The 2023 MDPI Annual Report has
been released!
 
14 pages, 449 KiB  
Article
Impact of Intermittent Hypoxia Related to Obstructive Sleep Apnoea Syndrome on Low-Grade Inflammation in Hypertensive Patients: Potential Implications for Cardiovascular Risk
by Matthieu Hein, Benjamin Wacquier, Matteo Conenna, Jean-Pol Lanquart and Camille Point
Life 2024, 14(5), 592; https://doi.org/10.3390/life14050592 (registering DOI) - 06 May 2024
Abstract
There is evidence for a particular relationship between low-grade inflammation (LGI) and intermittent hypoxia (IH) related to obstructive sleep apnoea syndrome (OSAS). However, despite the potential deleterious cardiovascular consequences associated with this LGI in hypertensive patients, few studies have investigated the impact of [...] Read more.
There is evidence for a particular relationship between low-grade inflammation (LGI) and intermittent hypoxia (IH) related to obstructive sleep apnoea syndrome (OSAS). However, despite the potential deleterious cardiovascular consequences associated with this LGI in hypertensive patients, few studies have investigated the impact of IH related to OSAS on CRP levels in this subpopulation. In total, 1404 hypertensive patients were selected retrospectively from the Sleep Laboratory database. CRP levels ≥3 mg/L but <10 mg/L were used as cut-offs to identify hypertensive patients with LGI. Logistic regressions were conducted to examine the risk of LGI associated with IH related to OSAS in hypertensive patients. LGI was frequent (33.8%) in hypertensive patients. After adjustment for confounders, multivariate logistic regressions revealed that only moderate to severe OSAS (apnoea–hypopnoea index ≥ 15/h) with high IH (oxygen desaturation index ≥ 15/h) [OR 1.51 (95% CI 1.06–2.14)] was significantly associated with LGI in hypertensive patients (p-value = 0.045). Consistent with our hypothesis, our results demonstrated the existence of a particular subtype of hypertensive patients at high cardiovascular risk characterised by the presence of LGI induced by IH hypoxia related to moderate to severe OSAS, which justifies the establishment of adequate management of this pathology to allow better cardiovascular prevention in this subpopulation. Full article
20 pages, 12165 KiB  
Article
Helping Blind People Grasp: Evaluating a Tactile Bracelet for Remotely Guiding Grasping Movements
by Piper Powell, Florian Pätzold, Milad Rouygari, Marcin Furtak, Silke M. Kärcher and Peter König
Sensors 2024, 24(9), 2949; https://doi.org/10.3390/s24092949 (registering DOI) - 06 May 2024
Abstract
The problem of supporting visually impaired and blind people in meaningful interactions with objects is often neglected. To address this issue, we adapted a tactile belt for enhanced spatial navigation into a bracelet worn on the wrist that allows visually impaired people to [...] Read more.
The problem of supporting visually impaired and blind people in meaningful interactions with objects is often neglected. To address this issue, we adapted a tactile belt for enhanced spatial navigation into a bracelet worn on the wrist that allows visually impaired people to grasp target objects. Participants’ performance in locating and grasping target items when guided using the bracelet, which provides direction commands via vibrotactile signals, was compared to their performance when receiving auditory instructions. While participants were faster with the auditory commands, they also performed well with the bracelet, encouraging future development of this system and similar systems. Full article
(This article belongs to the Section Wearables)
22 pages, 8862 KiB  
Article
Research on Sudden Unbalance Response of Rigid-Elastic-Oil Coupled Ball Bearings
by Yan Li, Yongcun Cui and Sier Deng
Lubricants 2024, 12(5), 161; https://doi.org/10.3390/lubricants12050161 (registering DOI) - 06 May 2024
Abstract
(1) Background: To better understand the dynamic characteristics of a ball bearing with an elastic ring squeeze film damper (ERSFD) under sudden unbalance, a novel dynamic model was established by fully considering the coupling between the ERSFD, bearing outer ring (the journal), rotor, [...] Read more.
(1) Background: To better understand the dynamic characteristics of a ball bearing with an elastic ring squeeze film damper (ERSFD) under sudden unbalance, a novel dynamic model was established by fully considering the coupling between the ERSFD, bearing outer ring (the journal), rotor, and disc (loading bearing); (2) Methods: An improved secant method was developed to determine the initial eccentricity values of the bearing’s outer ring and the disc. The dynamic response of the outer ring under different speed ratios, damping ratios, and mass ratios was solved using the variable-step Runge–Kutta method; (3) Results: In comparison, a low-speed ratio, high damping ratio, and low mass ratio were more conducive to suppressing the bearing vibration. When the imbalance was suddenly introduced, the displacement amplitude of the eccentricity, transmissibility, amplitude–frequency response, and the radius of the outer ring center locus increased; (4) Conclusions: This work provides a reference for further studying the nonlinear vibration of rolling bearings coupled with an ERSFD. Full article
Show Figures

Figure 1

12 pages, 1531 KiB  
Article
Reduced Translocation Confers Paraquat Resistance in Plantago lanceolata
by Vhuthu Ndou, Deon Kotze, Biljana Marjanovic-Painter, Ethel E. Phiri, Petrus J. Pieterse and Molahlehi S. Sonopo
Agronomy 2024, 14(5), 977; https://doi.org/10.3390/agronomy14050977 (registering DOI) - 06 May 2024
Abstract
Ribwort plantain (Plantago lanceolata L.) is a common weed in the winter rainfall region of South Africa. This weed is widespread across vineyards, orchards, and roadsides in the region. The weed has already evolved resistance to glyphosate and paraquat; however, the mechanism [...] Read more.
Ribwort plantain (Plantago lanceolata L.) is a common weed in the winter rainfall region of South Africa. This weed is widespread across vineyards, orchards, and roadsides in the region. The weed has already evolved resistance to glyphosate and paraquat; however, the mechanism of paraquat resistance has not been documented. This study aimed to investigate the resistance mechanisms in this resistant (R) biotype. Dose–response trials conducted with R biotypes from the Robertson area reconfirmed paraquat resistance. Dose–response trials established that the paraquat rate causing 50% mortality (LD50) for the R biotype is three times greater than for the susceptible (S) biotype. To find out how paraquat affected the photosynthetic performance of P. lanceolata, the quantum yield of photosystem II was measured. The photosystem reaction centres of the R biotype recovered 24 h after paraquat treatment. To evaluate paraquat transport in the plant cell, selective transport inhibitors were applied. Plantago lanceolata (S) biotypes had the highest electrolyte leakage after paraquat treatment. A combined radio/UV-HPLC was used for the separation and identification of paraquat and its metabolites. Paraquat degradation was not observed, indicating that metabolism was not a resistance mechanism within the R biotype. To assess leaf absorption and translocation, [14C]-labelled paraquat was applied to fully expanded leaves. There were no significant differences in paraquat absorption. However, paraquat translocation differed significantly across the R and S biotypes, indicating that non-target site resistance through reduced paraquat translocation was the main mechanism of resistance in the R biotype. As the resistance of weed species to post-emergence herbicides continues to increase, achieving sustainable weed management necessitates the implementation of diversified weed control strategies. Full article
Show Figures

Figure 1

19 pages, 11690 KiB  
Article
A Lightweight Remote Sensing Small Target Image Detection Algorithm Based on Improved YOLOv8
by Haijiao Nie, Huanli Pang, Mingyang Ma and Ruikai Zheng
Sensors 2024, 24(9), 2952; https://doi.org/10.3390/s24092952 (registering DOI) - 06 May 2024
Abstract
In response to the challenges posed by small objects in remote sensing images, such as low resolution, complex backgrounds, and severe occlusions, this paper proposes a lightweight improved model based on YOLOv8n. During the detection of small objects, the feature fusion part of [...] Read more.
In response to the challenges posed by small objects in remote sensing images, such as low resolution, complex backgrounds, and severe occlusions, this paper proposes a lightweight improved model based on YOLOv8n. During the detection of small objects, the feature fusion part of the YOLOv8n algorithm retrieves relatively fewer features of small objects from the backbone network compared to large objects, resulting in low detection accuracy for small objects. To address this issue, firstly, this paper adds a dedicated small object detection layer in the feature fusion network to better integrate the features of small objects into the feature fusion part of the model. Secondly, the SSFF module is introduced to facilitate multi-scale feature fusion, enabling the model to capture more gradient paths and further improve accuracy while reducing model parameters. Finally, the HPANet structure is proposed, replacing the Path Aggregation Network with HPANet. Compared to the original YOLOv8n algorithm, the recognition accuracy of [email protected] on the VisDrone data set and the AI-TOD data set has increased by 14.3% and 17.9%, respectively, while the recognition accuracy of [email protected]:0.95 has increased by 17.1% and 19.8%, respectively. The proposed method reduces the parameter count by 33% and the model size by 31.7% compared to the original model. Experimental results demonstrate that the proposed method can quickly and accurately identify small objects in complex backgrounds. Full article
15 pages, 1977 KiB  
Article
Protective Effects of an Oligo-Fucoidan-Based Formula against Osteoarthritis Development via iNOS and COX-2 Suppression following Monosodium Iodoacetate Injection
by Yi-Fen Chiang, Ko-Chieh Huang, Kai-Lee Wang, Yun-Ju Huang, Hsin-Yuan Chen, Mohamed Ali, Tzong-Ming Shieh and Shih-Min Hsia
Mar. Drugs 2024, 22(5), 211; https://doi.org/10.3390/md22050211 (registering DOI) - 06 May 2024
Abstract
Osteoarthritis (OA) is a debilitating joint disorder characterized by cartilage degradation and chronic inflammation, accompanied by high oxidative stress. In this study, we utilized the monosodium iodoacetate (MIA)-induced OA model to investigate the efficacy of oligo-fucoidan-based formula (FF) intervention in mitigating OA progression. [...] Read more.
Osteoarthritis (OA) is a debilitating joint disorder characterized by cartilage degradation and chronic inflammation, accompanied by high oxidative stress. In this study, we utilized the monosodium iodoacetate (MIA)-induced OA model to investigate the efficacy of oligo-fucoidan-based formula (FF) intervention in mitigating OA progression. Through its capacity to alleviate joint bearing function and inflammation, improvements in cartilage integrity following oligo-fucoidan-based formula intervention were observed, highlighting its protective effects against cartilage degeneration and structural damage. Furthermore, the oligo-fucoidan-based formula modulated the p38 signaling pathway, along with downregulating cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, contributing to its beneficial effects. Our study provides valuable insights into targeted interventions for OA management and calls for further clinical investigations to validate these preclinical findings and to explore the translational potential of an oligo-fucoidan-based formula in human OA patients. Full article
(This article belongs to the Special Issue Marine Anti-inflammatory and Antioxidant Agents 3.0)
13 pages, 9098 KiB  
Article
Porous Ruthenium–Tungsten–Zinc Nanocages for Efficient Electrocatalytic Hydrogen Oxidation Reaction in Alkali
by Xiandi Sun, Zhiyuan Cheng, Hang Liu, Siyu Chen and Ya-Rong Zheng
Nanomaterials 2024, 14(9), 808; https://doi.org/10.3390/nano14090808 (registering DOI) - 06 May 2024
Abstract
With the rapid development of anion exchange membrane technology and the availability of high-performance non-noble metal cathode catalysts in alkaline media, the commercialization of anion exchange membrane fuel cells has become feasible. Currently, anode materials for alkaline anion-exchange membrane fuel cells still rely [...] Read more.
With the rapid development of anion exchange membrane technology and the availability of high-performance non-noble metal cathode catalysts in alkaline media, the commercialization of anion exchange membrane fuel cells has become feasible. Currently, anode materials for alkaline anion-exchange membrane fuel cells still rely on platinum-based catalysts, posing a challenge to the development of efficient low-Pt or Pt-free catalysts. Low-cost ruthenium-based anodes are being considered as alternatives to platinum. However, they still suffer from stability issues and strong oxophilicity. Here, we employ a metal–organic framework compound as a template to construct three-dimensional porous ruthenium–tungsten–zinc nanocages via solvothermal and high-temperature pyrolysis methods. The experimental results demonstrate that this porous ruthenium–tungsten–zinc nanocage with an electrochemical surface area of 116 m2 g−1 exhibits excellent catalytic activity for hydrogen oxidation reaction in alkali, with a kinetic density 1.82 times and a mass activity 8.18 times higher than that of commercial Pt/C, and a good catalytic stability, showing no obvious degradation of the current density after continuous operation for 10,000 s. These findings suggest that the developed catalyst holds promise for use in alkaline anion-exchange membrane fuel cells. Full article
Show Figures

Figure 1

29 pages, 8036 KiB  
Article
Random Responses of Shield Tunnel to New Tunnel Undercrossing Considering Spatial Variability of Soil Elastic Modulus
by Xiaolu Gan, Nianwu Liu, Adam Bezuijen and Xiaonan Gong
Appl. Sci. 2024, 14(9), 3949; https://doi.org/10.3390/app14093949 (registering DOI) - 06 May 2024
Abstract
This paper investigates the effect of spatial variability of soil elastic modulus on the longitudinal responses of the existing shield tunnel to the new tunnel undercrossing using a random two-stage analysis method (RTSAM). The Timoshenko–Winkler-based deterministic method considering longitudinal variation in the subgrade [...] Read more.
This paper investigates the effect of spatial variability of soil elastic modulus on the longitudinal responses of the existing shield tunnel to the new tunnel undercrossing using a random two-stage analysis method (RTSAM). The Timoshenko–Winkler-based deterministic method considering longitudinal variation in the subgrade reaction coefficient and the random field of the soil elastic modulus discretized by the Karhunen–Loeve expansion method are combined to establish the RTSAM. Then, the proposed RTSAM is applied to carry out a random analysis based on an actual engineering case. Results show that the increases in the scale of fluctuation and the coefficient of variation of the soil elastic modulus lead to higher variabilities of tunnel responses. A decreasing pillar depth and mean value of the soil elastic modulus and an increasing skew angle strengthen the effect of the spatial variability of the soil elastic modulus on tunnel responses. The variabilities of tunnel responses under the random field of the soil elastic modulus are overestimated by the Euler–Bernoulli beam model. The results of this study provide references for the uncertainty analysis of the new tunneling-induced responses of the existing tunnel under the random field of soil properties. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

54 pages, 1665 KiB  
Review
Potential Role of Dietary Phenolic Compounds in the Prevention and Treatment of Rheumatoid Arthritis: Current Reports
by Ana C. Gonçalves, Sofia Rodrigues, Rafael Fonseca and Luís R. Silva
Pharmaceuticals 2024, 17(5), 590; https://doi.org/10.3390/ph17050590 (registering DOI) - 06 May 2024
Abstract
Rheumatoid arthritis (RA) is a complex illness with both hereditary and environmental components. Globally, in 2019, 18 million people had RA. RA is characterized by persistent inflammation of the synovial membrane that lines the joints, cartilage loss, and bone erosion. Phenolic molecules are [...] Read more.
Rheumatoid arthritis (RA) is a complex illness with both hereditary and environmental components. Globally, in 2019, 18 million people had RA. RA is characterized by persistent inflammation of the synovial membrane that lines the joints, cartilage loss, and bone erosion. Phenolic molecules are the most prevalent secondary metabolites in plants, with a diverse spectrum of biological actions that benefit functional meals and nutraceuticals. These compounds have received a lot of attention recently because they have antioxidant, anti-inflammatory, immunomodulatory, and anti-rheumatoid activity by modulating tumor necrosis factor, mitogen-activated protein kinase, nuclear factor kappa-light-chain-enhancer of activated B cells, and c-Jun N-terminal kinases, as well as other preventative properties. This article discusses dietary polyphenols, their pharmacological properties, and innovative delivery technologies for the treatment of RA, with a focus on their possible biological activities. Nonetheless, commercialization of polyphenols may be achievable only after confirming their safety profile and completing successful clinical trials. Full article
9 pages, 6626 KiB  
Case Report
Dramatic Wound Closing Effect of a Single Application of an iBTA-Induced Autologous Biosheet on Severe Diabetic Foot Ulcers Involving the Heel Area
by Ryuji Higashita, Yasuhide Nakayama, Manami Miyazaki, Yoko Yokawa, Ryosuke Iwai and Marina Funayama-Iwai
Bioengineering 2024, 11(5), 462; https://doi.org/10.3390/bioengineering11050462 (registering DOI) - 06 May 2024
Abstract
Introduction: Chronic wounds caused by diabetes or lower-extremity artery disease are intractable because the wound healing mechanism becomes ineffective due to the poor environment of the wound bed. Biosheets obtained using in-body tissue architecture (iBTA) are collagen-based membranous tissue created within the body [...] Read more.
Introduction: Chronic wounds caused by diabetes or lower-extremity artery disease are intractable because the wound healing mechanism becomes ineffective due to the poor environment of the wound bed. Biosheets obtained using in-body tissue architecture (iBTA) are collagen-based membranous tissue created within the body and which autologously contain various growth factors and somatic stem cells including SSEA4-posituve cells. When applied to a wound, granulation formation can be promoted and epithelialization may even be achieved. Herein, we report our clinical treatment experience with seven cases of intractable diabetic foot ulcers. Cases: Seven patients, from 46 to 93 years old, had large foot ulcers including in the heel area, which were failing to heal with standard wound treatment. Methods: Two or four Biosheet-forming molds were embedded subcutaneously in the chest or abdomen, and after 3 to 6 weeks, the molds were removed. Biosheets that formed inside the mold were obtained and applied directly to the wound surface. Results: In all cases, there were no problems with the mold’s embedding and removal procedures, and Biosheets were formed without any infection or inflammation during the embedding period. The Biosheets were simply applied to the wounds, and in all cases they adhered within one week, did not fall off, and became integrated with the wound surface. Complete wound closure was achieved within 8 weeks in two cases and within 5 months in two cases. One patient was lost due to infective endocarditis from septic colitis. One case required lower leg amputation due to wound recurrence, and one case achieved wound reduction and wound healing in approximately 9 months. Conclusions: Biotubes obtained via iBTA promoted wound healing and were extremely useful for intractable diabetic foot ulcers involving the heel area. Full article
(This article belongs to the Special Issue iBTA Technology for Biomedical Applications)
Show Figures

Graphical abstract

14 pages, 4263 KiB  
Article
Prediction of Potential Suitable Distribution Areas for an Endangered Salamander in China
by Jiacheng Tao, Yifeng Hu, Jianping Jiang, Wanji Yang, Tian Zhao and Shengqi Su
Animals 2024, 14(9), 1390; https://doi.org/10.3390/ani14091390 (registering DOI) - 06 May 2024
Abstract
Climate change has been considered to pose critical threats for wildlife. During the past decade, species distribution models were widely used to assess the effects of climate change on the distribution of species’ suitable habitats. Among all the vertebrates, amphibians are most vulnerable [...] Read more.
Climate change has been considered to pose critical threats for wildlife. During the past decade, species distribution models were widely used to assess the effects of climate change on the distribution of species’ suitable habitats. Among all the vertebrates, amphibians are most vulnerable to climate change. This is especially true for salamanders, which possess some specific traits such as cutaneous respiration and low vagility. The Wushan salamander (Liua shihi) is a threatened and protected salamander in China, with its wild population decreasing continuously. The main objective of this study was to predict the distribution of suitable habitat for L. shihi using the ENMeval parameter-optimized MaxEnt model under current and future climate conditions. Our results showed that precipitation, cloud density, vegetation type, and ultraviolet radiation were the main environmental factors affecting the distribution of L. shihi. Currently, the suitable habitats for L. shihi are mainly concentrated in the Daba Mountains, including northeastern Chongqing and western Hubei Provinces. Under the future climate conditions, the area of suitable habitats increased, which mainly occurred in central Guizhou Province. This study provided important information for the conservation of L. shihi. Future studies can incorporate more species distribution models to better understand the effects of climate change on the distribution of L. shihi. Full article
(This article belongs to the Special Issue Protecting Endangered Species)
Show Figures

Figure 1

16 pages, 8156 KiB  
Article
Interfacing Langmuir–Blodgett and Pickering Emulsions for the Synthesis of 2D Nanostructured Films: Applications in Copper Ion Adsorption
by Andrei Honciuc, Oana-Iuliana Negru and Mirela Honciuc
Nanomaterials 2024, 14(9), 809; https://doi.org/10.3390/nano14090809 (registering DOI) - 06 May 2024
Abstract
This research focuses on developing a 2D thin film comprising a monolayer of silica nanoparticles functionalized with polyethyleneimine (PEI), achieved through a novel integration of Langmuir–Blodgett (L-B) and Pickering emulsion techniques. The primary aim was to create a nanostructured film that exhibits dual [...] Read more.
This research focuses on developing a 2D thin film comprising a monolayer of silica nanoparticles functionalized with polyethyleneimine (PEI), achieved through a novel integration of Langmuir–Blodgett (L-B) and Pickering emulsion techniques. The primary aim was to create a nanostructured film that exhibits dual functionality: iridescence and efficient metal ion adsorption, specifically Cu(II) ions. The methodology combined L-B and Pickering emulsion polymerization to assemble and stabilize a nanoparticle monolayer at an oil/water interface, which was then polymerized under UV radiation to form an asymmetrically structured film. The results demonstrate that the film possesses a high adsorption efficiency for Cu(II) ions, with the enhanced mechanical durability provided by a reinforcing layer of polyvinyl alcohol/glycerol. The advantage of combining L-B and Pickering emulsion technology is the ability to generate 2D films from functional nanoparticle monolayers that are sufficiently sturdy to be deployed in applications. The 2D film’s practical applications in environmental remediation were confirmed through its ability to adsorb and recover Cu(II) ions from aqueous solutions effectively. We thus demonstrate the film’s potential as a versatile tool in water treatment applications owing to its combined photonic and adsorptive properties. This work paves the way for future research on the use of nanoengineered films in environmental and possibly photonic applications focusing on enhancing the film’s structural robustness and exploring its broader applicability to other pollutants and metal ions. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
8 pages, 260 KiB  
Brief Report
Implementation of the Recovery Model and Its Outcomes in Patients with Severe Mental Disorder
by Antonio José Sánchez-Guarnido, María Isabel Ruiz-Granados, José Antonio Garrido-Cervera, Javier Herruzo and Carlos Herruzo
Healthcare 2024, 12(9), 952; https://doi.org/10.3390/healthcare12090952 (registering DOI) - 06 May 2024
Abstract
Background: The recovery model assumes that the patient can experience personal growth even while maintaining symptoms of a mental disorder. In order to achieve this recovery, the practices of professionals must also change. However, in our setting, there are limited data on the [...] Read more.
Background: The recovery model assumes that the patient can experience personal growth even while maintaining symptoms of a mental disorder. In order to achieve this recovery, the practices of professionals must also change. However, in our setting, there are limited data on the implementation of practices based on the recovery model and their effect on personal recovery. Objective: To describe the association between professionals’ practices and patients’ personal recovery. Methods: An observational and cross-sectional study in which the Recovery Self-Assessment (RSA) was used to assess the degree of implementation of the different practices and the Recovery Assessment Scale (RAS) was used to assess the personal recovery of 307 patients with severe mental disorders. Results: Patients attended by professionals who followed the recovery model obtained a greater personal recovery (p < 0.001, d = 1.10). The dimension associated with greater recovery was that of working toward life goals. The least implemented dimensions had to do with offering treatment options and patient participation in decision-making. This study was conducted in accordance with STROBE (STrengthening the Reporting of OBservational studies in Epidemiology). Conclusions: Although this is a cross-sectional study that does not allow us to establish causal relationships, it shows that the model with which mental health professionals work is associated with patients’ chances of recovery. We therefore consider that it is important to foster the implementation of practices based on the recovery model within mental health care. Full article
19 pages, 3326 KiB  
Article
MultiFuseYOLO: Redefining Wine Grape Variety Recognition through Multisource Information Fusion
by Jialiang Peng, Cheng Ouyang, Hao Peng, Wenwu Hu, Yi Wang and Ping Jiang
Sensors 2024, 24(9), 2953; https://doi.org/10.3390/s24092953 (registering DOI) - 06 May 2024
Abstract
Based on the current research on the wine grape variety recognition task, it has been found that traditional deep learning models relying only on a single feature (e.g., fruit or leaf) for classification can face great challenges, especially when there is a high [...] Read more.
Based on the current research on the wine grape variety recognition task, it has been found that traditional deep learning models relying only on a single feature (e.g., fruit or leaf) for classification can face great challenges, especially when there is a high degree of similarity between varieties. In order to effectively distinguish these similar varieties, this study proposes a multisource information fusion method, which is centered on the SynthDiscrim algorithm, aiming to achieve a more comprehensive and accurate wine grape variety recognition. First, this study optimizes and improves the YOLOV7 model and proposes a novel target detection and recognition model called WineYOLO-RAFusion, which significantly improves the fruit localization precision and recognition compared with YOLOV5, YOLOX, and YOLOV7, which are traditional deep learning models. Secondly, building upon the WineYOLO-RAFusion model, this study incorporated the method of multisource information fusion into the model, ultimately forming the MultiFuseYOLO model. Experiments demonstrated that MultiFuseYOLO significantly outperformed other commonly used models in terms of precision, recall, and F1 score, reaching 0.854, 0.815, and 0.833, respectively. Moreover, the method improved the precision of the hard to distinguish Chardonnay and Sauvignon Blanc varieties, which increased the precision from 0.512 to 0.813 for Chardonnay and from 0.533 to 0.775 for Sauvignon Blanc. In conclusion, the MultiFuseYOLO model offers a reliable and comprehensive solution to the task of wine grape variety identification, especially in terms of distinguishing visually similar varieties and realizing high-precision identifications. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

13 pages, 3296 KiB  
Article
Untargeted Metabolomics Based on Ultra-High-Performance Liquid Chromatography Coupled with Quadrupole Orbitrap High-Resolution Mass Spectrometry for Differential Metabolite Analysis of Pinelliae Rhizoma and Its Adulterants
by Jing Wang, Jie Cui, Ziyi Liu, Yang Yang, Zhan Li and Huiling Liu
Molecules 2024, 29(9), 2155; https://doi.org/10.3390/molecules29092155 (registering DOI) - 06 May 2024
Abstract
The present study investigates the chemical composition variances among Pinelliae Rhizoma, a widely used Chinese herbal medicine, and its common adulterants including Typhonium flagelliforme, Arisaema erubescens, and Pinellia pedatisecta. Utilizing the non-targeted metabolomics technique of employing UHPLC-Q-Orbitrap HRMS, this research [...] Read more.
The present study investigates the chemical composition variances among Pinelliae Rhizoma, a widely used Chinese herbal medicine, and its common adulterants including Typhonium flagelliforme, Arisaema erubescens, and Pinellia pedatisecta. Utilizing the non-targeted metabolomics technique of employing UHPLC-Q-Orbitrap HRMS, this research aims to comprehensively delineate the metabolic profiles of Pinelliae Rhizoma and its adulterants. Multivariate statistical methods including PCA and OPLS-DA are employed for the identification of differential metabolites. Volcano plot analysis is utilized to discern upregulated and downregulated compounds. KEGG pathway analysis is conducted to elucidate the differences in metabolic pathways associated with these compounds, and significant pathway enrichment analysis is performed. A total of 769 compounds are identified through metabolomics analysis, with alkaloids being predominant, followed by lipids and lipid molecules. Significant differential metabolites were screened out based on VIP > 1 and p-value < 0.05 criteria, followed by KEGG enrichment analysis of these differential metabolites. Differential metabolites between Pinelliae Rhizoma and Typhonium flagelliforme, as well as between Pinelliae Rhizoma and Pinellia pedatisecta, are significantly enriched in the biosynthesis of amino acids and protein digestion and absorption pathways. Differential metabolites between Pinelliae Rhizoma and Arisaema erubescens are mainly enriched in tyrosine metabolism and phenylalanine metabolism pathways. These findings aim to provide valuable data support and theoretical references for further research on the pharmacological substances, resource development and utilization, and quality control of Pinelliae Rhizoma. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

37 pages, 21095 KiB  
Article
Artificial Neural Networks and Experimental Analysis of the Resistance Spot Welding Parameters Effect on the Welded Joint Quality of AISI 304
by Marwan T. Mezher, Alejandro Pereira, Tomasz Trzepieciński and Jorge Acevedo
Materials 2024, 17(9), 2167; https://doi.org/10.3390/ma17092167 (registering DOI) - 06 May 2024
Abstract
The automobile industry relies primarily on spot welding operations, particularly resistance spot welding (RSW). The performance and durability of the resistance spot-welded joints are significantly impacted by the welding quality outputs, such as the shear force, nugget diameter, failure mode, and the hardness [...] Read more.
The automobile industry relies primarily on spot welding operations, particularly resistance spot welding (RSW). The performance and durability of the resistance spot-welded joints are significantly impacted by the welding quality outputs, such as the shear force, nugget diameter, failure mode, and the hardness of the welded joints. In light of this, the present study sought to determine how the aforementioned welding quality outputs of 0.5 and 1 mm thick austenitic stainless steel AISI 304 were affected by RSW parameters, such as welding current, welding time, pressure, holding time, squeezing time, and pulse welding. In order to guarantee precise evaluation and experimental analysis, it is essential that they are supported by a numerical model using an intelligent model. The primary objective of this research is to develop and enhance an intelligent model employing artificial neural network (ANN) models. This model aims to provide deeper knowledge of how the RSW parameters affect the quality of optimum joint behavior. The proposed neural network (NN) models were executed using different ANN structures with various training and transfer functions based on the feedforward backpropagation approach to find the optimal model. The performance of the ANN models was evaluated in accordance with validation metrics, like the mean squared error (MSE) and correlation coefficient (R2). Assessing the experimental findings revealed the maximum shear force and nugget diameter emerged to be 8.6 kN and 5.4 mm for the case of 1–1 mm, 3.298 kN and 4.1 mm for the case of 0.5–0.5 mm, and 4.031 kN and 4.9 mm for the case of 0.5–1 mm. Based on the results of the Pareto charts generated by the Minitab program, the most important parameter for the 1–1 mm case was the welding current; for the 0.5–0.5 mm case, it was pulse welding; and for the 0.5–1 mm case, it was holding time. When looking at the hardness results, it is clear that the nugget zone is much higher than the heat-affected zone (HZ) and base metal (BM) in all three cases. The ANN models showed that the one-output shear force model gave the best prediction, relating to the highest R and the lowest MSE compared to the one-output nugget diameter model and two-output structure. However, the Levenberg–Marquardt backpropagation (Trainlm) training function with the log sigmoid transfer function recorded the best prediction results of both ANN structures. Full article
(This article belongs to the Special Issue Advanced Materials and Manufacturing Processes)
Show Figures

Figure 1

17 pages, 495 KiB  
Review
Mutagenesis and Repair of γ-Radiation- and Radical-Induced Tandem DNA Lesions
by Ashis K. Basu, Laureen C. Colis and Jan Henric T. Bacurio
DNA 2024, 4(2), 154-170; https://doi.org/10.3390/dna4020009 (registering DOI) - 06 May 2024
Abstract
Ionizing radiation induces many different types of DNA lesions. But one of its characteristics is to produce complex DNA damage, of which tandem DNA damage has received much attention, owing to its promise of distinctive biological properties. Oxidative stresses in response to inflammation [...] Read more.
Ionizing radiation induces many different types of DNA lesions. But one of its characteristics is to produce complex DNA damage, of which tandem DNA damage has received much attention, owing to its promise of distinctive biological properties. Oxidative stresses in response to inflammation in tissues and metal-catalyzed reactions that result in generation of radicals also form these DNA lesions. In this minireview, we have summarized the formation of the tandem lesions as well as the replication and repair studies carried out on them after site-specific synthesis. Many of these lesions are resistant to the traditional base excision repair, so that they can only be repaired by the nucleotide excision repair pathway. They also block DNA replication and, when lesion bypass occurs, it may be significantly error-prone. Some of these tandem DNA lesions may contribute to ageing, neurological diseases, and cancer. Full article
(This article belongs to the Special Issue Physics and Chemistry of Radiation Damage to DNA and Its Consequences)
19 pages, 320 KiB  
Article
Reimagining Violence in Contemporary Africa: Catholic Martyrdom and the Ethics of Sacrificial Solidarity in Burundi
by Jodi Mikalachki
Religions 2024, 15(5), 581; https://doi.org/10.3390/rel15050581 (registering DOI) - 06 May 2024
Abstract
This article discusses the enculturated Catholic ethics of martyrdom embodied by the Martyrs of Fraternity of Burundi, a group of students whose cause is now before the Vatican’s Congregation for the Causes of Saints for refusing to separate into Hutus and Tutsis during [...] Read more.
This article discusses the enculturated Catholic ethics of martyrdom embodied by the Martyrs of Fraternity of Burundi, a group of students whose cause is now before the Vatican’s Congregation for the Causes of Saints for refusing to separate into Hutus and Tutsis during Burundi’s 1993–2005 civil war. Engaging Fratelli Tutti from a local African perspective, it considers how the conviction that all human beings are brothers and sisters is to find concrete embodiment. Its argument develops Emmanuel Katongole’s assertion that the African church provides a living witness of what hope looks like in contexts of violence and war, drawing on Burundian scholarship and more than sixty interviews conducted in Burundi from 2018 to 2024 to develop a thick narrative of fraternal martyrdom and the ethics of Ubuntu. By placing sacrificial solidarity rather than violence at the center of the story of the Martyrs of Fraternity, Burundian Catholics reimagine their civil war in ethical terms. This Burundian embodiment of an ethics of sacrificial solidarity, solidly grounded in its original cultural substratum, stands as a resource for a world increasingly engulfed by war, refusing to let violence have the last word in a story of fraternal love hallowed by sacrifice. Full article
(This article belongs to the Special Issue Reimagining Catholic Ethics Today)
17 pages, 5604 KiB  
Article
Anti-Biofilm Activity of Oleacein and Oleocanthal from Extra-Virgin Olive Oil toward Pseudomonas aeruginosa
by Marisa Di Pietro, Simone Filardo, Roberto Mattioli, Giuseppina Bozzuto, Giammarco Raponi, Luciana Mosca and Rosa Sessa
Int. J. Mol. Sci. 2024, 25(9), 5051; https://doi.org/10.3390/ijms25095051 (registering DOI) - 06 May 2024
Abstract
New antimicrobial molecules effective against Pseudomonas aeruginosa, known as an antibiotic-resistant “high-priority pathogen”, are urgently required because of its ability to develop biofilms related to healthcare-acquired infections. In this study, for the first time, the anti-biofilm and anti-virulence activities of a polyphenolic [...] Read more.
New antimicrobial molecules effective against Pseudomonas aeruginosa, known as an antibiotic-resistant “high-priority pathogen”, are urgently required because of its ability to develop biofilms related to healthcare-acquired infections. In this study, for the first time, the anti-biofilm and anti-virulence activities of a polyphenolic extract of extra-virgin olive oil as well as purified oleocanthal and oleacein, toward P. aeruginosa clinical isolates were investigated. The main result of our study was the anti-virulence activity of the mixture of oleacein and oleocanthal toward multidrug-resistant and intermediately resistant strains of P. aeruginosa isolated from patients with ventilator-associated pneumonia or surgical site infection. Specifically, the mixture of oleacein (2.5 mM)/oleocanthal (2.5 mM) significantly inhibited biofilm formation, alginate and pyocyanin production, and motility in both P. aeruginosa strains (p < 0.05); scanning electron microscopy analysis further evidenced its ability to inhibit bacterial cell adhesion as well as the production of the extracellular matrix. In conclusion, our results suggest the potential application of the oleacein/oleocanthal mixture in the management of healthcare-associated P. aeruginosa infections, particularly in the era of increasing antimicrobial resistance. Full article
(This article belongs to the Special Issue Antibacterial Activity against Drug-Resistant Strains, 2nd Edition)
17 pages, 4122 KiB  
Article
Partial Alleviation of Homologous Superinfection Exclusion of SeMNPV Latently Infected Cells by G1 Phase Infection and G2/M Phase Arrest
by Qi-Ming Fu, Zheng Fang, Lou Ren, Qing-Shan Wu, Jun-Bo Zhang, Qiu-Ping Liu, Lei-Tao Tan and Qing-Bei Weng
Viruses 2024, 16(5), 736; https://doi.org/10.3390/v16050736 (registering DOI) - 06 May 2024
Abstract
Viral infection can regulate the cell cycle, thereby promoting viral replication. Hijacking and altering the cell cycle are important for the virus to establish and maintain a latent infection. Previously, Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV)-latently infected P8-Se301-C1 cells, which grew more slowly than [...] Read more.
Viral infection can regulate the cell cycle, thereby promoting viral replication. Hijacking and altering the cell cycle are important for the virus to establish and maintain a latent infection. Previously, Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV)-latently infected P8-Se301-C1 cells, which grew more slowly than Se301 cells and interfered with homologous SeMNNPV superinfection, were established. However, the effects of latent and superinfection with baculoviruses on cell cycle progression remain unknown. In this study, the cell cycle profiles of P8-Se301-C1 cells and SeMNPV or Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-infected P8-Se301-C1 cells were characterized by flow cytometry. The results showed that replication-related genes MCM4, PCNA, and BAF were down-regulated (p < 0.05) in P8-Se301-C1 cells, and the S phase of P8-Se301-C1 cells was longer than that of Se301 cells. P8-Se301-C1 cells infected with SeMNPV did not arrest in the G2/M phase or affect the expression of Cyclin B and cyclin-dependent kinase 1 (CDK1). Furthermore, when P8-Se301-C1 cells were infected with SeMNPV after synchronized treatment with hydroxyurea and nocodazole, light microscopy and qRT-PCR analysis showed that, compared with unsynchronized cells and S and G2/M phase cells, SeMNPV-infected P8-Se301-C1 cells in G1 phase induced G2/M phase arrest, and the amount of virus adsorption and intracellular viral DNA replication were significantly increased (p < 0.05). In addition, budded virus (BV) production and occlusion body (OB)-containing cells were both increased at 120 h post-infection (p < 0.05). The expression of Cyclin B and CDK1 was significantly down-regulated at 48 h post-infection (p < 0.05). Finally, the arrest of SeMNPV-infected G1 phase cells in the G2/M phase increased BV production (p < 0.05) and the number of OB-containing cells. In conclusion, G1 phase infection and G2/M arrest are favorable to SeMNPV proliferation in P8-Se301-C1 cells, thereby alleviating the homologous superinfection exclusion. The results contribute to a better understanding of the relationship between baculoviruses and insect cell cycle progression and regulation. Full article
(This article belongs to the Special Issue Molecular Virus-Insect Interactions)
14 pages, 5104 KiB  
Communication
The Importance of Dimensional Traceability in Microfluidic Systems
by Elsa Batista, João Alves e Sousa, Fernanda Saraiva, André Lopes, Vania Silverio, Rui F. Martins and Luis Martins
Metrology 2024, 4(2), 240-253; https://doi.org/10.3390/metrology4020015 (registering DOI) - 06 May 2024
Abstract
Dimensional measurements are fundamental in microfluidic device manufacturing and performance. The main focus of this study is the measurement of the connection port sizes in microfluidic devices and components and, accordingly, the possible existence of fluid leaks determined using the flow rate error. [...] Read more.
Dimensional measurements are fundamental in microfluidic device manufacturing and performance. The main focus of this study is the measurement of the connection port sizes in microfluidic devices and components and, accordingly, the possible existence of fluid leaks determined using the flow rate error. The sizes associated with three different microfluidic systems were determined using laser interferometry and through an optical measuring instrument, with metrological traceability to national length standards. It was possible to infer the method with the greatest accuracy and lowest measurement uncertainty for characterizing this kind of system. In conclusion, the results of this work directly address the current lack of dimensions measuring methods of microfluidic components by providing a comprehensive comparison of different protocols, ultimately suggesting a preferred option for immediate application within the microfluidic industry. Full article
43 pages, 8516 KiB  
Article
Multi-Scale Analysis of Lyme Disease Ecology
by Rebecca Michelle Bingham-Byrne and Esra Ozdenerol
Rheumato 2024, 4(2), 88-130; https://doi.org/10.3390/rheumato4020008 (registering DOI) - 06 May 2024
Abstract
Lyme disease is a zoonotic infectious disease. Increased public interest in Lyme disease has caused increased efforts by researchers for its surveillance and control. The main concept for this paper is to determine the mammalian species composition of areas at high risk for [...] Read more.
Lyme disease is a zoonotic infectious disease. Increased public interest in Lyme disease has caused increased efforts by researchers for its surveillance and control. The main concept for this paper is to determine the mammalian species composition of areas at high risk for Lyme disease utilizing GIS-based (Geographic Information Systems) techniques coupled with k-means clustering, random forest, and multinomial logistic regression. Cluster analysis results were similar to previous work involving maps that display areas where people are at high risk for developing Lyme disease. There were differences in which mammal species presence had associations with Lyme disease risk observed at the two different scales within this analysis, with some overlap observed between the national scale and the smaller regions, as well as some overlap between the Rocky Mountain and Southeast regions that was not found at the national scale. This is an investigative analysis to determine which species are needed for habitat suitability analyses in efforts to prioritize vaccine deployment locations. There has been limited research on vaccine deployment for Lyme disease. Increasing our understanding of not only the vaccine but also the interactions between the components of disease transmission is necessary to control this infectious disease successfully. Full article
27 pages, 401 KiB  
Review
A Geometric Approach to the Sundman Transformation and Its Applications to Integrability
by José F. Cariñena
Symmetry 2024, 16(5), 568; https://doi.org/10.3390/sym16050568 (registering DOI) - 06 May 2024
Abstract
A geometric approach to the integrability and reduction of dynamical systems, both when dealing with systems of differential equations and in classical physics, is developed from a modern perspective. The main ingredients of this analysis are infinitesimal symmetries and tensor fields that are [...] Read more.
A geometric approach to the integrability and reduction of dynamical systems, both when dealing with systems of differential equations and in classical physics, is developed from a modern perspective. The main ingredients of this analysis are infinitesimal symmetries and tensor fields that are invariant under the given dynamics. A particular emphasis is placed on the existence of alternative invariant volume forms and the associated Jacobi multiplier theory, and then the Hojman symmetry theory is developed as a complement to the Noether theorem and non-Noether constants of motion. We also recall the geometric approach to Sundman infinitesimal time-reparametrisation for autonomous systems of first-order differential equations and some of its applications to integrability, and an analysis of how to define Sundman transformations for autonomous systems of second-order differential equations is proposed, which shows the necessity of considering alternative tangent bundle structures. A short description of alternative tangent structures is provided, and an application to integrability, namely, the linearisability of scalar second-order differential equations under generalised Sundman transformations, is developed. Full article

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop