The 2023 MDPI Annual Report has
been released!
 
14 pages, 5725 KiB  
Article
Coupled Mode Design of Low-Loss Electromechanical Phase Shifters
by Nathnael S. Abebe, Sunil Pai, Rebecca L. Hwang, Payton Broaddus, Yu Miao and Olav Solgaard
Micro 2024, 4(2), 334-347; https://doi.org/10.3390/micro4020021 (registering DOI) - 06 May 2024
Abstract
Micro-electromechanical systems (MEMS) have the potential to provide low-power phase shifting in silicon photonics, but techniques for designing low-loss devices are necessary for adoption of the technology. Based on coupled mode theory (CMT), we derive analytical expressions relating the loss and, in particular, [...] Read more.
Micro-electromechanical systems (MEMS) have the potential to provide low-power phase shifting in silicon photonics, but techniques for designing low-loss devices are necessary for adoption of the technology. Based on coupled mode theory (CMT), we derive analytical expressions relating the loss and, in particular, the phase-dependent loss, to the geometry of the MEMS phase shifters. The analytical model explains the loss mechanisms of MEMS phase shifters and enables simple optimization procedures. Based on that insight, we propose phase shifter geometries that minimize coupling power out of the waveguide. Minimization of the loss is based on mode orthogonality of a waveguide and phase shifter modes. We numerically model such geometries for a silicon nitride MEMS phase shifter over a silicon nitride waveguide, predicting less than −1.08 dB loss over a 2π range and −0.026 dB loss when optimized for a π range. We demonstrate this design framework with a custom silicon nitride process and achieve −0.48 dB insertion loss and less than 0.05 dB transmission variation over a π phase shift. Our work demonstrates the strength of the coupled mode approach for the design and optimization of MEMS phase shifters. Full article
Show Figures

Figure 1

18 pages, 10693 KiB  
Article
Mesenteric Lymphatic B Cells Migrate to the Intestine and Aggravate DSS-Induced Colitis via the CXCR5–CXCL13 Axis
by Yu Zhang, Zhe Wu, Qinghe Zhao, Yaming Liu, Qing Huang, Menglei Zhang, Shuolei Li, Di Wang, Na Li, Yujing Chi and Yulan Liu
Biology 2024, 13(5), 322; https://doi.org/10.3390/biology13050322 (registering DOI) - 06 May 2024
Abstract
The pathogenesis of inflammatory bowel disease (IBD) is still unknown. Mesenteric lymphatics (MLs), which are closely related to the intestine in both anatomy and physiology, have been suggested to be involved in IBD. In the present study, we aim to investigate the effects [...] Read more.
The pathogenesis of inflammatory bowel disease (IBD) is still unknown. Mesenteric lymphatics (MLs), which are closely related to the intestine in both anatomy and physiology, have been suggested to be involved in IBD. In the present study, we aim to investigate the effects of ML immune cells on IBD and explore the potential associated mechanisms. Acute colitis was induced in rats using dextran sulfate sodium salt (DSS). Mesenteric lymphangiogenesis, ML stenosis, and dilation were observed, with an increased proportion of MLB cells in DSS-induced colitis rats. The adoptive transfer of B cells isolated from ML (MLB) was employed to investigate their effects on colitis. MLB cells derived from DSS-induced colitis rats exhibited a higher propensity to migrate to the intestine. The proportion of colonic T cells was altered, along with the aggravated colitis induced by the adoptive transfer of MLB cells derived from DSS-induced colitis rats. RNA sequencing revealed increased Cxcr5 expression in MLB cells from colitis rats, while real-time PCR indicated an upregulation of its ligand Cxcl13 in the colon of colitis rats. These findings suggest that MLB cells may migrate to the intestine and aggravate colitis. In summary, colonic T cells respond to MLB cells from colitis rats, and MLB cells aggravate DSS-induced colitis via the CXCR5–CXCL13 axis. Full article
(This article belongs to the Special Issue Gut Immunity, Inflammation, and Allergy)
Show Figures

Figure 1

17 pages, 1083 KiB  
Article
Study on the Influence of Host–Guest Interaction on Tourists’ Pro-Environment Behavior: Evidence from Taishan National Forest Park in China
by Feifei Lu, Bingnan Wang, Juan Bi and Weiya Guo
Forests 2024, 15(5), 813; https://doi.org/10.3390/f15050813 (registering DOI) - 06 May 2024
Abstract
This study explores the influence of host–guest interaction on tourists’ pro-environment behavior. On the one hand, the experience attribute of host–guest interaction’s influence on tourists’ experiential value is sorted out. On the other hand, the relationship attribute of host–guest interaction’s activation effect on [...] Read more.
This study explores the influence of host–guest interaction on tourists’ pro-environment behavior. On the one hand, the experience attribute of host–guest interaction’s influence on tourists’ experiential value is sorted out. On the other hand, the relationship attribute of host–guest interaction’s activation effect on tourists’ personal norms is identified. Based on social exchange theory and normative activation theory, a structural equation model was established to depict the transmission mechanism from host–guest interaction to tourists’ pro-environment behavior. The data were collected from tourists in Taishan National Forest Park (n = 499). The results indicated that host–guest interaction quality activated tourists’ personal norms through consequence awareness, thus promoting tourists’ pro-environment behavior. Meanwhile, the quality of host–guest interaction positively influenced tourists’ pro-environment behavior through emotional experience value. Host–guest interaction quantity promoted tourists’ pro-environment behavior by activating personal norms through responsibility ascription. In addition, although frequent host–guest interactions can enhance the social experience and functional experience value of tourists, the latter two cannot stimulate tourists’ pro-environmental behavior. This study provides practical implications for promoting the sustainable development of national forest parks. Full article
(This article belongs to the Special Issue Economy and Sustainability of Forest Natural Resources)
Show Figures

Figure 1

2 pages, 124 KiB  
Editorial
Pediatric Respiratory Viral Infection
by Stacy L. S. Yam, Joan Marie Javillo Baguio and Renee W. Y. Chan
Viruses 2024, 16(5), 733; https://doi.org/10.3390/v16050733 (registering DOI) - 06 May 2024
Abstract
Reflecting on this Special Issue dedicated to pediatric respiratory viruses, it is evident that the shadow cast by the global SARS-CoV-2 pandemic has profoundly impacted individuals of all ages and backgrounds, neonates and school-aged children being vulnerable cohorts resulting from the evolving immunological [...] Read more.
Reflecting on this Special Issue dedicated to pediatric respiratory viruses, it is evident that the shadow cast by the global SARS-CoV-2 pandemic has profoundly impacted individuals of all ages and backgrounds, neonates and school-aged children being vulnerable cohorts resulting from the evolving immunological profiles and limited exposures to immunity-building experienced during this unprecedented era [...] Full article
(This article belongs to the Special Issue Pediatric Respiratory Viral Infection)
18 pages, 6106 KiB  
Article
Numerical Modeling and Performance Evaluation of Carbon Fiber-Reinforced Polymer-Strengthened Concrete Culverts against Water-Induced Corrosion
by Hafiz Ahmed Waqas, Alireza Bahrami, Fayiz Amin, Mehran Sahil and Muhammad Saud Khan
Infrastructures 2024, 9(5), 82; https://doi.org/10.3390/infrastructures9050082 (registering DOI) - 06 May 2024
Abstract
Culverts fulfill the vital function of safely channeling water beneath railway tracks, highways, and overpasses. They serve various purposes, including facilitating drainage in areas such as watercourses, drainage zones, and regions with restricted ground-bearing capacity. Precast reinforced concrete (RC) box culverts are a [...] Read more.
Culverts fulfill the vital function of safely channeling water beneath railway tracks, highways, and overpasses. They serve various purposes, including facilitating drainage in areas such as watercourses, drainage zones, and regions with restricted ground-bearing capacity. Precast reinforced concrete (RC) box culverts are a popular choice because they are strong, durable, rigid, and economical. However, culverts are prone to corrosion due to exposure to a range of environmental factors and aggressive chemicals. Therefore, enhancing the design and construction of this crucial infrastructure is imperative to effectively combat corrosion and to adhere to modern standards of reliability and affordability. In this study, carbon fiber-reinforced polymer (CFRP) was used to strengthen corroded culverts, with promising potential to improve safety and longevity in these structures. This study compared the behavior of corroded RC box culverts to CFRP-strengthened ones using the finite element method (FEM). It explored the impact of varying the damage thicknesses owing to corrosion, ranging from 0 mm to 20 mm, on the structural performance of the box culverts. The results showed that the CFRP model exhibited a substantial 25% increase in the capacity and reduced the damage compared to the reference model. Moreover, a parametric study was conducted for establishing a cost-effective design, in which numerous CFRP strip configurations were examined for a damaged-culvert model. The results indicated that a complete CFRP sheet was most effective for the maximum design capacity and repair effectiveness. The study’s outcomes provide valuable insights for professionals engaged in enhancing the strength of box culverts, aiming to increase the capacity, enhance the stability, and strengthen corroded culverts. Full article
Show Figures

Figure 1

22 pages, 6102 KiB  
Article
Ethnomedicinal Study and Evaluation of the Anxiolytic-like and Diuretic Effects of the Orchid Stanhopea tigrina Bateman ex Lindl—(Orchidaceae)
by Rocío del Carmen Díaz-Torres, Eunice Yáñez-Barrientos, José Ángel Montes-Rocha, David Jeremías Morales-Tirado, Clara Alba-Betancourt, Deisy Gasca-Martínez, Maria L. Gonzalez-Rivera, María del Carmen Juárez-Vázquez, Martha Alicia Deveze-Álvarez, Mario Alberto Isiordia-Espinoza, Candy Carranza-Álvarez and Angel Josabad Alonso-Castro
Pharmaceuticals 2024, 17(5), 588; https://doi.org/10.3390/ph17050588 (registering DOI) - 06 May 2024
Abstract
Stanhopea tigrina Bateman ex Lindl. (Orchidaceae) is an orchid endemic to Mexico, known as “Calavera” or “calaverita”, in the Huasteca Potosina (central region of Mexico). This plant species is used for the folk treatment of mental disorders and urological kidney disorders, according to [...] Read more.
Stanhopea tigrina Bateman ex Lindl. (Orchidaceae) is an orchid endemic to Mexico, known as “Calavera” or “calaverita”, in the Huasteca Potosina (central region of Mexico). This plant species is used for the folk treatment of mental disorders and urological kidney disorders, according to the ethnomedicinal information obtained in this study. Ethanolic extracts of leaves (HE) and pseudobulb (PE) were obtained by microwave-assisted extraction (MAE). Gas Chromatography coupled with Mass Spectrometry (GC-MS) was used to carry out the chemical characterization of HE and PE. The pharmacological effects (antioxidant, diuretic, anxiolytic, locomotor, hypnotic, and sedative) of HE and PE were evaluated. The possible mechanism of action of the anxiolytic-like activity induced by HE was assessed using inhibitors of the GABAergic, adrenergic, and serotonergic systems. The possible mechanism of the diuretic action of HE was assessed using prostaglandin inhibitory antagonists and nitric oxide synthase (NOS) blockers. HE at 50 and 100 mg/kg exerted anxiolytic-like activity without inducing hypnosis or sedation. Flumazenil, prazosin, and ketanserin inhibited the anxiolytic-like activity shown by HE, which suggests the participation of GABA, α1-adrenergic receptors, and 5-HT2 receptors, respectively. The diuretic effect was reversed by the non-selective NOS inhibitor L-NAME, which caused the reduction in nitric oxide (NO). These results demonstrate that the ethanolic extract of S. tigrina leaves exhibited anxiolytic-like activity and diuretic effects without inducing hypnosis or sedation. This work validates the medicinal uses of this orchid species. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

19 pages, 2283 KiB  
Article
Sustainability Indicators for the Environmental Impact Assessment of Plant Protection Products Use in Moroccan Vineyards
by Faiçal Aoujil, Vassilis Litskas, Hiba Yahyaoui, Nadia El Allaoui, Abdellatif Benbouazza, Aziz Aziz, Majida Hafidi and Khaoula Habbadi
Horticulturae 2024, 10(5), 473; https://doi.org/10.3390/horticulturae10050473 (registering DOI) - 06 May 2024
Abstract
The Sebou River Basin is vital for Moroccan agriculture, particularly in terms of producing industrial crops, fruits, vegetables, and olive oil. It is especially significant in viticulture, accounting for 80% and 60% of the national production area for wine and table grapes, respectively. [...] Read more.
The Sebou River Basin is vital for Moroccan agriculture, particularly in terms of producing industrial crops, fruits, vegetables, and olive oil. It is especially significant in viticulture, accounting for 80% and 60% of the national production area for wine and table grapes, respectively. However, the prevalence of diseases and pests requires extensive pesticide application in vineyards. This study aims to assess the impact of pesticides used in vineyards on the environment, human health and their associated sustainability. Agro-environmental indicators were evaluated across 30 vineyards covering 1197 hectares. Results show an average treatment frequency of 24.05 applications per growing cycle, the highest among grape-producing countries, with 77.94% being fungicides. The Quantity of Active Substances Indicator (QASI) reveals a high pesticide application rate of 44.60 Kg a.i./ha. Over 50% of chemicals are classified as “hazardous” based on the Environmental Impact Quotient (EIQ). A Pesticide Environmental Risk Indicator model (PERI) identifies three active ingredients with a high Environmental Risk Score (>5). Life Cycle Assessment (LCA) reveals that copper sulfate has significant environmental impacts compared to Mancozeb and sulfur. These findings highlight the extensive use of pesticides in vineyards, posing challenges to long-term sustainable agriculture due to associated environmental and health risks. Full article
(This article belongs to the Section Viticulture)
Show Figures

Figure 1

14 pages, 5718 KiB  
Article
Yogurt Alleviates Cyclophosphamide-Induced Immunosuppression in Mice through D-Lactate
by Xinru Du, Yongheng Yan, Yufeng Dai and Ruijie Xu
Nutrients 2024, 16(9), 1395; https://doi.org/10.3390/nu16091395 (registering DOI) - 06 May 2024
Abstract
Numerous studies have investigated the immunomodulatory effects of yogurt, but the underlying mechanism remained elusive. This study aimed to elucidate the alleviating properties of yogurt on immunosuppression and proposed the underlying mechanism was related to the metabolite D-lactate. In the healthy mice, we [...] Read more.
Numerous studies have investigated the immunomodulatory effects of yogurt, but the underlying mechanism remained elusive. This study aimed to elucidate the alleviating properties of yogurt on immunosuppression and proposed the underlying mechanism was related to the metabolite D-lactate. In the healthy mice, we validated the safety of daily yogurt consumption (600 μL) or D-lactate (300 mg/kg). In immunosuppressed mice induced by cyclophosphamide (CTX), we evaluated the immune regulation of yogurt and D-lactate. The result showed that yogurt restored body weight, boosted immune organ index, repaired splenic tissue, recovered the severity of delayed-type hypersensitivity reactions and increased serum cytokines (IgA, IgG, IL-6, IFN-γ). Additionally, yogurt enhanced intestinal immune function by restoring the intestinal barrier and upregulating the abundance of Bifidobacterium and Lactobacillus. Further studies showed that D-lactate alleviated immunosuppression in mice mainly by promoting cellular immunity. D-lactate recovered body weight and organ development, elevated serum cytokines (IgA, IgG, IL-6, IFN-γ), enhanced splenic lymphocyte proliferation and increased the mRNA level of T-bet in splenic lymphocyte to bolster Th1 differentiation. Finally, CTX is a chemotherapeutic drug, thus, the application of yogurt and D-lactate in the tumor-bearing mouse model was initially explored. The results showed that both yogurt (600 μL) and D-lactate (300 mg/kg) reduced cyclophosphamide-induced immunosuppression without promoting tumor growth. Overall, this study evaluated the safety, immune efficacy and applicability of yogurt and D-lactate in regulating immunosuppression. It emphasized the potential of yogurt as a functional food for immune regulation, with D-lactate playing a crucial role in its immunomodulatory effects. Full article
(This article belongs to the Special Issue Dietary Habits and Metabolic Health)
Show Figures

Figure 1

13 pages, 2355 KiB  
Article
Expression of G2019S LRRK2 in Rat Primary Astrocytes Mediates Neurotoxicity and Alters the Dopamine Synthesis Pathway in N27 Cells via Astrocytic Proinflammatory Cytokines and Neurotrophic Factors
by Dong Hwan Ho, Hyejung Kim, Daleum Nam, Mi Kyoung Seo, Sung Woo Park and Ilhong Son
Curr. Issues Mol. Biol. 2024, 46(5), 4324-4336; https://doi.org/10.3390/cimb46050263 (registering DOI) - 06 May 2024
Abstract
Astrocytes in the brain contribute to various essential functions, including maintenance of the neuronal framework, survival, communication, metabolic processes, and neurotransmitter levels. Leucine-rich repeat kinase 2 (LRRK2) is associated with the pathogenesis of Parkinson’s disease (PD). LRRK2 is expressed in neurons, microglia, and [...] Read more.
Astrocytes in the brain contribute to various essential functions, including maintenance of the neuronal framework, survival, communication, metabolic processes, and neurotransmitter levels. Leucine-rich repeat kinase 2 (LRRK2) is associated with the pathogenesis of Parkinson’s disease (PD). LRRK2 is expressed in neurons, microglia, and astrocytes and plays diverse roles in these cell types. We aimed to determine the effects of mutant human G2019S-LRRK2 (GS-hLRRK2) in rat primary astrocytes (rASTROs). Transfection with GS-hLRRK2 significantly decreased cell viability compared to transfection with the vector and wild-type human LRRK2 (WT-hLRRK2). GS-hLRRK2 expression significantly reduced the levels of nerve growth factor and increased the levels of proinflammatory cytokines (interleukin-1β and tumor necrosis factor α) compared to the vector and WT-hLRRK2 expression. Furthermore, GS-hLRRK2 expression in rASTROs promoted astrogliosis, which was characterized by increased expression of glial fibrillary acidic protein and vimentin. Treatment with the conditioned medium of G2019S LRRK2-expressing rASTROs decreased N27 cell viability compared to treatment with that of WT-hLRRK2-expressing rASTROs. Consequently, the regulation of the dopamine synthesis pathway was affected in N27 cells, thereby leading to altered levels of tyrosine hydroxylase, dopamine transporter, Nurr1, and dopamine release. Overall, the G2019S LRRK2 mutation disrupted astrocyte function, thereby aggravating PD progression. Full article
(This article belongs to the Special Issue Advanced Research in Neuroinflammation)
Show Figures

Figure 1

13 pages, 2018 KiB  
Article
Digital Mass Hysteria during Pandemic? A Study of Twitter Communication Patterns in the US during the Stages of COVID-19 Vaccination
by Dohyo Jeong, Jessi Hanson-DeFusco, Dohyeong Kim and Chang-Kil Lee
Behav. Sci. 2024, 14(5), 389; https://doi.org/10.3390/bs14050389 (registering DOI) - 06 May 2024
Abstract
This study examined the public’s sentiments about vaccines by analyzing Twitter data during the CDC’s vaccination management planning stage in the United States. Sentiment scores were assigned to each tweet using a sentiment dictionary and the sentiment changes were analyzed over 52 weeks [...] Read more.
This study examined the public’s sentiments about vaccines by analyzing Twitter data during the CDC’s vaccination management planning stage in the United States. Sentiment scores were assigned to each tweet using a sentiment dictionary and the sentiment changes were analyzed over 52 weeks from November 2020 to November 2021. An interrupted time series model was used to analyze the difference in sentiment, which revealed that there was a shift. Initially, overall sentiments were negative but became positive as the stage of general vaccine supply approached. However, negative sentiments sharply rose when the vaccine supply transitioned to the phase of universalization. The results identified two dominant strategic action fields for vaccines providing polarized messages on Twitter and the negative trend was strong for most of the period. The findings highlight the importance of managing strategic action fields on social networks to prevent mass hysteria during vaccine policy implementation. This study stresses the significance of effectively managing strategic action fields on social media platforms to prevent mass hysteria while implementing vaccine policies. Full article
(This article belongs to the Special Issue Social Media as Interpersonal and Masspersonal)
Show Figures

Figure 1

14 pages, 2486 KiB  
Article
Thermomechanical Responses and Energy Conversion Efficiency of a Hybrid Thermoelectric–Piezoelectric Layered Structure
by Zhihe Jin and Jiashi Yang
J. Compos. Sci. 2024, 8(5), 171; https://doi.org/10.3390/jcs8050171 (registering DOI) - 06 May 2024
Abstract
This paper develops a thermoelectric (TE)–piezoelectric (PE) hybrid structure with the PE layer acting as both a support membrane and a sensor for the TE film for microelectronics applications. The TE and PE layers are assumed to be perfectly bonded mechanically and thermally [...] Read more.
This paper develops a thermoelectric (TE)–piezoelectric (PE) hybrid structure with the PE layer acting as both a support membrane and a sensor for the TE film for microelectronics applications. The TE and PE layers are assumed to be perfectly bonded mechanically and thermally but electrically shielded and insulated with each other. The thermo-electro-mechanical responses of the hybrid bilayer under the TE generator operation conditions are obtained, and the influence of the PE layer on the TE energy conversion efficiency is investigated. The numerical results for a Bi2Te3/PZT-5H bilayer structure show that large compressive stresses develop in both the PE and TE layers. With a decrease in the PE layer thickness, the magnitude of the maximum compressive stress in the PE layer increases whereas the maximum magnitude of the stress in the TE layer decreases. The numerical result of the TE energy conversion efficiency shows that increasing the PE layer thickness leads to lower energy conversion efficiencies. A nearly 40% reduction in the peak efficiency is observed with a PE layer of the same thickness as that of the TE layer. These results suggest that design of TE films with supporting/sensing membranes must consider both aspects of energy conversion efficiency and the thermomechanical reliability of both the TE and PE layers. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

10 pages, 655 KiB  
Review
Transformative Landscape of Anesthesia Education: Simulation, AI Integration, and Learner-Centric Reforms: A Narrative Review
by Nobuyasu Komasawa
Anesth. Res. 2024, 1(1), 34-43; https://doi.org/10.3390/anesthres1010005 (registering DOI) - 06 May 2024
Abstract
This article examines the intersection of simulation-based education and the AI revolution in anesthesia medicine. With AI technologies reshaping perioperative management, simulation education faces both challenges and opportunities. The integration of AI into anesthesia practice offers personalized management possibilities, particularly in preoperative assessment [...] Read more.
This article examines the intersection of simulation-based education and the AI revolution in anesthesia medicine. With AI technologies reshaping perioperative management, simulation education faces both challenges and opportunities. The integration of AI into anesthesia practice offers personalized management possibilities, particularly in preoperative assessment and monitoring. However, the ethical, legal, and social implications necessitate careful navigation, emphasizing patient data privacy and accountability. Anesthesiologists must develop non-technical skills, including ethical decision-making and effective AI management, to adapt to the AI era. The experience-based medical education (EXPBME) framework underscores reflective learning and AI literacy acquisition, fostering lifelong learning and adaptation. Learner-centered approaches are pivotal in anesthesia education, promoting active engagement and self-regulated learning. Simulation-based learning, augmented by AI technologies, provides a dynamic platform for technical and non-technical skills development. Ultimately, by prioritizing non-technical skills, embracing learner-centered education, and responsibly leveraging AI technologies, anesthesiologists can contribute to enhanced patient care and safety in the evolving perioperative landscape. Full article
Show Figures

Figure 1

14 pages, 3470 KiB  
Article
A Tape-Wrapping Strategy towards Electrochemical Fabrication of Water-Dispersible Graphene
by Deyue Xiao, Peng He, Haolong Zheng, Shujing Yang, Siwei Yang and Guqiao Ding
Nanomaterials 2024, 14(9), 805; https://doi.org/10.3390/nano14090805 (registering DOI) - 06 May 2024
Abstract
Graphene has achieved mass production via various preparative routes and demonstrated its uniqueness in many application fields for its intrinsically high electron mobility and thermal conductivity. However, graphene faces limitations in assembling macroscopic structures because of its hydrophobic property. Therefore, balancing high crystal [...] Read more.
Graphene has achieved mass production via various preparative routes and demonstrated its uniqueness in many application fields for its intrinsically high electron mobility and thermal conductivity. However, graphene faces limitations in assembling macroscopic structures because of its hydrophobic property. Therefore, balancing high crystal quality and good aqueous dispersibility is of great importance in practical applications. Herein, we propose a tape-wrapping strategy to electrochemically fabricate water-dispersible graphene (w-Gr) with both excellent dispersibility (~4.5 mg/mL, stable over 2 months), and well-preserved crystalline structure. A large production rate (4.5 mg/min, six times faster than previous electrochemical methods), high yield (65.4% ≤5 atomic layers) and good processability are demonstrated. A mechanism investigation indicates that the rational design of anode configuration to ensure proper oxidation, deep exfoliation and unobstructed mass transfer is responsible for the high efficiency of this strategy. This simple yet efficient electrochemical method is expected to promote the scalable preparation and applications of graphene. Full article
Show Figures

Figure 1

17 pages, 4051 KiB  
Article
Microalgae Biomass Production from Rice Husk as Alternative Media Cultivation and Extraction of Phycocyanin Using 3D-Printed Ohmic Heating Reactor
by Gabriela Cid-Ibarra, Rosa M. Rodríguez-Jasso, Gilver Rosero-Chasoy, Ruth Belmares, Juan Carlos Contreras-Esquivel, Samanta Machado-Cepeda, Alejandra Cabello-Galindo and Héctor A. Ruiz
Foods 2024, 13(9), 1421; https://doi.org/10.3390/foods13091421 (registering DOI) - 06 May 2024
Abstract
Phycocyanin is a highly valued pigment present in Spirulina platensis biomass with applications in the food industry in terms of biorefinery concepts; specifically, its antioxidant and antimicrobial capacity are an advantage that could be incorporated into a food matrix. This study aims to [...] Read more.
Phycocyanin is a highly valued pigment present in Spirulina platensis biomass with applications in the food industry in terms of biorefinery concepts; specifically, its antioxidant and antimicrobial capacity are an advantage that could be incorporated into a food matrix. This study aims to use rice husk as an alternative culture medium for S. platensis biomass growth and phycocyanin extraction by ohmic heating processing using a 3D-printed reactor. S. platensis was cultivated in rice husk extract (RHE) from 0–100% (v/v). The highest content of microalgal biomass was 1.75 ± 0.01 g/L, with a specific growth rate of 0.125 ± 0.01 h−1. For the phycocyanin extraction under an ohmic heating process, a 3D-printed reactor was designed and built. To optimize phycocyanin extraction, a central composite rotatable design (CCDR) was evaluated, with three factors: time (min), temperature (°C), and pH. The highest phycocyanin content was 75.80 ± 0.98 mg/g in S. platensis biomass grown with rice husk extract. Ohmic heating is a promising method for rapid phycocyanin extraction, and rice husk as a culture medium is an alternative for the growth of S. platensis biomass in the integration of second- and third-generation biorefineries. Full article
Show Figures

Figure 1

15 pages, 2925 KiB  
Article
Creation and Validation of Patient-Derived Cancer Model Using Peritoneal and Pleural Effusion in Patients with Advanced Ovarian Cancer: An Early Experience
by Ruri Nishie, Tomohito Tanaka, Kensuke Hirosuna, Shunsuke Miyamoto, Hikaru Murakami, Hiromitsu Tsuchihashi, Akihiko Toji, Shoko Ueda, Natsuko Morita, Sousuke Hashida, Atsushi Daimon, Shinichi Terada, Hiroshi Maruoka, Hiromi Konishi, Yuhei Kogata, Kohei Taniguchi, Kazumasa Komura and Masahide Ohmichi
J. Clin. Med. 2024, 13(9), 2718; https://doi.org/10.3390/jcm13092718 (registering DOI) - 06 May 2024
Abstract
Background: The application of personalized cancer treatment based on genetic information and surgical samples has begun in the field of cancer medicine. However, a biopsy may be painful for patients with advanced diseases that do not qualify for surgical resection. Patient-derived xenografts [...] Read more.
Background: The application of personalized cancer treatment based on genetic information and surgical samples has begun in the field of cancer medicine. However, a biopsy may be painful for patients with advanced diseases that do not qualify for surgical resection. Patient-derived xenografts (PDXs) are cancer models in which patient samples are transplanted into immunodeficient mice. PDXs are expected to be useful for personalized medicine. The aim of this study was to establish a PDX from body fluid (PDX-BF), such as peritoneal and pleural effusion samples, to provide personalized medicine without surgery. Methods: PDXs-BF were created from patients with ovarian cancer who had positive cytology findings based on peritoneal and pleural effusion samples. PDXs were also prepared from each primary tumor. The pathological findings based on immunohistochemistry were compared between the primary tumor, PDX, and PDX-BF. Further, genomic profiles and gene expression were evaluated using DNA and RNA sequencing to compare primary tumors, PDXs, and PDX-BF. Results: Among the 15 patients, PDX-BF was established for 8 patients (5 high-grade serous carcinoma, 1 carcinosarcoma, 1 low-grade serous carcinoma, and 1 clear cell carcinoma); the success rate was 53%. Histologically, PDXs-BF have features similar to those of primary tumors and PDXs. In particular, PDXs-BF had similar gene mutations and expression patterns to primary tumors and PDXs. Conclusions: PDX-BF reproduced primary tumors in terms of pathological features and genomic profiles, including gene mutation and expression. Thus, PDX-BF may be a potential alternative to surgical resection for patients with advanced disease. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

18 pages, 1014 KiB  
Review
Advanced Antimicrobial and Anti-Infective Strategies to Manage Peri-Implant Infection: A Narrative Review
by Yihan Li, Cameron A. Stewart and Yoav Finer
Dent. J. 2024, 12(5), 125; https://doi.org/10.3390/dj12050125 (registering DOI) - 06 May 2024
Abstract
Despite reductions in bacterial infection and enhanced success rate, the widespread use of systemic antibiotic prophylaxis in implant dentistry is controversial. This use has contributed to the growing problem of antimicrobial resistance, along with creating significant health and economic burdens. The basic mechanisms [...] Read more.
Despite reductions in bacterial infection and enhanced success rate, the widespread use of systemic antibiotic prophylaxis in implant dentistry is controversial. This use has contributed to the growing problem of antimicrobial resistance, along with creating significant health and economic burdens. The basic mechanisms that cause implant infection can be targeted by new prevention and treatment methods which can also lead to the reduction of systemic antibiotic exposure and its associated adverse effects. This review aims to summarize advanced biomaterial strategies applied to implant components based on anti-pathogenic mechanisms and immune balance mechanisms. It emphasizes that modifying the dental implant surface and regulating the early immune response are promising strategies, which may further prevent or slow the development of peri-implant infection, and subsequent failure. Full article
(This article belongs to the Special Issue Oral Implantology and Rehabilitation)
Show Figures

Graphical abstract

24 pages, 8760 KiB  
Article
Satellite Thermal Management Pump Impeller Design and Optimization
by Valeriu Drăgan, Oana Dumitrescu, Cristian Dobromirescu and Ionuț Florian Popa
Inventions 2024, 9(3), 54; https://doi.org/10.3390/inventions9030054 (registering DOI) - 06 May 2024
Abstract
This study presents a numerical approach to the design and optimization of centrifugal impellers used in the pumps of active thermal control systems of spacecraft. Although launch costs have shrunk in the last decade, the performance requirements, such as efficiency and reliability, have [...] Read more.
This study presents a numerical approach to the design and optimization of centrifugal impellers used in the pumps of active thermal control systems of spacecraft. Although launch costs have shrunk in the last decade, the performance requirements, such as efficiency and reliability, have increased, as such systems are required to work up to 15 years, depending on the mission. To that effect, our paper deals with the first step in this pump design, namely the hydraulic optimization of the impeller. Constructively, this type of impeller allows for certain balancing systems and labyrinth seals to be applied in a more effective way, as well as allowing for additive manufacturing methods to be used—however, details regarding these aspects are beyond the scope of the current paper. By combining empirical formulas, computational fluid dynamics (CFD) analysis, and artificial neural networks (ANNs), the research focuses on achieving high efficiency and fast manufacturing. A series of geometries have been sized and validated using steady-state RANS (Reynolds Averaged Navier-Stokes) simulations, leading to the identification of the most efficient configuration. Subsequent optimization using an ANN resulted in a refined impeller design with notable improvements in hydraulic performance: a 3.55% increase in efficiency and a 7.9% increase in head. Key parameters influencing impeller performance, including blade number, incidence, and backsweep angles, are identified. This approach offers a comprehensive method to address the evolving requirements of space missions and contributes to the advancement of centrifugal pump technology in the space domain. Full article
(This article belongs to the Special Issue New Sights in Fluid Mechanics and Transport Phenomena)
Show Figures

Figure 1

9 pages, 3850 KiB  
Article
Molybdenum-Doped ZnO Thin Films Obtained by Spray Pyrolysis
by Pavlina Bancheva-Koleva, Veselin Zhelev, Plamen Petkov and Tamara Petkova
Materials 2024, 17(9), 2164; https://doi.org/10.3390/ma17092164 (registering DOI) - 06 May 2024
Abstract
A batch of ZnO thin films, pure and doped with molybdenum (up to 2 mol %), were prepared using the spray pyrolysis technique on glass and silicon substrates. The effect of molybdenum concentration on the morphology, structure and optical properties of the films [...] Read more.
A batch of ZnO thin films, pure and doped with molybdenum (up to 2 mol %), were prepared using the spray pyrolysis technique on glass and silicon substrates. The effect of molybdenum concentration on the morphology, structure and optical properties of the films was investigated. X-ray diffraction (XRD) results show a wurtzite polycrystalline crystal structure. The average crystallite size increases from 30 to 80 nm with increasing molybdenum content. Scanning electron microscopy (SEM) images demonstrate a smooth and homogeneous surface with densely spaced nanocrystalline grains. The number of nuclei increases, growing over the entire surface of the substrate with uniform grains, when the molybdenum concentration is increased to 2 mol %. The estimated root mean square (RMS) roughness values for the undoped and doped with 1 mol % and 2 mol % of ZnO thin films, defined by atomic force microscopy (AFM), are 6.12, 23.54 and 23.83 nm, respectively. The increase in Mo concentration contributes to the increase in film transmittance. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

24 pages, 6127 KiB  
Review
Exploring the Role of Apigenin in Neuroinflammation: Insights and Implications
by Karine Charrière, Vincent Schneider, Manon Perrignon-Sommet, Gérard Lizard, Alexandre Benani, Agnès Jacquin-Piques and Anne Vejux
Int. J. Mol. Sci. 2024, 25(9), 5041; https://doi.org/10.3390/ijms25095041 (registering DOI) - 06 May 2024
Abstract
Neuroinflammation, a hallmark of various central nervous system disorders, is often associated with oxidative stress and neuronal or oligodendrocyte cell death. It is therefore very interesting to target neuroinflammation pharmacologically. One therapeutic option is the use of nutraceuticals, particularly apigenin. Apigenin is present [...] Read more.
Neuroinflammation, a hallmark of various central nervous system disorders, is often associated with oxidative stress and neuronal or oligodendrocyte cell death. It is therefore very interesting to target neuroinflammation pharmacologically. One therapeutic option is the use of nutraceuticals, particularly apigenin. Apigenin is present in plants: vegetables (parsley, celery, onions), fruits (oranges), herbs (chamomile, thyme, oregano, basil), and some beverages (tea, beer, and wine). This review explores the potential of apigenin as an anti-inflammatory agent across diverse neurological conditions (multiple sclerosis, Parkinson’s disease, Alzheimer’s disease), cancer, cardiovascular diseases, cognitive and memory disorders, and toxicity related to trace metals and other chemicals. Drawing upon major studies, we summarize apigenin’s multifaceted effects and underlying mechanisms in neuroinflammation. Our review underscores apigenin’s therapeutic promise and calls for further investigation into its clinical applications. Full article
(This article belongs to the Special Issue Molecular Mechanism of Natural Compounds in Neuroinflammation)
Show Figures

Figure 1

32 pages, 2235 KiB  
Article
Importance of Characteristic Features and Their Form for Data Exploration
by Urszula Stańczyk, Beata Zielosko and Grzegorz Baron
Entropy 2024, 26(5), 404; https://doi.org/10.3390/e26050404 (registering DOI) - 06 May 2024
Abstract
The nature of the input features is one of the key factors indicating what kind of tools, methods, or approaches can be used in a knowledge discovery process. Depending on the characteristics of the available attributes, some techniques could lead to unsatisfactory performance [...] Read more.
The nature of the input features is one of the key factors indicating what kind of tools, methods, or approaches can be used in a knowledge discovery process. Depending on the characteristics of the available attributes, some techniques could lead to unsatisfactory performance or even may not proceed at all without additional preprocessing steps. The types of variables and their domains affect performance. Any changes to their form can influence it as well, or even enable some learners. On the other hand, the relevance of features for a task constitutes another element with a noticeable impact on data exploration. The importance of attributes can be estimated through the application of mechanisms belonging to the feature selection and reduction area, such as rankings. In the described research framework, the data form was conditioned on relevance by the proposed procedure of gradual discretisation controlled by a ranking of attributes. Supervised and unsupervised discretisation methods were employed to the datasets from the stylometric domain and the task of binary authorship attribution. For the selected classifiers, extensive tests were performed and they indicated many cases of enhanced prediction for partially discretised datasets. Full article
Show Figures

Figure 1

10 pages, 1045 KiB  
Article
Testosterone Therapy for Late-Onset Hypogonadism: A Clinical, Biological, and Analytical Approach Using Compounded Testosterone 0.5–20% Topical Gels
by Daniel Banov, Bruce Biundo, Kendice Ip, Ashley Shan, Fabiana Banov, Guiyun Song and Maria Carvalho
Pharmaceutics 2024, 16(5), 621; https://doi.org/10.3390/pharmaceutics16050621 (registering DOI) - 06 May 2024
Abstract
Testosterone is integral to men’s sexual and overall health, but there is a gradual decline in the ageing male. The topical administration of testosterone is a valuable option as a supplement (replacement) therapy to alleviate hypogonadal symptoms. The clinical efficacy of a compounded [...] Read more.
Testosterone is integral to men’s sexual and overall health, but there is a gradual decline in the ageing male. The topical administration of testosterone is a valuable option as a supplement (replacement) therapy to alleviate hypogonadal symptoms. The clinical efficacy of a compounded testosterone 5% topical gel was assessed retrospectively in a male patient in his seventies by evaluating the laboratory testing of the serum total testosterone and the results of a validated androgen deficiency questionnaire. After treatment, the patient’s hypogonadal symptoms improved and the serum total testosterone level achieved was considered clinically optimal. The skin permeation of the testosterone topical gel (biological testing) was evaluated in vitro using the Franz finite dose model and human cadaver skin, and it is shown that testosterone can penetrate into and through ex vivo human skin. Testosterone therapy is often prescribed for extended periods, and consequently, it is crucial to determine the beyond-use date of the compounded formulations. The analytical testing involved a valid, stability-indicating assay method for compounded testosterone 0.5% and 20% topical gels. This multidisciplinary study shows evidence supporting topically applied testosterone’s clinical efficacy and the compounded formulations’ extended stability. Personalized, topical testosterone therapy is a promising alternative in current therapeutics for hypogonadal patients. Full article
Show Figures

Figure 1

14 pages, 2687 KiB  
Article
Solidification and Release Characteristics of Heavy Metals in Gypsum from Coal-Fired Power Plants
by Dongxu Wang, Shuzhou Wei, Dawei Zhao, Yongzheng Gu and Jiawei Wang
Energies 2024, 17(9), 2230; https://doi.org/10.3390/en17092230 (registering DOI) - 06 May 2024
Abstract
Heavy metals in flue gas desulfurization (FGD) gypsum from coal-fired power plants are at risk of releaching during the processes of stockpiling and resource utilization. In this study, the effects of organosulfur chelators dithiocarbamate (DTC) and trisodium trithiocyanate-15 (TMT-15) on the solidification characteristics [...] Read more.
Heavy metals in flue gas desulfurization (FGD) gypsum from coal-fired power plants are at risk of releaching during the processes of stockpiling and resource utilization. In this study, the effects of organosulfur chelators dithiocarbamate (DTC) and trisodium trithiocyanate-15 (TMT-15) on the solidification characteristics of heavy metals in desulphurized gypsum under different mass fractions, pH values, water contents and reaction times were investigated. The chemical composition and morphology were analyzed by inductively coupled plasma atomic emission spectrometer (ICP-AES) and scanning electron microscope (SEM). The experiments showed that both DTC and TMT-15 were effective at stabilizing the heavy metals in the FGD gypsum, with more than a 50% curing effect for all the heavy metals except Pb. DTC showed a better stabilization for Pb, Hg, Cu, Zn, and Cr, and TMT-15 showed a better curing effect for Cd. The solidified gypsum had good heavy metal stability in low-water-content environments. Increasing the mass fraction, reaction time, and pH decreased the heavy metal leaching, and the mass fraction had the greatest effect on the total heavy metal leaching concentration, followed by the reaction time and pH value. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

12 pages, 7589 KiB  
Article
The Recovery of Sulfuric Acid in the Presence of Zr(IV) and Hf(IV) by Solvent Extraction with TEHA and Its Mixtures
by Xiaoxi Ding, Jiaxin Jiang, Yafang Zhao, Zaichao Dong, Lingyun Wang and Yang Liu
Processes 2024, 12(5), 940; https://doi.org/10.3390/pr12050940 (registering DOI) - 06 May 2024
Abstract
The recovery of sulfuric acid in the presence of Zr(IV) and Hf(IV) was studied via solvent extraction using TEHA (tri-2-ethylhexyl amine) and its mixtures. A solidification phenomenon occurred in the loaded organic phase when a single TEHA was employed in the extraction of [...] Read more.
The recovery of sulfuric acid in the presence of Zr(IV) and Hf(IV) was studied via solvent extraction using TEHA (tri-2-ethylhexyl amine) and its mixtures. A solidification phenomenon occurred in the loaded organic phase when a single TEHA was employed in the extraction of 1 to 5 M H2SO4. Octanol, decanol and TBP (tri butyl phosphate) were mixed with TEHA, separately, to prevent the solidification of sulfuric-acid-loaded organic. Due to the relatively high aqueous solubility of octanol and decanol, the mixture of TEHA + TBP was selected as the optimal system for the extraction of H2SO4. Simulated counter-current extraction and stripping experiments were performed on the basis of the McCabe–Thiele diagrams, indicating that sulfuric acid could be reduced by TEHA + TBP from 4.2 to around 0.5 M without Zr(IV) and Hf(IV) extraction and recovered by its complete stripping with water. The proposed sulfuric acid recovery step would contribute to the completion of the closed-circuit of the Zr(IV) and Hf(IV) separation process in our previous work and help to re-separate the remaining Zr(IV) and Hf(IV) in the sulfuric acid stripping solution. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop