The 2023 MDPI Annual Report has
been released!
 
13 pages, 3331 KiB  
Article
Dynamic Thermal Response of Multiple Interface Cracks between a Half-Plane and a Coating Layer under General Transient Temperature Loading
by Mahsa Nourazar, Weilin Yang and Zengtao Chen
Materials 2024, 17(11), 2478; https://doi.org/10.3390/ma17112478 (registering DOI) - 21 May 2024
Abstract
This paper explores the thermal behavior of multiple interface cracks situated between a half-plane and a thermal coating layer when subjected to transient thermal loading. The temperature distribution is analyzed using the hyperbolic heat conduction theory. In this model, cracks are represented as [...] Read more.
This paper explores the thermal behavior of multiple interface cracks situated between a half-plane and a thermal coating layer when subjected to transient thermal loading. The temperature distribution is analyzed using the hyperbolic heat conduction theory. In this model, cracks are represented as arrays of thermal dislocations, with densities calculated via Fourier and Laplace transformations. The methodology involves determining the temperature gradient within the uncracked region, and these calculations contribute to formulating a singular integral equation specific to the crack problem. This equation is subsequently utilized to ascertain the dislocation densities at the crack surface, which facilitates the estimation of temperature gradient intensity factors for the interface cracks experiencing transient thermal loading. This paper further explores how the relaxation time, loading parameters, and crack dimensions impact the temperature gradient intensity factors. The results can be used in fracture analysis of structures operating at high temperatures and can also assist in the selection and design of coating materials for specific applications, to minimize the damage caused by temperature loading. Full article
Show Figures

Figure 1

16 pages, 3111 KiB  
Article
AQP3 and AQP5 Modulation in Response to Prolonged Oxidative Stress in Breast Cancer Cell Lines
by Monika Mlinarić, Ivan Lučić, Marko Tomljanović, Ivana Tartaro Bujak, Lidija Milković and Ana Čipak Gašparović
Antioxidants 2024, 13(6), 626; https://doi.org/10.3390/antiox13060626 (registering DOI) - 21 May 2024
Abstract
Aquaporins are membrane pores regulating the transport of water, glycerol, and other small molecules across membranes. Among 13 human aquaporins, six have been shown to transport H2O2 and are therefore called peroxiporins. Peroxiporins are implicated in cancer development and progression, [...] Read more.
Aquaporins are membrane pores regulating the transport of water, glycerol, and other small molecules across membranes. Among 13 human aquaporins, six have been shown to transport H2O2 and are therefore called peroxiporins. Peroxiporins are implicated in cancer development and progression, partly due to their involvement in H2O2 transport. Oxidative stress is linked to breast cancer development but is also a mechanism of action for conventional chemotherapy. The aim of this study is to investigate the effects of prolonged oxidative stress on Aquaporin 3 (AQP3), Aquaporin 5 (AQP5), and signaling pathways in breast cancer cell lines of different malignancies alongside a non-tumorigenic breast cell line. The prolonged oxidative stress caused responses in viability only in the cancer cell lines, while it affected cell migration in the MCF7 cell line. Changes in the localization of NRF2, a transcription factor involved in oxidative stress response, were observed only in the cancer cell lines, and no effects were recorded on its downstream target proteins. Moreover, the prolonged oxidative stress caused changes in AQP3 and AQP5 expression only in the cancer cell lines, in contrast to their non-malignant counterparts. These results suggest peroxiporins are potential therapeutic targets in cancer treatment. However, further research is needed to elucidate their role in the modulation of therapy response, highlighting the importance of research on this topic. Full article
(This article belongs to the Special Issue Oxidative Stress and NRF2 in Health and Disease)
Show Figures

Figure 1

18 pages, 4047 KiB  
Article
Effects of Plant Polysaccharides Combined with Boric Acid on Digestive Function, Immune Function, Harmful Gas and Heavy Metal Contents in Faeces of Fatteners
by Juan Deng, Feng Zhang, Haoran Fan, Yuxuan Zheng, Chunfang Zhao, Man Ren, Erhui Jin and Youfang Gu
Animals 2024, 14(11), 1515; https://doi.org/10.3390/ani14111515 (registering DOI) - 21 May 2024
Abstract
The experiment aimed to investigate the effects of plant polysaccharides combined with boric acid on digestive function, immune function and harmful gas and heavy metal contents in the faeces of fatteners. For this study, 90 healthy crossbred fatteners were selected and randomly divided [...] Read more.
The experiment aimed to investigate the effects of plant polysaccharides combined with boric acid on digestive function, immune function and harmful gas and heavy metal contents in the faeces of fatteners. For this study, 90 healthy crossbred fatteners were selected and randomly divided into five groups: the control group was fed with a basal diet (Con); experimental group I was fed with basal diet + 40 mg/kg boric acid (BA); experimental group II was fed with basal diet + 40 mg/kg boric acid + 400 mg/kg Astragalus polysaccharides (BA+APS); experimental group III was fed with basal diet + 40 mg/kg boric acid + 200 mg/kg Ganoderma lucidum polysaccharides (BA+GLP); and experimental group IV was fed with basal diet + 40 mg/kg boric acid + 500 mg/kg Echinacea polysaccharides (BA+EPS). Compared with Con, the average daily gain (ADG), the trypsin activities in the duodenum and jejunum, the IL-2 levels in the spleen, the T-AOC activities and GSH-Px contents in the lymph node of fattening were increased in the BA group (p < 0.05), but malondialdehyde content in the lymph and spleen, and the contents of NH3, H2S, Hg, Cu, Fe and Zn in the feces and urine were decreased (p < 0.05). Compared with the BA, the ADG, gain-to-feed ratio (G/F), the trypsin and maltase activities in the duodenum and jejunum were increased in the BA+APS (p < 0.05), and the T-SOD activities in the spleen and T-AOC activities in the lymph node were also increased (p < 0.05), but the H2S level was decreased in the feces and urine (p < 0.05). Compared with the BA, the ADG, G/F and the trypsin and maltase activities in the duodenum were increased in the BA+GLP and BA+EPS (p < 0.05), the activities of maltase and lipase in the duodenum of fatteners in the BA+GLP and the activities of trypsin, maltase and lipase in the BA+EPS were increased (p < 0.05). Gathering everything together, our findings reveal that the combined addition of boric acid and plant polysaccharides in the diet of fatteners synergistically improved their growth performance and immune status. That may be achieved by regulating the activity of intestinal digestive enzymes, improving the antioxidant function and then promoting the digestion and absorption of nutrients. Furthermore, the above results reduce the emission of harmful gases and heavy metals in feces and urine. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

21 pages, 1562 KiB  
Review
Advances in Blueberry (Vaccinium spp.) In Vitro Culture: A Review
by Suzanna Correia, Manuela Matos and Fernanda Leal
Horticulturae 2024, 10(6), 533; https://doi.org/10.3390/horticulturae10060533 (registering DOI) - 21 May 2024
Abstract
The demand for Vaccinium fruits has skyrocketed due to their nutritional and medicinal properties, notably their high content of phenolic compounds and excellent sensory evaluation. The use of Vaccinium plants and its components as dietary supplements and health ingredients has been on the [...] Read more.
The demand for Vaccinium fruits has skyrocketed due to their nutritional and medicinal properties, notably their high content of phenolic compounds and excellent sensory evaluation. The use of Vaccinium plants and its components as dietary supplements and health ingredients has been on the rise across the world. The attractive fruits contain a high content of anthocyanins and antioxidant compounds. In some popular and valuable cultivars, the conventional propagation methods, exploiting hard or soft wood cuttings, are inefficient. The demand for nursery plants can be fulfilled by micropropagation. This review aims to explore advances in the in vitro culture of Vaccinium plants, focusing on effective disinfection, optimized culture media, and the role of growth regulators in plant development and multiplication. By providing a controlled environment, micropropagation allows the large-scale production of these plants in a short time, ensuring availability throughout the year. Additionally, this technique offers the advantage of studying the effects of abiotic stresses on plants, as well as facilitating research on the production of relevant metabolites. This review seeks to provide an updated overview of the most promising methods and techniques for micropropagation of Vaccinium, thereby contributing to the ongoing development of the blueberry production industry and derivative products. Full article
Show Figures

Figure 1

19 pages, 1195 KiB  
Article
Impact of Early Surfactant Administration on Ductus Arteriosus Assessed at 24 h in Preterm Neonates Less than 32 Weeks of Gestational Age
by Manuela Cucerea, Mihaela Moscalu, Maria-Livia Ognean, Amalia Fagarasan, Daniela Toma, Raluca Marian, Madalina Anciuc-Crauciuc, Andreea Racean, Zsuzsanna Gall and Marta Simon
Biomedicines 2024, 12(6), 1136; https://doi.org/10.3390/biomedicines12061136 (registering DOI) - 21 May 2024
Abstract
Background and Objectives: The purpose of this study was to investigate whether early surfactant administration affects the status of ductus arteriosus (DA) in preterm infants ≤ 32 weeks of gestational age (GA) within 24 h of birth. Materials and Methods: It is a [...] Read more.
Background and Objectives: The purpose of this study was to investigate whether early surfactant administration affects the status of ductus arteriosus (DA) in preterm infants ≤ 32 weeks of gestational age (GA) within 24 h of birth. Materials and Methods: It is a prospective study conducted from 1 March 2022 to 31 December 2023 in a tertiary academic center. In-born infants ≤ 32 weeks of gestation (n = 88) were enrolled. The study group was further divided into surfactant (n = 44) and non-surfactant (n = 44) subgroups. Results: A total of 76% of the preterm infants who received surfactant therapy (RRR = 0.839) recorded an increase in Kindler score at 24 h of life (1 − RR = 1 − 0.24 = 76%). Surfactant administration was significantly associated with decreased pre-ductal diastolic pressure (29.9 mmHg vs. 34.8 mmHg, p = 0.0231), post-ductal diastolic pressure (28.7 mmHg vs. 32.2 mmHg, p = 0.0178), pre-ductal MAP (41.6 mmHg vs. 46.5 mmHg, p = 0.0210), and post-ductal MAP (41.0 mmHg vs. 45.3 mmHg, p = 0.0336). There were no significant changes in ductus arteriosus parameters at 24 h of life. Conclusions: Early surfactant administration does not affect the status of ductus arteriosus in preterm infants ≤ 32 weeks of gestational age at 24 h of life. Full article
Show Figures

Figure 1

14 pages, 1378 KiB  
Review
New Insight into Intestinal Mast Cells Revealed by Single-Cell RNA Sequencing
by Erisa Putro, Alessia Carnevale, Caterina Marangio, Valerio Fulci, Rossella Paolini and Rosa Molfetta
Int. J. Mol. Sci. 2024, 25(11), 5594; https://doi.org/10.3390/ijms25115594 (registering DOI) - 21 May 2024
Abstract
Mast cells (MCs) are tissue-resident immune cells distributed in all tissues and strategically located close to blood and lymphatic vessels and nerves. Thanks to the expression of a wide array of receptors, MCs act as tissue sentinels, able to detect the presence of [...] Read more.
Mast cells (MCs) are tissue-resident immune cells distributed in all tissues and strategically located close to blood and lymphatic vessels and nerves. Thanks to the expression of a wide array of receptors, MCs act as tissue sentinels, able to detect the presence of bacteria and parasites and to respond to different environmental stimuli. MCs originate from bone marrow (BM) progenitors that enter the circulation and mature in peripheral organs under the influence of microenvironment factors, thus differentiating into heterogeneous tissue-specific subsets. Even though MC activation has been traditionally linked to IgE-mediated allergic reactions, a role for these cells in other pathological conditions including tumor progression has recently emerged. However, several aspects of MC biology remain to be clarified. The advent of single-cell RNA sequencing platforms has provided the opportunity to understand MCs’ origin and differentiation as well as their phenotype and functions within different tissues, including the gut. This review recapitulates how single-cell transcriptomic studies provided insight into MC development as well as into the functional role of intestinal MC subsets in health and disease. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Immunology 2024)
Show Figures

Figure 1

19 pages, 9192 KiB  
Article
Parameter Sensitivity Analysis for Long-Term Nuclide Migration in Granite Barriers Considering a 3D Discrete Fracture–Matrix System
by Yingtao Hu, Wenjie Xu, Ruiqi Chen, Liangtong Zhan, Shenbo He and Zhi Ding
Fractal Fract. 2024, 8(6), 303; https://doi.org/10.3390/fractalfract8060303 (registering DOI) - 21 May 2024
Abstract
As a geological barrier for high-level radioactive waste (HLW) disposal in China, granite is crucial for blocking nuclide migration into the biosphere. However, the high uncertainty associated with the 3D geological system, such as the stochastic discrete fracture networks in granite, significantly impedes [...] Read more.
As a geological barrier for high-level radioactive waste (HLW) disposal in China, granite is crucial for blocking nuclide migration into the biosphere. However, the high uncertainty associated with the 3D geological system, such as the stochastic discrete fracture networks in granite, significantly impedes practical safety assessments of HLW disposal. This study proposes a Monte Carlo simulation (MCS)-based simulation framework for evaluating the long-term barrier performance of nuclide migration in fractured rocks. Statistical data on fracture geometric parameters, on-site hydrogeological conditions, and relevant migration parameters are obtained from a research site in Northwestern China. The simulation models consider the migration of three key nuclides, Cs-135, Se-79, and Zr-93, in fractured granite, with mechanisms including adsorption, advection, diffusion, dispersion, and decay considered as factors. Subsequently, sixty MCS realizations are performed to conduct a sensitivity analysis using the open-source software OpenGeoSys-5 (OGS-5). The results reveal the maximum and minimum values of the nuclide breakthrough time Tt (12,000 and 3600 years, respectively) and the maximum and minimum values of the nuclide breakthrough concentration Cmax (4.26 × 10−4 mSv/a and 2.64 × 10−5 mSv/a, respectively). These significant differences underscore the significant effect of the uncertainty in the discrete fracture network model on long-term barrier performance. After the failure of the waste tank (1000 years), nuclides are estimated to reach the outlet boundary 6480 years later. The individual effective dose in the biosphere initially increases and then decreases, reaching a peak value of Cmax = 4.26 × 10−4 mSv/a around 350,000 years, which is below the critical dose of 0.01 mSv/a. These sensitivity analysis results concerning nuclide migration in discrete fractured granite can enhance the simulation and prediction accuracy for risk evaluation of HLW disposal. Full article
Show Figures

Figure 1

20 pages, 21088 KiB  
Article
The Derivation of Vertical Damping Reduction Factors for the Design and Analysis of Structures Using Acceleration, Velocity, and Displacement Spectra
by Aicha Rouabeh, Baizid Benahmed, Mehmet Palanci and Issam Aouari
Appl. Sci. 2024, 14(11), 4348; https://doi.org/10.3390/app14114348 (registering DOI) - 21 May 2024
Abstract
Damping reduction factors (DRFs) play a vital role in the seismic design of structures. DRFs have been widely studied due to their primary importance to the lateral resistance of structures subjected to earthquakes. On the other hand, devastating earthquakes have occurred all over [...] Read more.
Damping reduction factors (DRFs) play a vital role in the seismic design of structures. DRFs have been widely studied due to their primary importance to the lateral resistance of structures subjected to earthquakes. On the other hand, devastating earthquakes have occurred all over the world, and recently, the Kahramanmaraş earthquakes in Turkey revealed the import of the vertical component of earthquakes and their impact on structures and infrastructures. Considering the importance of this parameter, this paper aims to develop new damping reduction factor (DRF) equations for the acceleration (DRFa), velocity (DRFv), and displacement spectra (DRFd) of the vertical components of earthquakes. For this purpose, 775 real ground motion records were selected from the Pacific Earthquake Engineering Research (PEER) strong motion database, and the vertical elastic response spectra of selected records were computed according to linear dynamic analysis. Taking the 5%-damped vertical response spectra as the target, the vertical spectral damping reduction factors (DRFa, DRFv, and DRFd) were computed for 1%, 3%, 10%, 15%, 20%, 30%, and 40% damping ratios. The effect of the earthquake magnitude, distance, and soil types on the DRFs was investigated. The results indicated that magnitude, distance, and soil type had no particular effect on the trend in the DRFs. Based on the evaluations, extensive statistical analyses were carried out, and new prediction equations were developed according to the nonlinear regression method. The developed equations were then compared to those found in the literature and seismic design codes. The comparisons proved that the proposed DRFa, DRFd, and DRFv models are strongly compatible with real DRFs and show strong robustness compared to existing models. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

15 pages, 2398 KiB  
Article
Improvement in Facial Wrinkles Using Materials Enhancing PPARGC1B Expression Related to Mitochondrial Function
by Hyejin Lee, Sanghyun Ye, Juhyun Kim, Seung-Hyun Jun and Nae-Gyu Kang
Curr. Issues Mol. Biol. 2024, 46(6), 5037-5051; https://doi.org/10.3390/cimb46060302 (registering DOI) - 21 May 2024
Abstract
Skin aging is an unavoidable natural phenomenon caused by intrinsic and extrinsic factors. In modern society, the pursuit of a wrinkle-free and aesthetically appealing face has gained considerable prominence. Numerous studies have aimed at mitigating the appearance of facial wrinkles. Antiaging research focused [...] Read more.
Skin aging is an unavoidable natural phenomenon caused by intrinsic and extrinsic factors. In modern society, the pursuit of a wrinkle-free and aesthetically appealing face has gained considerable prominence. Numerous studies have aimed at mitigating the appearance of facial wrinkles. Antiaging research focused on regulating the function of mitochondria, the main reactive oxygen species-generating organelles, has been extensively conducted. In this study, we investigated the correlation between facial wrinkles and the expression of PPARGC1B, considering the association of this gene with mitochondrial function, to identify its potential as a target for exploring antiaging cosmetic materials. We elucidated the role of PPARGC1B in the skin and identified five bioactive materials that modulated its expression. The effectiveness of these materials was verified through in vitro experiments on human dermal fibroblasts. We prepared cosmetic formulations incorporating the five materials and confirmed their ability to enhance dermal collagen in three-dimensional skin models and reduce facial wrinkles under the eyes and nasolabial fold areas in human subjects. The study findings have significant implications for developing novel antiaging cosmetic formulations by reinforcing mitochondrial functions. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

22 pages, 2213 KiB  
Article
Prospects and Obstacles Associated with Community Solar and Wind Farms in Jordan’s Suburban Areas
by Ziad Hunaiti and Zayed Ali Huneiti
Solar 2024, 4(2), 307-328; https://doi.org/10.3390/solar4020014 (registering DOI) - 21 May 2024
Abstract
Jordan faces significant, immediate challenges of enhancing energy security while mitigating greenhouse gas emissions. One of the most promising approaches to achieve sustainable development, energy security, and environmental conservation is to increase the integration of renewable energy into electricity generation. To this end, [...] Read more.
Jordan faces significant, immediate challenges of enhancing energy security while mitigating greenhouse gas emissions. One of the most promising approaches to achieve sustainable development, energy security, and environmental conservation is to increase the integration of renewable energy into electricity generation. To this end, the Jordanian government aims to expand investments in the green energy sector, with solar and wind energy expected to play a crucial role in meeting energy demands and promoting environmental sustainability. This paper aims to examine the distinct dynamics, challenges, obstacles, and potential solutions related to establishing community solar and wind farms in suburban areas of Jordan. It seeks to highlight the opportunities and barriers influencing the adoption of sustainable energy in the country. Evaluation results from engaging 320 key stakeholders were obtained through a questionnaire, and after comprehensive analysis, it became evident that the benefits and positive aspects of solar and wind farms outweigh their drawbacks and obstacles. These insights can be useful in guiding policies and practices to make renewable energy community projects a reality within Jordan’s suburban areas. Additionally, the findings may serve as a valuable benchmark for other regions facing similar challenges in their pursuit of a sustainable energy future. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting)
Show Figures

Figure 1

12 pages, 247 KiB  
Article
Emotional Dysregulation and Sleep Problems: A Transdiagnostic Approach in Youth
by Gianluca Sesso, Fulvio Guccione, Simone Pisano, Elena Valente, Antonio Narzisi, Stefano Berloffa, Pamela Fantozzi, Valentina Viglione, Annarita Milone and Gabriele Masi
Clin. Pract. 2024, 14(3), 934-945; https://doi.org/10.3390/clinpract14030074 (registering DOI) - 21 May 2024
Abstract
Background: Sleep is a complex phenomenon that affects several aspects of life, including cognitive functioning, emotional regulation, and overall well-being. Sleep disturbances, especially during adolescence, can negatively impact emotional regulation, making it a critical factor in targeting psychopathology. Methods: This study explores the [...] Read more.
Background: Sleep is a complex phenomenon that affects several aspects of life, including cognitive functioning, emotional regulation, and overall well-being. Sleep disturbances, especially during adolescence, can negatively impact emotional regulation, making it a critical factor in targeting psychopathology. Methods: This study explores the interplay between emotional dysregulation (ED) and sleep patterns in a sample of 90 adolescent patients by means of self- and parent-rated clinical measures. Results: Our findings reveal a bidirectional relationship between ED and sleep problems. Adolescents with higher affective instability experience poorer sleep quality, while those with worse sleep quality exhibit higher internalizing problems. Additionally, emotional reactivity is associated with disrupted circadian rhythms. Conclusions: These results emphasize the significance of addressing sleep problems in the context of psychopathology treatment, potentially leading to improved outcomes. Further research is needed to determine the most effective treatment strategies, including nonpharmacological and pharmacological interventions. Understanding the intricate relationship between sleep problems and emotion regulation offers insights for more targeted and effective treatment approaches for youths struggling with ED. Full article
6 pages, 824 KiB  
Case Report
Clinical Case of Mild Tatton–Brown–Rahman Syndrome Caused by a Nonsense Variant in DNMT3A Gene
by Fatima Bostanova, Olga Levchenko, Margarita Sharova and Natalia Semenova
Clin. Pract. 2024, 14(3), 928-933; https://doi.org/10.3390/clinpract14030073 (registering DOI) - 21 May 2024
Abstract
Tatton–Brown–Rahman syndrome is a rare autosomal dominant hereditary disease caused by pathogenic variants in the DNMT3A gene, which is an important participant in epigenetic regulation, especially during embryonic development, and is highly expressed in all tissues. The main features of the syndrome are [...] Read more.
Tatton–Brown–Rahman syndrome is a rare autosomal dominant hereditary disease caused by pathogenic variants in the DNMT3A gene, which is an important participant in epigenetic regulation, especially during embryonic development, and is highly expressed in all tissues. The main features of the syndrome are high growth, macrocephaly, intellectual disability, and facial dysmorphic features. We present a clinical case of Tatton–Brown–Rahman syndrome in a ten-year-old boy with macrocephaly with learning difficulties, progressive eye impairment, and fatigue suspected by a deep learning-based diagnosis assistance system, Face2Gene. The proband underwent whole-exome sequencing, which revealed a recurrent nonsense variant in the 12th exon of the DNMT3A, leading to the formation of a premature stop codon—NM_022552.5:c.1443C>A (p.Tyr481Ter), in a heterozygous state. This variant was not found in parents, confirming its de novo status. The patient case described here contributes to the understanding of the clinical diversity of Tatton–Brown–Raman syndrome with a mild clinical presentation that expands the phenotypic spectrum of the syndrome. We report the first recurrent nonsense variant in the DNMT3A gene, suggesting a mutational hot-spot. Differential diagnoses of this syndrome with Sotos syndrome, Weaver syndrome, and Cowden syndrome, as well as molecular confirmation, are extremely important, since the presence of certain types of pathogenic variants in the DNMT3A gene significantly increases the risk of developing acute myeloid leukemia. Full article
Show Figures

Figure 1

12 pages, 438 KiB  
Systematic Review
Oncologic Outcomes of Interventions to Decrease Allograft Ischemia-Reperfusion Injury within Patients Undergoing Liver Transplantation for Hepatocellular Carcinoma: A Systematic Review
by Matheus D. Faleiro, Zuhaib M. Mir, Yara Azizieh, Stephanie E. Hiebert, Scott M. Livingstone, Mark J. Walsh and Boris L. Gala-Lopez
Curr. Oncol. 2024, 31(6), 2895-2906; https://doi.org/10.3390/curroncol31060221 (registering DOI) - 21 May 2024
Abstract
Ischemia-reperfusion injury (IRI) during liver transplantation has been implicated in the recurrence of hepatocellular carcinoma (HCC). This systematic review aimed to evaluate interventions to reduce IRI during liver transplantation for HCC and their impact on oncologic outcomes. A comprehensive literature search retrieved four [...] Read more.
Ischemia-reperfusion injury (IRI) during liver transplantation has been implicated in the recurrence of hepatocellular carcinoma (HCC). This systematic review aimed to evaluate interventions to reduce IRI during liver transplantation for HCC and their impact on oncologic outcomes. A comprehensive literature search retrieved four retrospective studies involving 938 HCC patients, utilising interventions such as post-operative prostaglandin administration, hypothermic machine perfusion, and normothermic machine perfusion. Overall, treated patients exhibited reduced post-operative hepatocellular injury and inflammation and significantly enhanced recurrence-free survival. Despite these promising results, the impact of these interventions on overall survival remains unclear. This underscores the imperative for further prospective research to comprehensively understand the efficacy of these interventions in HCC patients undergoing transplantation. The findings highlight the potential benefits of these strategies while emphasising the need for continued investigation into their overall impact. Full article
(This article belongs to the Special Issue Recent Advances in Transplant Oncology)
Show Figures

Figure 1

19 pages, 6120 KiB  
Article
Implementation of Numerical Model for Prediction of Temperature Distribution for Metallic-Coated Firefighter Protective Clothing
by Jawad Naeem, Adnan Mazari, Zdenek Kus, Antonin Havelka and Mohamed Abdelkader
Micro 2024, 4(2), 368-386; https://doi.org/10.3390/micro4020023 (registering DOI) - 21 May 2024
Abstract
The aim of this study is to predict the distribution of temperature at various positions on silver-coated firefighter protective clothing when subjected to external radiant heat flux. This will be helpful in the determination of thermal protective performance. Firefighter clothing consists of three [...] Read more.
The aim of this study is to predict the distribution of temperature at various positions on silver-coated firefighter protective clothing when subjected to external radiant heat flux. This will be helpful in the determination of thermal protective performance. Firefighter clothing consists of three layers, i.e., the outer shell, moisture barrier and thermal liner. The outer shell is the exposed surface, which was coated with silver particles through a physical vapor deposition process called magnetron sputtering. Afterwards, these uncoated and silver-coated samples were exposed to radiant heat transmission equipment at 10 kW/m2 as per the ISO 6942 standard. Silver-coated samples displayed better thermal protective performance as the rate of temperature rise in silver-coated samples slowed. Later, a numerical approach was employed, contemplating the impact of metallic coating on the exterior shell. The finite difference method was utilized for solving partial differential equations and the implicit method was employed to discretize the partial differential equations. The numerical model displayed a good prediction of the distribution of temperature at different nodes with respect to time. The comparison of time vs. temperature graphs at different nodes for uncoated and silver-coated samples acquired from numerical solutions showed similar patterns, as witnessed in the experimental results. Full article
(This article belongs to the Section Microscale Materials Science)
Show Figures

Figure 1

21 pages, 3552 KiB  
Article
Localization of a BLE Device Based on Single-Device RSSI and DOA Measurements
by Harsha Kandula, Veena Chidurala, Yuan Cao and Xinrong Li
Network 2024, 4(2), 196-216; https://doi.org/10.3390/network4020010 (registering DOI) - 21 May 2024
Abstract
Indoor location services often use Bluetooth low energy (BLE) devices for their low energy consumption and easy implementation. Applications like device monitoring, ranging, and asset tracking utilize the received signal strength (RSS) of the BLE signal to estimate the proximity of a device [...] Read more.
Indoor location services often use Bluetooth low energy (BLE) devices for their low energy consumption and easy implementation. Applications like device monitoring, ranging, and asset tracking utilize the received signal strength (RSS) of the BLE signal to estimate the proximity of a device from the receiver. However, in multipath environments, RSS-based solutions may not provide an accurate estimation. In such environments, receivers with antenna arrays are used to calculate the difference in time of flight (ToF) and therefore calculate the direction of arrival (DoA) of the Bluetooth signal. Other techniques like triangulation have also been used, such as having multiple transmitters or receivers as a network of sensors. To find a lost item, devices like Tile© use an onboard beeper to notify users of their presence. In this paper, we present a system that uses a single-measurement device and describe the method of measurement to estimate the location of a BLE device using RSS. A BLE device is configured as an Eddystone beacon for periodic transmission of advertising packets with RSS information. We developed a smartphone application to read RSS information from the beacon, designed an algorithm to estimate the DoA, and used the phone’s internal sensors to evaluate the DoA with respect to true north. The proposed measurement method allows for asset tracking by iterative measurements that provide the direction of the beacon and take the user closer at every step. The receiver application is easily deployable on a smartphone, and the algorithm provides direction of the beacon within a 30° range, as suggested by the provided results. Full article
(This article belongs to the Special Issue Innovative Mobile Computing, Communication, and Sensing Systems)
Show Figures

Figure 1

7 pages, 201 KiB  
Article
Quantification of Equivocal Findings in F18-Fluciclovine PET/CT Scans for Biochemical Recurrence of Localized Prostate Cancer
by Daeun Sung, Jessica A. Baumgartner and Jonathan D. Tward
Radiation 2024, 4(2), 142-148; https://doi.org/10.3390/radiation4020011 (registering DOI) - 21 May 2024
Abstract
PET/CT scans are being used to assess patients who have experienced biochemical failure following surgery or radiation therapy for localized prostate cancer. We aimed to evaluate the language used in report impressions and to determine the level of confidence that radiologists have when [...] Read more.
PET/CT scans are being used to assess patients who have experienced biochemical failure following surgery or radiation therapy for localized prostate cancer. We aimed to evaluate the language used in report impressions and to determine the level of confidence that radiologists have when reporting on lesions in various anatomic sites. Between 2015 and 2021, 295 F18-fluciclovine PET/CT scan reports were identified. Thirteen phrases commonly used by radiologists in the report impression section to describe a lesion of interest were identified and categorized into three confidence categories: definitive (positive and negative), likely (consistent with, most likely, favors, probable), and unsure (suspicious for, concerning for, non-specific, conspicuous, compatible with, borderline, unknown). The use of definitive language varied depending on the anatomic site, with the highest use in bone (87.1%) and the lowest use in the intact prostate (34.6%). In patients with a PSA < 0.5, there was the highest degree of definitive certainty (89.2%), whereas in patients with a PSA > 1, there was the least definitive certainty (66.2%). The language used in these reports has not been standardized, with definitive, likely, and unsure findings reported in 68.6%, 9.7%, and 21.7% of scans, respectively. Full article
(This article belongs to the Section Radiation in Medical Imaging)
Show Figures

Graphical abstract

12 pages, 14261 KiB  
Case Report
A Rare Case of Primary Pulmonary Diffuse Large B-Cell Lymphoma Transformed from Marginal Zone Mucosa-Associated Lymphoid Tissue Lymphoma
by Kajetan Kiełbowski, Dawid Kordykiewicz, Janusz Jesionka, Janusz Wójcik, Konrad Ptaszyński, Konstantinos Kostopanagiotou, Piotr Waloszczyk and Małgorzata Edyta Wojtyś
Medicina 2024, 60(6), 840; https://doi.org/10.3390/medicina60060840 (registering DOI) - 21 May 2024
Abstract
Primary pulmonary lymphoma is a rare neoplasm characterized by the proliferation of lymphoid tissue affecting the lungs. The most common subtype is marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT). Rarely, a MALT lymphoma transforms into a diffuse large B-cell lymphoma (DLBCL). Treatment [...] Read more.
Primary pulmonary lymphoma is a rare neoplasm characterized by the proliferation of lymphoid tissue affecting the lungs. The most common subtype is marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT). Rarely, a MALT lymphoma transforms into a diffuse large B-cell lymphoma (DLBCL). Treatment options include chemotherapy, radiotherapy, immunotherapy, and surgery. Here, we describe a patient with a primary pulmonary MALT lymphoma transforming into DLBCL. The purpose of this case report is to raise awareness of the relevant clinical and imaging features and to emphasize the need for a multidisciplinary approach to optimal management. In addition, we screened the PubMed and Embase databases for similar reports with a confirmed presence of transforming lymphoma within the lungs. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

11 pages, 3014 KiB  
Case Report
Periodontal Phenotype Modification of Peri-Implant Soft Tissue Deficiency Using Subepithelial Connective Tissue Grafts and Bone Grafts in the Esthetic Region
by Won-Bae Park, Roberto Gonzalez Yumar, Ji-Young Han and Philip Kang
Medicina 2024, 60(6), 841; https://doi.org/10.3390/medicina60060841 (registering DOI) - 21 May 2024
Abstract
Peri-implant soft tissue deficiency (PSTD) is a significant factor impacting aesthetics, particularly in the anterior zone, where labial bone resorption and thin peri-implant phenotypes are common. The occurrence of a gray color around the implant fixture due to PSTD can be aesthetically concerning [...] Read more.
Peri-implant soft tissue deficiency (PSTD) is a significant factor impacting aesthetics, particularly in the anterior zone, where labial bone resorption and thin peri-implant phenotypes are common. The occurrence of a gray color around the implant fixture due to PSTD can be aesthetically concerning in the esthetic zone. In cases involving natural teeth, autogenous soft tissue grafts such as subepithelial connective tissue grafts (SCTGs), free gingival grafts (FGGs), and coronally advanced flaps (CAFs) are commonly utilized. However, there are limited reports of using bone grafts in conjunction with these techniques for modifying the gingival phenotype around both teeth and implants. In the presented cases where PSTD resulted in visible gray coloration of the implant fixture in the esthetic zone, mechanical and chemical decontamination of the exposed implant surface was performed using a titanium brush and tetracycline (Tc) HCl. Subsequently, to enhance peri-implant mucosa thickness and mask the titanium color, simultaneous SCTG and bone grafting procedures were conducted. Within the limitations of these case reports, successful esthetic outcomes were achieved and maintained without recurrence for 3–6 years following the simultaneous subepithelial connective tissue graft and bone graft procedures. These findings suggest the potential efficacy of this combined approach in addressing PSTD and enhancing aesthetic results around dental implants, though further studies are needed to validate these outcomes. Full article
(This article belongs to the Special Issue Recent Advances in Dental Implants and Oral Health)
Show Figures

Figure 1

7 pages, 217 KiB  
Brief Report
Activity of Cannabidiol on Ex Vivo Amino Acid Fermentation by Bovine Rumen Microbiota
by Jourdan E. Lakes, Brittany E. Davis and Michael D. Flythe
Fermentation 2024, 10(6), 267; https://doi.org/10.3390/fermentation10060267 (registering DOI) - 21 May 2024
Abstract
Amino-acid-fermenting bacteria are wasteful organisms within the rumens of beef cattle that remove dietary amino nitrogen by producing ammonia, which is then excreted renally. There are currently no on-label uses for the control of this microbial guild, but off-label use of broad-spectrum antimicrobials [...] Read more.
Amino-acid-fermenting bacteria are wasteful organisms within the rumens of beef cattle that remove dietary amino nitrogen by producing ammonia, which is then excreted renally. There are currently no on-label uses for the control of this microbial guild, but off-label use of broad-spectrum antimicrobials has shown efficacy, which contributes to antimicrobial resistance. Plant-derived antimicrobials supplemented into the diets of cattle may offer worthwhile alternatives. This study sought to investigate the role of cannabidiol (CBD) as a terpenophenolic antimicrobial. Ex vivo cell suspensions were harvested from the rumen fluid of Angus × Holstein steers in non-selective media with amino acid substrates. The suspensions were treated with five concentrations of CBD (860 μg mL−1–0.086 μg mL−1) and incubated (24 h), after which ammonia production and viable number of cells per substrate and treatment were measured. The data demonstrated a ~10–15 mM reduction in ammonia produced at the highest concentration of CBD and negligible changes in the viable number of amino-acid-fermenting bacteria. CBD does not appear to be a biologically or economically viable terpenophenolic candidate for the control of amino acid fermentation in beef cattle. Full article
(This article belongs to the Special Issue In Vitro Digestibility and Ruminal Fermentation Profile, 2nd Edition)
15 pages, 2823 KiB  
Article
The Role of WO3 Nanoparticles on the Properties of Gelatin Films
by Katia Rubini, Arianna Menichetti, Maria Cristina Cassani, Marco Montalti, Adriana Bigi and Elisa Boanini
Gels 2024, 10(6), 354; https://doi.org/10.3390/gels10060354 (registering DOI) - 21 May 2024
Abstract
Gelatin films are very versatile materials whose properties can be tuned through functionalization with different systems. This work investigates the influence of WO3 nanoparticles on the swelling, barrier, mechanical, and photochromic properties of gelatin films. To this purpose, polyvinylpirrolidone (PVP)-stabilized WO3 [...] Read more.
Gelatin films are very versatile materials whose properties can be tuned through functionalization with different systems. This work investigates the influence of WO3 nanoparticles on the swelling, barrier, mechanical, and photochromic properties of gelatin films. To this purpose, polyvinylpirrolidone (PVP)-stabilized WO3 nanoparticles were loaded on gelatin films at two different pH values, namely, 4 and 7. The values of swelling and solubility of functionalized films displayed a reduction of around 50% in comparison to those of pristine, unloaded films. In agreement, WO3 nanoparticles provoked a significant decrease in water vapor permeability, whereas the decrease in the values of elastic modulus (from about 2.0 to 0.7 MPa) and stress at break (from about 2.5 to 1.4 MPa) can be ascribed to the discontinuity created by the nanoparticles inside the films. The results of differential scanning calorimetry and X-ray diffraction analysis suggest that interaction of PVP with gelatin reduce gelatin renaturation. No significant differences were found between the samples prepared at pH 4 and 7, whereas crosslinking with glutaraldehyde greatly influenced the properties of gelatin films. Moreover, the incorporation of WO3 nanoparticles in gelatin films, especially in the absence of glutaraldehyde, conferred excellent photochromic properties, inducing the appearance of an intense blue color after a few seconds of light irradiation and providing good resistance to several irradiation cycles. Full article
(This article belongs to the Special Issue Physical and Mechanical Properties of Polymer Gels (2nd Edition))
Show Figures

Graphical abstract

44 pages, 15051 KiB  
Review
Recent Advancements in Material Waste Recycling: Conventional, Direct Conversion, and Additive Manufacturing Techniques
by Mandar Golvaskar, Sammy A. Ojo and Manigandan Kannan
Recycling 2024, 9(3), 43; https://doi.org/10.3390/recycling9030043 (registering DOI) - 21 May 2024
Abstract
To improve the microstructure and mechanical properties of fundamental materials including aluminum, stainless steel, superalloys, and titanium alloys, traditional manufacturing techniques have for years been utilized in critical sectors including the aerospace and nuclear industries. However, additive manufacturing has become an efficient and [...] Read more.
To improve the microstructure and mechanical properties of fundamental materials including aluminum, stainless steel, superalloys, and titanium alloys, traditional manufacturing techniques have for years been utilized in critical sectors including the aerospace and nuclear industries. However, additive manufacturing has become an efficient and effective means for fabricating these materials with superior mechanical attributes, making it easier to develop complex parts with relative ease compared to conventional processes. The waste generated in additive manufacturing processes are usually in the form of powders, while that of conventional processes come in the form of chips. The current study focuses on the features and uses of various typical recycling methods for traditional and additive manufacturing that are presently utilized to recycle material waste from both processes. Additionally, the main factors impacting the microstructural features and density of the chip-unified components are discussed. Moreover, it recommends a novel approach for recycling chips, while improving the process of development, bonding quality of the chips, microstructure, overall mechanical properties, and fostering sustainable and environmentally friendly engineering. Full article
Show Figures

Figure 1

12 pages, 3871 KiB  
Article
Multitemporal Dynamics of Fuels in Forest Systems Present in the Colombian Orinoco River Basin Forests
by Walter Garcia-Suabita, Mario José Pacheco and Dolors Armenteras
Fire 2024, 7(6), 171; https://doi.org/10.3390/fire7060171 (registering DOI) - 21 May 2024
Abstract
In Colombia’s Orinoco, wildfires have a profound impact on ecosystem dynamics, particularly affecting savannas and forest–savanna transitions. Human activities have disrupted the natural fire regime, leading to increased wildfire frequency due to changes in land use, deforestation, and climate change. Despite extensive research [...] Read more.
In Colombia’s Orinoco, wildfires have a profound impact on ecosystem dynamics, particularly affecting savannas and forest–savanna transitions. Human activities have disrupted the natural fire regime, leading to increased wildfire frequency due to changes in land use, deforestation, and climate change. Despite extensive research on fire monitoring and prediction, the quantification of fuel accumulation, a critical factor in fire incidence, remains inadequately explored. This study addresses this gap by quantifying dead organic material (detritus) accumulation and identifying influencing factors. Using Brown transects across forests with varying fire intensities, we assessed fuel loads and characterized variables related to detritus accumulation over time. Employing factor analysis, principal components analysis, and a generalized linear mixed model, we determined the effects of various factors. Our findings reveal significant variations in biomass accumulation patterns influenced by factors such as thickness, wet and dry mass, density, gravity, porosity, and moisture content. Additionally, a decrease in fuel load over time was attributed to increased precipitation from three La Niña events. These insights enable more accurate fire predictions and inform targeted forest management strategies for fire prevention and mitigation, thereby enhancing our understanding of fire ecology in the Orinoco basin and guiding effective conservation practices. Full article
Show Figures

Figure 1

13 pages, 1330 KiB  
Article
Promoting Optimal Habitat Availability by Maintaining Fine-Grained Burn Mosaics: A Modelling Study in an Australian Semi-Arid Temperate Woodland
by Ben J. French, Brett P. Murphy and David M. J. S. Bowman
Fire 2024, 7(6), 172; https://doi.org/10.3390/fire7060172 (registering DOI) - 21 May 2024
Abstract
The pyrodiversity–biodiversity (P–B) hypothesis posits that spatiotemporally variable fire regimes increase wildlife habitat diversity, and that the fine-grained mosaics resulting from small patchy fires enhance biodiversity. This logic underpins the patch mosaic burning (PMB) paradigm and reinforces the benefits of Indigenous fire management, [...] Read more.
The pyrodiversity–biodiversity (P–B) hypothesis posits that spatiotemporally variable fire regimes increase wildlife habitat diversity, and that the fine-grained mosaics resulting from small patchy fires enhance biodiversity. This logic underpins the patch mosaic burning (PMB) paradigm and reinforces the benefits of Indigenous fire management, which tends to promote pyrodiversity. However, tests of the P–B hypothesis and PMB paradigm are few. One of the most comprehensive field evaluations—a snapshot study of pre-existing fire mosaics in south-east Australian semi-arid mallee eucalypt woodlands—found little support. To explore the longer-term effects of fire mosaic grain size on habitat availability and biodiversity, we combined published data from the mallee study with a simple fire simulation. We simulated 500 years of landscape burning under different fire sizes. In the resulting mosaics, we assessed the proportional mixture and patch configuration of successional habitat states, then summarised habitat availability through time using a composite index based on the published fire history responses of 22 vertebrate taxa from the mallee study. Small fires formed fine-grained mosaics with a stable habitat mixture and with habitat diversity occurring at fine scales. Large fires formed coarse-grained mosaics with the opposite properties. The fine-grained mosaics maintained optimal habitat availability for vertebrate diversity over 500 years, while the fluctuating habitat mixture in the coarse-grained mosaics was unlikely to maintain maximum vertebrate diversity. Broadly, our results support the P–B hypothesis and justify further field-testing and evaluation of PMB programs to manage both pyrodiversity and biodiversity in the mallee and other flammable landscapes. Full article
(This article belongs to the Special Issue Effects of Fires on Forest Ecosystems)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop