maps using the Gaussian kernel function. Then, we proposed a multi-scale attention fusion-based shrimp fry counting network called the SFCNet. Experiments showed that our proposed SFCNet model reached the optimal performance in terms of shrimp fry counting compared to CNN-based baseline counting models, with MAEs and RMSEs of 3.96 and 4.682, respectively. This approach was able to effectively calculate the number of shrimp fry and provided a better solution for accurately calculating the number of shrimp fry. Full article
(This article belongs to the Special Issue Sensor and AI Technologies in Intelligent Agriculture: 2nd Edition)
Show Figures

Figure 1

21 pages, 5773 KiB  
Article
Enhanced Fault Detection in Bearings Using Machine Learning and Raw Accelerometer Data: A Case Study Using the Case Western Reserve University Dataset
by Krish Kumar Raj, Shahil Kumar, Rahul Ranjeev Kumar and Mauro Andriollo
Information 2024, 15(5), 259; https://doi.org/10.3390/info15050259 (registering DOI) - 02 May 2024
Abstract
This study introduces a novel approach for fault classification in bearing components utilizing raw accelerometer data. By employing various neural network models, including deep learning architectures, we bypass the traditional preprocessing and feature-extraction stages, streamlining the classification process. Utilizing the Case Western Reserve [...] Read more.
This study introduces a novel approach for fault classification in bearing components utilizing raw accelerometer data. By employing various neural network models, including deep learning architectures, we bypass the traditional preprocessing and feature-extraction stages, streamlining the classification process. Utilizing the Case Western Reserve University (CWRU) bearing dataset, our methodology demonstrates remarkable accuracy, particularly in deep learning networks such as the three variant convolutional neural networks (CNNs), achieving above 98% accuracy across various loading levels, establishing a new benchmark in fault-detection efficiency. Notably, data exploration through principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) provided valuable insights into feature relationships and patterns, aiding in effective fault detection. This research not only proves the efficacy of neural network classifiers in handling raw data but also opens avenues for more straightforward yet effective diagnostic methods in machinery health monitoring. These findings suggest significant potential for real-world applications, offering a faster yet reliable alternative to conventional fault-classification techniques. Full article
(This article belongs to the Section Information Applications)
21 pages, 4872 KiB  
Review
OnyxTMGel or Coil versus Hydrogel as Embolic Agents in Endovascular Applications: Review of the Literature and Case Series
by Paolo Perri, Giuseppe Sena, Paolo Piro, Tommaso De Bartolo, Stefania Galassi, Davide Costa and Raffaele Serra
Gels 2024, 10(5), 312; https://doi.org/10.3390/gels10050312 (registering DOI) - 02 May 2024
Abstract
This review focuses on the use of conventional gel or coil and “new” generation hydrogel used as an embolic agent in endovascular applications. In general, embolic agents have deep or multidistrict vascular penetration properties as they ensure complete occlusion of vessels by exploiting [...] Read more.
This review focuses on the use of conventional gel or coil and “new” generation hydrogel used as an embolic agent in endovascular applications. In general, embolic agents have deep or multidistrict vascular penetration properties as they ensure complete occlusion of vessels by exploiting the patient’s coagulation system, which recognises them as substances foreign to the body, thus triggering the coagulation cascade. This is why they are widely used in the treatment of endovascular corrections (EV repair), arteriovenous malformations (AVM), endoleaks (E), visceral aneurysms or pseudo-aneurysms, and embolisation of pre-surgical or post-surgical (iatrogenic) lesions. Conventional gels such as Onyx or coils are now commercially available, both of which are frequently used in endovascular interventional procedures, as they are minimally invasive and have numerous advantages over conventional open repair (OR) surgery. Recently, these agents have been modified and optimised to develop new embolic substances in the form of hydrogels based on alginate, chitosan, fibroin and other polymers to ensure embolisation through phase transition phenomena. The main aim of this work was to expand on the data already known in the literature concerning the application of these devices in the endovascular field, focusing on the advantages, disadvantages and safety profiles of conventional and innovative embolic agents and also through some clinical cases reported. The clinical case series concerns the correction and exclusion of endoleak type I or type II appeared after an endovascular procedure of exclusion of aneurysmal abdominal aortic (EVAR) with a coil (coil penumbra released by a LANTERN microcatheter), the exclusion of renal arterial malformation (MAV) with a coil (penumbra coil released by a LANTERN microcatheter) and the correction of endoleak through the application of Onyx 18 in the arteries where sealing by the endoprosthesis was not guaranteed. Full article
Show Figures

Graphical abstract

26 pages, 5406 KiB  
Article
Enhanced Electroactive Phases of Poly(vinylidene Fluoride) Fibers for Tissue Engineering Applications
by Angelika Zaszczyńska, Arkadiusz Gradys, Anna Ziemiecka, Piotr K. Szewczyk, Ryszard Tymkiewicz, Małgorzata Lewandowska-Szumieł, Urszula Stachewicz and Paweł Ł. Sajkiewicz
Int. J. Mol. Sci. 2024, 25(9), 4980; https://doi.org/10.3390/ijms25094980 (registering DOI) - 02 May 2024
Abstract
Nanofibrous materials generated through electrospinning have gained significant attention in tissue regeneration, particularly in the domain of bone reconstruction. There is high interest in designing a material resembling bone tissue, and many scientists are trying to create materials applicable to bone tissue engineering [...] Read more.
Nanofibrous materials generated through electrospinning have gained significant attention in tissue regeneration, particularly in the domain of bone reconstruction. There is high interest in designing a material resembling bone tissue, and many scientists are trying to create materials applicable to bone tissue engineering with piezoelectricity similar to bone. One of the prospective candidates is highly piezoelectric poly(vinylidene fluoride) (PVDF), which was used for fibrous scaffold formation by electrospinning. In this study, we focused on the effect of PVDF molecular weight (180,000 g/mol and 530,000 g/mol) and process parameters, such as the rotational speed of the collector, applied voltage, and solution flow rate on the properties of the final scaffold. Fourier Transform Infrared Spectroscopy allows for determining the effect of molecular weight and processing parameters on the content of the electroactive phases. It can be concluded that the higher molecular weight of the PVDF and higher collector rotational speed increase nanofibers’ diameter, electroactive phase content, and piezoelectric coefficient. Various electrospinning parameters showed changes in electroactive phase content with the maximum at the applied voltage of 22 kV and flow rate of 0.8 mL/h. Moreover, the cytocompatibility of the scaffolds was confirmed in the culture of human adipose-derived stromal cells with known potential for osteogenic differentiation. Based on the results obtained, it can be concluded that PVDF scaffolds may be taken into account as a tool in bone tissue engineering and are worth further investigation. Full article
16 pages, 3366 KiB  
Article
Hydrogen Sulfide Delivery to Enhance Bone Tissue Engineering Cell Survival
by Soheila Ali Akbari Ghavimi, Trent J. Faulkner, Rama Rao Tata, August J. Hemmerla, Samantha E. Huddleston, Farnoushsadat Rezaei, Ethan S. Lungren, Rui Zhang, Erin E. Bumann and Bret D. Ulery
Pharmaceuticals 2024, 17(5), 585; https://doi.org/10.3390/ph17050585 (registering DOI) - 02 May 2024
Abstract
Though crucial for natural bone healing, local calcium ion (Ca2+) and phosphate ion (Pi) concentrations can exceed the cytotoxic limit leading to mitochondrial overload, oxidative stress, and cell death. For bone tissue engineering applications, H2S can be [...] Read more.
Though crucial for natural bone healing, local calcium ion (Ca2+) and phosphate ion (Pi) concentrations can exceed the cytotoxic limit leading to mitochondrial overload, oxidative stress, and cell death. For bone tissue engineering applications, H2S can be employed as a cytoprotective molecule to enhance mesenchymal stem cell (MSC) tolerance to cytotoxic Ca2+/Pi concentrations. Varied concentrations of sodium hydrogen sulfide (NaSH), a fast-releasing H2S donor, were applied to assess the influence of H2S on MSC proliferation. The results suggested a toxicity limit of 4 mM for NaSH and that 1 mM of NaSH could improve cell proliferation and differentiation in the presence of cytotoxic levels of Ca2+ (32 mM) and/or Pi (16 mM). To controllably deliver H2S over time, a novel donor molecule (thioglutamic acid—GluSH) was synthesized and evaluated for its H2S release profile. Excitingly, GluSH successfully maintained cytoprotective level of H2S over 7 days. Furthermore, MSCs exposed to cytotoxic Ca2+/Pi concentrations in the presence of GluSH were able to thrive and differentiate into osteoblasts. These findings suggest that the incorporation of a sustained H2S donor such as GluSH into CaP-based bone graft substitutes can facilitate considerable cytoprotection, making it an attractive option for complex bone regenerative engineering applications. Full article
(This article belongs to the Special Issue New Advances in Mesenchymal Stromal Cells as Therapeutic Tools)
Show Figures

Graphical abstract

16 pages, 20662 KiB  
Article
Exploring the Metabolic Effects of a Herbal Remedy of Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum cassia Extracts: Unraveling Its Therapeutic Potential as a Topical Application for Atopic Dermatitis Treatment
by Gakyung Lee, Byung Hwa Jung, Taemin Lee, Jae Hyeon Park, Hyung Sik Kim, Hocheol Kim and Hyun Ok Yang
Antioxidants 2024, 13(5), 563; https://doi.org/10.3390/antiox13050563 (registering DOI) - 02 May 2024
Abstract
Our previous study demonstrated that our novel herbal remedy, a mixture of Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum Cassia extracts, exhibits a therapeutic effect in 1-chloro-2,4-dinitrobenzene (DNCB)-induced mice by inhibiting the Th-2 inflammatory response upon oral administration. It also ameliorated imbalances [...] Read more.
Our previous study demonstrated that our novel herbal remedy, a mixture of Asarum sieboldii, Platycodon grandiflorum, and Cinnamomum Cassia extracts, exhibits a therapeutic effect in 1-chloro-2,4-dinitrobenzene (DNCB)-induced mice by inhibiting the Th-2 inflammatory response upon oral administration. It also ameliorated imbalances in lipid metabolism related to the skin barrier function in keratinocytes, indicating its potential as a topical agent. This study aims to further investigate the therapeutic effects and metabolic mechanisms of its topical application. The anti-atopic effect was evaluated using dermatitis scores, histopathological analysis, and immune cell factors in DNCB-induced mice. Metabolomic profiling of serum and lesional skin was conducted to elucidate the metabolic mechanisms. The topical application significantly reduced dermatitis scores, mast cell infiltration, and serum levels of immunoglobulin E (IgE), IFN-γ, interleukin (IL)-4, IL-17, and thymic stromal lymphopoietin (TSLP), demonstrating its effectiveness in treating atopic dermatitis (AD). Serum metabolomics revealed alterations in fatty acid metabolism related to the pro-inflammatory response. In lesional skin, metabolic markers associated with oxidative stress, immune regulation, and AD symptoms were restored. This study demonstrated its potential as a topical agent in suppressing Th-2 inflammatory responses and improving metabolic abnormalities related to AD symptoms, providing crucial insights for developing natural AD treatments. Full article
(This article belongs to the Topic Plant Extracts and Their Therapeutic Effects)
Show Figures

Graphical abstract

28 pages, 1389 KiB  
Review
A Nanorobotics-Based Approach of Breast Cancer in the Nanotechnology Era
by Anca-Narcisa Neagu, Taniya Jayaweera, Krishan Weraduwage and Costel C. Darie
Int. J. Mol. Sci. 2024, 25(9), 4981; https://doi.org/10.3390/ijms25094981 (registering DOI) - 02 May 2024
Abstract
We are living in an era of advanced nanoscience and nanotechnology. Numerous nanomaterials, culminating in nanorobots, have demonstrated ingenious applications in biomedicine, including breast cancer (BC) nano-theranostics. To solve the complicated problem of BC heterogeneity, non-targeted drug distribution, invasive diagnostics or surgery, resistance [...] Read more.
We are living in an era of advanced nanoscience and nanotechnology. Numerous nanomaterials, culminating in nanorobots, have demonstrated ingenious applications in biomedicine, including breast cancer (BC) nano-theranostics. To solve the complicated problem of BC heterogeneity, non-targeted drug distribution, invasive diagnostics or surgery, resistance to classic onco-therapies and real-time monitoring of tumors, nanorobots are designed to perform multiple tasks at a small scale, even at the organelles or molecular level. Over the last few years, most nanorobots have been bioengineered as biomimetic and biocompatible nano(bio)structures, resembling different organisms and cells, such as urchin, spider, octopus, fish, spermatozoon, flagellar bacterium or helicoidal cyanobacterium. In this review, readers will be able to deepen their knowledge of the structure, behavior and role of several types of nanorobots, among other nanomaterials, in BC theranostics. We summarized here the characteristics of many functionalized nanodevices designed to counteract the main neoplastic hallmark features of BC, from sustaining proliferation and evading anti-growth signaling and resisting programmed cell death to inducing angiogenesis, activating invasion and metastasis, preventing genomic instability, avoiding immune destruction and deregulating autophagy. Most of these nanorobots function as targeted and self-propelled smart nano-carriers or nano-drug delivery systems (nano-DDSs), enhancing the efficiency and safety of chemo-, radio- or photodynamic therapy, or the current imagistic techniques used in BC diagnosis. Most of these nanorobots have been tested in vitro, using various BC cell lines, as well as in vivo, mainly based on mice models. We are still waiting for nanorobots that are low-cost, as well as for a wider transition of these favorable effects from laboratory to clinical practice. Full article
(This article belongs to the Special Issue The Interplay among Biomolecules and Nanomaterials)
17 pages, 5450 KiB  
Article
Saliva as a Diagnostic Tool for Early Detection of Exercise-Induced Oxidative Damage in Female Athletes
by Aleksandr N. Ovchinnikov and Antonio Paoli
Biomedicines 2024, 12(5), 1006; https://doi.org/10.3390/biomedicines12051006 (registering DOI) - 02 May 2024
Abstract
Although blood still remains the most commonly utilized medium to detect increased levels of oxidative damage induced by exercise, saliva diagnostics have gained increasing popularity due to their non-invasive nature and athlete-friendly collection process. Given that the contribution of various phases of the [...] Read more.
Although blood still remains the most commonly utilized medium to detect increased levels of oxidative damage induced by exercise, saliva diagnostics have gained increasing popularity due to their non-invasive nature and athlete-friendly collection process. Given that the contribution of various phases of the menstrual cycle to the levels of oxidative damage may differ, the aim of this study was to evaluate an agreement between salivary and plasmatic levels of lipid peroxidation products in female swimmers in both the follicular (F) and luteal (L) phases of the menstrual cycle at rest and following exercise. Twelve well-trained female swimmers aged 19.6 ± 1.1 years old were examined. We measured diene conjugates (DCs), triene conjugates (TCs), and Schiff bases (SBs) in lipids immediately after their extraction from both saliva and blood plasma. All female swimmers were studied two times each, in the two different phases of one menstrual cycle, before and after high-intensity interval exercise (HIIE). Salivary and plasmatic levels of DCs, TCs, and SBs significantly increased post-exercise compared to pre-exercise, in both the F and L phases. A high positive correlation was observed between the concentrations of DCs, TCs, and SBs in the saliva and blood plasma of participants in the F and L phases, both at rest and following HIIE. Ordinary least products regression analysis indicates that there was no proportional and differential bias in the data. The Bland–Altman method also declares that there was no differential bias, since the line of equality was within the 95% confidence interval of the mean difference between salivary and plasmatic levels of DCs, TCs, and SBs in female swimmers, in both the F and L phases, before and after HIIE. There was also no proportional bias in the Bland–Altman plots. Thus, this is the first study to report a high agreement between the quantifications of DCs, TCs, and SBs in the saliva and blood plasma of female swimmers in both the F and L phases, at rest and following HIIE. Full article
(This article belongs to the Topic Oxidative Stress and Inflammation, 2nd Volume)
Show Figures

Graphical abstract

26 pages, 12365 KiB  
Article
Enhanced Torrefied Oil-Palm Biomass as an Alternative Bio-Circular Solid Fuel: Innovative Modeling of Optimal Conditions and Ecoefficiency Analysis
by Attaso Khamwichit, Jannisa Kasawapat, Narongsak Seekao and Wipawee Dechapanya
Energies 2024, 17(9), 2192; https://doi.org/10.3390/en17092192 (registering DOI) - 02 May 2024
Abstract
Energy production from coal combustion is responsible for nearly 40% of global CO2 emissions including SOx and NOx. This study aims to produce solid biomass fuels from oil-palm residues by torrefaction, having a high heating value (HHV) equivalent to [...] Read more.
Energy production from coal combustion is responsible for nearly 40% of global CO2 emissions including SOx and NOx. This study aims to produce solid biomass fuels from oil-palm residues by torrefaction, having a high heating value (HHV) equivalent to fossil coals. The experiments were designed using Design Expert version 13 software to optimize the conditions affecting the fuel characteristics of the torrefied products. The statistical analysis suggested that the optimal conditions to achieve a high HHV and fixed carbon content while retaining the mass yield of biomass mainly depended on the temperature and torrefying time, while the size played a less important role in affecting the properties. The optimal conditions were observed to be at 283 °C (120 min) for EFBs, 301 °C (111 min) for PF, and 285 °C (120 min) for PKSs. The maximum HHV of 5229, 5969, and 5265 kcal/kg were achieved for the torrefied EFBs, PF, and PKSs, respectively. The energy efficiency of torrefied biomass was increased to 1.25–1.35. Ecoefficiency analysis suggested that torrefaction should be carried out at high temperatures with a short torrefying time. This low-cost bio-circular torrefied biomass showed promising fuel characteristics that could be potentially used as an alternative to coals. Full article
Show Figures

Figure 1

15 pages, 4700 KiB  
Article
Development of Virtual Tours for Understanding the Built Environment of an Educational Building
by Simon Li, Winson Say and Sumiran Rao
Buildings 2024, 14(5), 1291; https://doi.org/10.3390/buildings14051291 (registering DOI) - 02 May 2024
Abstract
Though we spend a significant amount of time in indoor and built environments as general occupants of residential or commercial spaces, we do not necessarily know how the heating, cooling, and ventilation services work in our occupied spaces. As the mechanical systems of [...] Read more.
Though we spend a significant amount of time in indoor and built environments as general occupants of residential or commercial spaces, we do not necessarily know how the heating, cooling, and ventilation services work in our occupied spaces. As the mechanical systems of buildings become more complex for energy saving and better indoor air quality, it is beneficial for occupants to learn more their built environment so that they can cooperate effectively for the building’s performance. In this context, the purpose of this research is to develop and evaluate how virtual reality (VR) technology can support occupants in understanding their built environment. An educational building on campus was selected for the development as it provides familiar spaces for potential participants in this research. This research was carried out in two stages. In Stage One, we, as researchers in mechanical engineering, explored the workflow for VR development and developed VR tours for four spaces: a classroom, an auditorium, a conference room, and a mechanical room. In Stage Two, we conducted a survey study to examine the VR experience from the perspective of users. In this survey study, we recruited 34 participants from engineering students/graduates, industry participants, and a sustainability group. The participants generally indicated a positive experience with the VR tours, although the quiz scores on the VR content were weak. From our reflection, we consider that positive and effective VR experiences for the education of the built environment require collaboration from three domains: (1) mechanical systems of buildings, (2) VR technology, and (3) pedagogy. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

25 pages, 7081 KiB  
Article
Phosphate Removal Efficiency and Life Cycle Assessment of Different Anode Materials in Electrocoagulation Treatment of Wastewater
by Guangpu Li, Bin Zheng, Wenqing Zhang, Qiaona Liu, Mingzheng Li and Haibing Zhang
Sustainability 2024, 16(9), 3836; https://doi.org/10.3390/su16093836 (registering DOI) - 02 May 2024
Abstract
The excessive discharge of phosphorus-containing wastewater contributes to eutrophication, posing a serious threat to aquatic ecosystems. Therefore, methods such as electrocoagulation should be utilized to remove phosphorus from wastewater prior to discharging it into a water body. In this study, we aimed to [...] Read more.
The excessive discharge of phosphorus-containing wastewater contributes to eutrophication, posing a serious threat to aquatic ecosystems. Therefore, methods such as electrocoagulation should be utilized to remove phosphorus from wastewater prior to discharging it into a water body. In this study, we aimed to determine the effectiveness of electrocoagulation in treating simulated phosphorus-containing wastewater under different parameters, including anode material (aluminum, iron, and magnesium), electrode distance (ED) (1, 2.5, and 4.5 cm), pH (3, 6, and 9), and current density (CD) (3, 6, and 9 mA/cm2). Additionally, three models of phosphate removal, the pseudo-first-order (PFO), pseudo-second-order (PSO), and Behnajady–Modirshahla–Ghanbery (BMG) models, were used to simulate the relationship between phosphate concentration and time in the electrocoagulation process using the three metals for phosphate removal. The experimental results showed that the aluminum system had the highest removal efficiency (90%) when energized for 20 min under a CD of 3 mA/cm2, followed by those of the iron (80%) and magnesium (35%) systems. Furthermore, a life cycle assessment (LCA) showed that the aluminum electrode system had a smaller environmental impact than the iron and magnesium electrode systems. Therefore, the aluminum electrode system is suitable for phosphorus removal from wastewater. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop