The 2023 MDPI Annual Report has
been released!
 
32 pages, 8389 KiB  
Review
Connexin Gap Junction Channels and Hemichannels: Insights from High-Resolution Structures
by Maciej Jagielnicki, Iga Kucharska, Brad C. Bennett, Andrew L. Harris and Mark Yeager
Biology 2024, 13(5), 298; https://doi.org/10.3390/biology13050298 (registering DOI) - 26 Apr 2024
Abstract
Connexins (Cxs) are a family of integral membrane proteins, which function as both hexameric hemichannels (HCs) and dodecameric gap junction channels (GJCs), behaving as conduits for the electrical and molecular communication between cells and between cells and the extracellular environment, respectively. Their proper [...] Read more.
Connexins (Cxs) are a family of integral membrane proteins, which function as both hexameric hemichannels (HCs) and dodecameric gap junction channels (GJCs), behaving as conduits for the electrical and molecular communication between cells and between cells and the extracellular environment, respectively. Their proper functioning is crucial for many processes, including development, physiology, and response to disease and trauma. Abnormal GJC and HC communication can lead to numerous pathological states including inflammation, skin diseases, deafness, nervous system disorders, and cardiac arrhythmias. Over the last 15 years, high-resolution X-ray and electron cryomicroscopy (cryoEM) structures for seven Cx isoforms have revealed conservation in the four-helix transmembrane (TM) bundle of each subunit; an αβ fold in the disulfide-bonded extracellular loops and inter-subunit hydrogen bonding across the extracellular gap that mediates end-to-end docking to form a tight seal between hexamers in the GJC. Tissue injury is associated with cellular Ca2+ overload. Surprisingly, the binding of 12 Ca2+ ions in the Cx26 GJC results in a novel electrostatic gating mechanism that blocks cation permeation. In contrast, acidic pH during tissue injury elicits association of the N-terminal (NT) domains that sterically blocks the pore in a “ball-and-chain” fashion. The NT domains under physiologic conditions display multiple conformational states, stabilized by protein–protein and protein–lipid interactions, which may relate to gating mechanisms. The cryoEM maps also revealed putative lipid densities within the pore, intercalated among transmembrane α-helices and between protomers, the functions of which are unknown. For the future, time-resolved cryoEM of isolated Cx channels as well as cryotomography of GJCs and HCs in cells and tissues will yield a deeper insight into the mechanisms for channel regulation. The cytoplasmic loop (CL) and C-terminal (CT) domains are divergent in sequence and length, are likely involved in channel regulation, but are not visualized in the high-resolution X-ray and cryoEM maps presumably due to conformational flexibility. We expect that the integrated use of synergistic physicochemical, spectroscopic, biophysical, and computational methods will reveal conformational dynamics relevant to functional states. We anticipate that such a wealth of results under different pathologic conditions will accelerate drug discovery related to Cx channel modulation. Full article
Show Figures

Figure 1

22 pages, 27029 KiB  
Article
Reduction of Subsidence and Large-Scale Rebound in the Beijing Plain after Anthropogenic Water Transfer and Ecological Recharge of Groundwater: Evidence from Long Time-Series Satellites InSAR
by Chaodong Zhou, Qiuhong Tang, Yanhui Zhao, Timothy A. Warner, Hongjiang Liu and John J. Clague
Remote Sens. 2024, 16(9), 1528; https://doi.org/10.3390/rs16091528 (registering DOI) - 26 Apr 2024
Abstract
Beijing, China’s capital city, has experienced decades of severe land subsidence due to the long-term overexploitation of groundwater. The implementation of the South-to-North Water Diversion Project (SNWDP) and artificial ecological restoration have significantly changed Beijing’s hydro-ecological and geological environment in recent years, leading [...] Read more.
Beijing, China’s capital city, has experienced decades of severe land subsidence due to the long-term overexploitation of groundwater. The implementation of the South-to-North Water Diversion Project (SNWDP) and artificial ecological restoration have significantly changed Beijing’s hydro-ecological and geological environment in recent years, leading to a widespread rise in groundwater levels. However, whether the related land subsidence has slowed down or reversed under these measures has not yet been effectively monitored and quantitatively analyzed in terms of time and space. Accordingly, in this study, we proposed using an improved time-series deformation method, which combines persistent scatterers and distributed scatterers, to process Sentinel-1 images from 2015 to 2022 in the Beijing Plain region. We performed a geospatial analysis to gain a better understanding of how the new hydrological conditions changed the pattern of deformation on the Beijing Plain. The results indicated that our combined PS and DS method provided more measurements both in total quantity and spatial density than conventional PSI methods. The land subsidence in the Beijing Plain area has been effectively alleviated from a subsidence region of approximately 1377 km2 in 2015 to only approximately 78 km2 in 2022. Ecological restoration areas in the northeastern part of the Plain have even rebounded over this period, at a maximum of approximately 40 mm in 2022. The overall pattern of ground deformation (subsidence and uplift) is negatively correlated with changes in the groundwater table (decline and rise). Local deformation is controlled by the thickness of the compressible layer and an active fault. The year 2015, when anthropogenic water transfers were eliminated and ecological measures to recharge groundwater were implemented, was the crucial turning point of the change in the deformation trend in the subsidence history of Beijing. Our findings carry significance, not only for China, but also for other areas where large-scale groundwater extractions are causing severe ground subsidence or rebound. Full article
Show Figures

Figure 1

13 pages, 658 KiB  
Article
Group Intervention Program to Facilitate Post-Traumatic Growth and Reduce Stigma in HIV
by Nuno Tomaz Santos, Catarina Ramos, Margarida Ferreira de Almeida and Isabel Leal
Healthcare 2024, 12(9), 900; https://doi.org/10.3390/healthcare12090900 (registering DOI) - 26 Apr 2024
Abstract
Background: Research on post-traumatic growth (PTG) and HIV is scarce and the relationship between PTG and stigma is controversial. Group psychotherapeutic interventions to facilitate PTG in clinical samples are effective but none exist to simultaneously decrease stigma in the HIV population. The main [...] Read more.
Background: Research on post-traumatic growth (PTG) and HIV is scarce and the relationship between PTG and stigma is controversial. Group psychotherapeutic interventions to facilitate PTG in clinical samples are effective but none exist to simultaneously decrease stigma in the HIV population. The main objective was to evaluate the effectiveness of an intervention in increasing PTG and decreasing stigma in HIV, as well as to explore relationships between the variables. Methods: Quasi-experimental design with a sample of 42 HIV-positive adults (M = 46.26, SD = 11.90). The experimental group (EG) was subjected to a 9-week group intervention. Instruments: CBI, PTGI-X, PSS-10, HIV stigma, emotional expression, HIV stress indicators, HIV literacy, and skills. Multiple linear regression analysis was performed to assess the relationship between the variables. Results: There was an increase in PTG and a significant decrease in stigma in all domains and subscales in the EG. Compared to the control group, stigma (t(42) = −3.040, p = 0.004) and negative self-image (W = −2.937, p = 0.003) were significant, showing the efficacy of the intervention. Discussion: The intervention demonstrated success in facilitating PTG, attesting that in order to increase PTG, personal strength, and spiritual change, it is necessary to reduce stigma and negative self-image. The research provides more information on group interventions for PTG in HIV, relationships between variables, and population-specific knowledge for professionals. Full article
Show Figures

Figure 1

18 pages, 2956 KiB  
Article
Effects of Zilpaterol Hydrochloride with a Combination of Vitamin D3 on Feedlot Lambs: Growth Performance, Dietary Energetics, Carcass Traits, and Meat Quality
by Karla H. Leyva-Medina, Horacio Dávila-Ramos, Jesús J. Portillo-Loera, Omar S. Acuña-Meléndez, Adriana Cervantes-Noriega, Jaime N. Sánchez-Pérez, Gamaliel Molina-Gámez, Javier G. Rodríguez-Carpena, Mario A. Mejía-Delgadillo and Juan C. Robles-Estrada
Animals 2024, 14(9), 1303; https://doi.org/10.3390/ani14091303 (registering DOI) - 26 Apr 2024
Abstract
This study evaluated the impact of supplementing ZH in combination with D3 on the growth performance, energy efficiency, carcass traits, and meat quality of feedlot lambs. Thirty-two Dorper × Katahdin cross lambs (37.3 ± 5.72 kg) were utilized in a 29 d experiment [...] Read more.
This study evaluated the impact of supplementing ZH in combination with D3 on the growth performance, energy efficiency, carcass traits, and meat quality of feedlot lambs. Thirty-two Dorper × Katahdin cross lambs (37.3 ± 5.72 kg) were utilized in a 29 d experiment in a completely randomized block design with a 2 × 2 factorial structure consisting of two levels of ZH for 26 d (0 and 0.20 mg/kg PV−1) and two levels of D3 for 7 d (0 and 1.5 × 106 IU/d−1). ZH improved (p ≤ 0.05) the average daily gain (ADG) and feed efficiency by 9.9% and 17.8%, respectively, as well as hot carcass weight (HCW) and dressing carcass by 4.3% and 2.6%, respectively. (p ≤ 0.03). However, ZH increased (p < 0.01) muscle pH and Warner–Bratzler shear force (WBSF) (2.5 and 23.0%, respectively). D3 supplementation negatively affected (p ≤ 0.02) dry matter intake (DMI) (last 7 d) and ADG by 15.7% and 18.1%. On the other hand, D3 improved the pH of the longissimus thoracis muscle by 1.7% (p = 0.03) without affecting WBSF. When D3 was supplemented in combination with ZH, it was observed that meat quality was improved by reducing muscle pH compared to lambs treated only with ZH. However, D3 did not improve the meat tenderness negatively affected by ZH supplementation. Full article
Show Figures

Figure 1

21 pages, 9452 KiB  
Article
Transforming Landslide Prediction: A Novel Approach Combining Numerical Methods and Advanced Correlation Analysis in Slope Stability Investigation
by Ibrahim Haruna Umar, Hang Lin and Jubril Izge Hassan
Appl. Sci. 2024, 14(9), 3685; https://doi.org/10.3390/app14093685 (registering DOI) - 26 Apr 2024
Abstract
Landslides cause significant economic losses and casualties worldwide. However, robust prediction remains challenging due to the complexity of geological factors contributing to slope stability. Advanced correlation analysis methods can improve prediction capabilities. This study aimed to develop a novel landslide prediction approach that [...] Read more.
Landslides cause significant economic losses and casualties worldwide. However, robust prediction remains challenging due to the complexity of geological factors contributing to slope stability. Advanced correlation analysis methods can improve prediction capabilities. This study aimed to develop a novel landslide prediction approach that combines numerical modeling and correlation analysis (Spearman rho and Kendall tau) to improve displacement-based failure prediction. Simulations generate multi-location displacement data sets on soil and rock slopes under incremental stability reductions. Targeted monitoring points profile local displacement responses. Statistical analyses, including mean/variance and Spearman/Kendall correlations, quantified displacement-stability relationships. For the homogeneous soil slope, monitoring point 2 of the middle section of the slope showed a mean horizontal displacement of 17.65 mm and a mean vertical displacement of 9.72 mm under stability reduction. Spearman’s rho correlation coefficients ranged from 0.31 to 0.76, while Kendall’s tau values ranged from 0.29 to 0.64, indicating variable displacement–stability relationships. The joint rock slope model had strong positive total displacement correlations (Spearman’s and Kendall’s correlation ranges of +1.0 and −1.0) at most points. Horizontal and vertical displacements reached mean maxima of 44.13 mm and 22.17 mm, respectively, at the unstable point 2 of the center section of the slope. The advanced correlation analysis techniques provided superior identification of parameters affecting slope stability compared to standard methods. The generated predictive model dramatically improves landslide prediction capability, allowing preventive measures to be taken to mitigate future losses through this new approach. Full article
Show Figures

Figure 1

26 pages, 2261 KiB  
Review
How to Achieve Comprehensive Carbon Emission Reduction in Ports? A Systematic Review
by Liping Zhang, Qingcheng Zeng and Liang Wang
J. Mar. Sci. Eng. 2024, 12(5), 715; https://doi.org/10.3390/jmse12050715 (registering DOI) - 26 Apr 2024
Abstract
Under the mounting pressure to make changes to become more environmentally friendly and sustainable, port authorities have been exploring effective solutions to reduce CO2 emissions. In this regard, alternative fuels, innovative technology, and optimization strategies are key pathways for ports to transition [...] Read more.
Under the mounting pressure to make changes to become more environmentally friendly and sustainable, port authorities have been exploring effective solutions to reduce CO2 emissions. In this regard, alternative fuels, innovative technology, and optimization strategies are key pathways for ports to transition toward a low-carbon pattern. In this review work, the current development status and characteristics of renewable and clean energy in ports were meticulously analyzed. The CO2 emission reduction effects and limitations of port microgrids, carbon capture, and other technological operations were thoroughly examined. Lastly, the emission reduction optimization strategies ports could adopt under different scenarios were evaluated. The research findings showed that (1) combining the characteristics of the port and quantifying the properties of different renewable energy sources and low-carbon fuels is extremely necessary to select suitable alternative energy sources for port development; (2) technological advancements, multi-party interests, and policy impacts were the primary factors influencing the development of emission reduction technology methods; and (3) the coordinated optimization of multiple objectives in cross-scenarios was the main direction for ports to achieve sustainable development. This study provides theoretical guidance to ports that are transitioning to a greener pattern, as well as pointing out future research directions and development spaces for researchers. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

13 pages, 944 KiB  
Article
Development of Coated PLA Films Containing a Commercial Olive Leaf Extract for the Food Packaging Sector
by Cecilia Fiorentini, Giulia Leni, Elena Díaz de Apodaca, Laura Fernández-de-Castro, Gabriele Rocchetti, Claudia Cortimiglia, Giorgia Spigno and Andrea Bassani
Antioxidants 2024, 13(5), 519; https://doi.org/10.3390/antiox13050519 (registering DOI) - 26 Apr 2024
Abstract
A commercial olive leaf extract (OL), effective against Salmonella enterica, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, was added to three different coating formulations (methylcellulose, MC; chitosan, CT; and alginate, ALG) to produce active polylactic acid (PLA) coated films. [...] Read more.
A commercial olive leaf extract (OL), effective against Salmonella enterica, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, was added to three different coating formulations (methylcellulose, MC; chitosan, CT; and alginate, ALG) to produce active polylactic acid (PLA) coated films. Evaluation of these coated PLA films revealed significant inhibition of S. aureus growth, particularly with the MC and CT formulations exhibiting the highest inhibition rates (99.7%). The coated films were then tested for food contact compatibility with three food simulants (A: 10% ethanol; B: 3% acetic acid; D2: olive oil), selected to assess their suitability for pre-cut hams and ready-to-eat vegetables in relation to overall migration. However, coated films with active functions exhibited migration values in simulants A and B above legal limits, while promising results were obtained for simulant D2, highlighting the need to deeply investigate these coatings’ impact on a real food system. Untargeted metabolomics revealed that the type of coating influenced the selective release of certain phenolic classes based on the food simulant tested. The Oxitest analysis of simulant D2 demonstrated that the MC and ALG-coated PLA films slightly slowed down the oxidation of this food simulant, which is an edible vegetable oil. Full article
Show Figures

Graphical abstract

13 pages, 3015 KiB  
Article
Theoretical Study of the Competition Mechanism of Alloying Elements in L12-(Nix1Crx2Cox3)3Al Precipitates
by Yu Liu, Lijun Wang, Juangang Zhao, Zhipeng Wang, Touwen Fan, Ruizhi Zhang, Yuanzhi Wu, Xiangjun Zhou, Jie Zhou and Pingying Tang
Coatings 2024, 14(5), 536; https://doi.org/10.3390/coatings14050536 (registering DOI) - 26 Apr 2024
Abstract
The impact of variations in the content of single alloying element on the properties of alloy materials has been extensively discussed, but the influence of this change on the content of multiple alloying elements in the alloy materials has been disregarded, as the [...] Read more.
The impact of variations in the content of single alloying element on the properties of alloy materials has been extensively discussed, but the influence of this change on the content of multiple alloying elements in the alloy materials has been disregarded, as the performances of alloy materials should be determined by the collective influence of multiple alloying elements. To address the aforementioned issue, the present study conducted a comprehensive investigation into the impact of variations in the content of alloying elements, namely Ni, Cr, and Co, on the structural and mechanical properties of L12-(Nix1Crx2Cox3)3Al precipitates using the high-throughput first-principles calculations and the partial least squares (PLS) regression, and the competitive mechanism among these three elements was elucidated. The findings demonstrate that the same alloying element may exhibit opposite effects in both single element analysis and comprehensive multi-element analysis, for example, the effect of Ni element on elastic constant C11, and the influence of Cr element on Vickers hardness and yield strength. The reason for this is that the impact of the content of other two alloying elements is ignored in the single element analysis. Meanwhile, the Co element demonstrates a significant competitive advantage in the comparative analysis of three alloying elements for different physical properties. Therefore, the methodology proposed in this study will facilitate the elucidation of competition mechanisms among different alloy elements and offer a more robust guidance for experimental preparation. Full article
(This article belongs to the Special Issue Microstructure, Mechanical and Tribological Properties of Alloys)
Show Figures

Figure 1

18 pages, 5713 KiB  
Article
Design and Implementation of Reconfigurable Array Adaptive Optoelectronic Hybrid Interconnect Shunting Network
by Bowen Yang, Yong Li, Chao Xi, Rui Shan, Yu Feng and Jiaying Luo
Electronics 2024, 13(9), 1668; https://doi.org/10.3390/electronics13091668 (registering DOI) - 26 Apr 2024
Abstract
Addressing challenges regarding Hybrid Optoelectronic Network-on-Chip systems, such as congestion control, their limited adaptability, and their inability to facilitate optoelectronic co-simulation, this study introduces an adaptive hybrid optoelectronic interconnection shunt structure tailored for reconfigurable array processors. Within this framework, an adaptive shunt routing [...] Read more.
Addressing challenges regarding Hybrid Optoelectronic Network-on-Chip systems, such as congestion control, their limited adaptability, and their inability to facilitate optoelectronic co-simulation, this study introduces an adaptive hybrid optoelectronic interconnection shunt structure tailored for reconfigurable array processors. Within this framework, an adaptive shunt routing algorithm and a low-loss non-blocking five-port optical router are developed. Furthermore, an adaptive hybrid optoelectronic interconnection simulation model and a performance statistical model, established using SystemVerilog and Verilog, complement these designs. The experimental results showcase promising enhancements: the designed routing algorithm demonstrates an average 17.5% improvement in mitigating congestion at network edge nodes; substantial reductions in the required number of cross waveguides and micro-ring resonators for optical routers lead to an average path insertion loss of only 0.522 dB. Moreover, the hybrid optoelectronic interconnection performance statistical model supports the design of routing strategies and topology structures, enabling resource usage, power consumption, insertion loss, and other performance metrics to be accurately assessed. Full article
(This article belongs to the Special Issue Configurable Computing Systems for Enhanced Industrial Communication)
Show Figures

Figure 1

33 pages, 8985 KiB  
Article
Study of the Demand for Ecological Means of Transport in Micromobility: A Case of Bikesharing in Szczecin, Poland
by Anna Eliza Wolnowska and Lech Kasyk
Sustainability 2024, 16(9), 3620; https://doi.org/10.3390/su16093620 (registering DOI) - 26 Apr 2024
Abstract
The need for urban societies to move continues to grow with the intensity of their various activities. One of the challenges in micromobility in cities based on bike, scooter, or public scooter systems is determining the potential yet realistic demand for such services. [...] Read more.
The need for urban societies to move continues to grow with the intensity of their various activities. One of the challenges in micromobility in cities based on bike, scooter, or public scooter systems is determining the potential yet realistic demand for such services. This article aims to present the level of demand for eco-friendly non-motorized transport systems and identify the motivations driving users of public transport to choose these eco-friendly Personal Mobility Devices (PMD). The authors propose a methodology based on the integration of four components: a case study, an analysis of participatory budget projects, a metadata analysis of bikesharing (BSS) in Szczecin, and a meta plan. They utilized a case study method and conducted a survey based on a custom questionnaire. An analysis of participatory budget projects and data from the operation of bikesharing in Szczecin was performed using statistical methods. Applying the heuristic tool meta plan, they outlined the directions for the development and support of bikesharing as an example of micromobility in Szczecin. The research identified connections between the socio-demographic structure of respondents and attributes of bike communication. This study highlighted periods of intensive system use and locations with the highest exploitation. It showed that the demand for BSS depends on weather conditions, traveler convenience, the density and coherence of bike infrastructure with important locations for residents, transfer connections, and safety. The presented research results can assist planners and authorities in Szczecin and other cities in expanding bikesharing. Full article
Show Figures

Figure 1

23 pages, 1916 KiB  
Article
Strategic Machine Learning Optimization for Cardiovascular Disease Prediction and High-Risk Patient Identification
by Konstantina-Vasiliki Tompra, George Papageorgiou and Christos Tjortjis
Algorithms 2024, 17(5), 178; https://doi.org/10.3390/a17050178 (registering DOI) - 26 Apr 2024
Abstract
Despite medical advancements in recent years, cardiovascular diseases (CVDs) remain a major factor in rising mortality rates, challenging predictions despite extensive expertise. The healthcare sector is poised to benefit significantly from harnessing massive data and the insights we can derive from it, underscoring [...] Read more.
Despite medical advancements in recent years, cardiovascular diseases (CVDs) remain a major factor in rising mortality rates, challenging predictions despite extensive expertise. The healthcare sector is poised to benefit significantly from harnessing massive data and the insights we can derive from it, underscoring the importance of integrating machine learning (ML) to improve CVD prevention strategies. In this study, we addressed the major issue of class imbalance in the Behavioral Risk Factor Surveillance System (BRFSS) 2021 heart disease dataset, including personal lifestyle factors, by exploring several resampling techniques, such as the Synthetic Minority Oversampling Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN), SMOTE-Tomek, and SMOTE-Edited Nearest Neighbor (SMOTE-ENN). Subsequently, we trained, tested, and evaluated multiple classifiers, including logistic regression (LR), decision trees (DTs), random forest (RF), gradient boosting (GB), XGBoost (XGB), CatBoost, and artificial neural networks (ANNs), comparing their performance with a primary focus on maximizing sensitivity for CVD risk prediction. Based on our findings, the hybrid resampling techniques outperformed the alternative sampling techniques, and our proposed implementation includes SMOTE-ENN coupled with CatBoost optimized through Optuna, achieving a remarkable 88% rate for recall and 82% for the area under the receiver operating characteristic (ROC) curve (AUC) metric. Full article
Show Figures

Figure 1

11 pages, 3802 KiB  
Article
Stray Magnetic Field Variations and Micromagnetic Simulations: Models for Ni0.8Fe0.2 Disks Used for Microparticle Trapping
by Gregory B. Vieira, Eliza Howard, Prannoy Lankapalli, Iesha Phillips, Keith Hoffmeister and Jackson Holley
Micromachines 2024, 15(5), 567; https://doi.org/10.3390/mi15050567 (registering DOI) - 26 Apr 2024
Abstract
Patterned micro-scale thin-film magnetic structures, in conjunction with weak (~few tens of Oe) applied magnetic fields, can create energy landscapes capable of trapping and transporting fluid-borne magnetic microparticles. These energy landscapes arise from magnetic field magnitude variations that arise in the vicinity of [...] Read more.
Patterned micro-scale thin-film magnetic structures, in conjunction with weak (~few tens of Oe) applied magnetic fields, can create energy landscapes capable of trapping and transporting fluid-borne magnetic microparticles. These energy landscapes arise from magnetic field magnitude variations that arise in the vicinity of the magnetic structures. In this study, we examine means of calculating magnetic fields in the local vicinity of permalloy (Ni0.8Fe0.2) microdisks in weak (~tens of Oe) external magnetic fields. To do this, we employ micromagnetic simulations and the resulting calculations of fields. Because field calculation from micromagnetic simulations is computationally time-intensive, we discuss a method for fitting simulated results to improve calculation speed. Resulting stray fields vary dramatically based on variations in micromagnetic simulations—vortex vs. non-vortex micromagnetic results—which can each appear despite identical simulation final conditions, resulting in field strengths that differ by about a factor of two. Full article
(This article belongs to the Special Issue Recent Advances in Magnetic Micro/Nano-Manipulation)
Show Figures

Figure 1

17 pages, 1785 KiB  
Article
The Construction of a Crop Flood Damage Assessment Index to Rapidly Assess the Extent of Postdisaster Impact
by Yaoshuai Dang, Leiku Yang and Jinling Song
Remote Sens. 2024, 16(9), 1527; https://doi.org/10.3390/rs16091527 (registering DOI) - 26 Apr 2024
Abstract
Floods are among the most serious natural disasters worldwide; they cause enormous crop losses every year and threaten world food security. Many studies have focused on flood impact assessments for administrative districts, but fewer have focused on postdisaster impact assessments for specific crops. [...] Read more.
Floods are among the most serious natural disasters worldwide; they cause enormous crop losses every year and threaten world food security. Many studies have focused on flood impact assessments for administrative districts, but fewer have focused on postdisaster impact assessments for specific crops. Therefore, this study used remote sensing data, including the normalized difference vegetation index (NDVI), elevation data, slope data, and precipitation data, combined with crop growth period data to construct a crop flood damage assessment index (CFAI). First, the analytic hierarchy process (AHP) was used to assign weights to the impact parameters; then, the Weighted Composite Score Method was used to calculate the CFAI; and finally, the impact was classified as sub-slight, slight, moderate, sub-severe, or severe based on the magnitude of the CFAI. This method was used for the Missouri River floods of 2019 in the United States and the Henan flood of 2021 in China. Due to the lack of measured data, the disaster vegetation damage index (DVDI) was used to compare the results. Compared with the DVDI, the CFAI underestimated the evaluation results. The CFAI can respond well to the degree of crop impact after flooding, providing new ideas and reference standards for agriculture-related departments. Full article
Show Figures

Figure 1

16 pages, 2614 KiB  
Article
A Nonlinear Subspace Predictive Control Approach Based on Locally Weighted Projection Regression
by Xinwei Wu and Xuebo Yang
Electronics 2024, 13(9), 1670; https://doi.org/10.3390/electronics13091670 (registering DOI) - 26 Apr 2024
Abstract
Subspace predictive control (SPC) is a widely recognized data-driven methodology known for its reliability and convenience. However, effectively applying SPC to complex industrial process systems remains a challenging endeavor. To address this, this paper introduces a nonlinear subspace predictive control approach based on [...] Read more.
Subspace predictive control (SPC) is a widely recognized data-driven methodology known for its reliability and convenience. However, effectively applying SPC to complex industrial process systems remains a challenging endeavor. To address this, this paper introduces a nonlinear subspace predictive control approach based on locally weighted projection regression (NSPC-LWPR). By projecting the input space into localized regions, constructing precise local models, and aggregating them through weighted summation, this approach handles the nonlinearity effectively. Additionally, it dynamically adjusts the control strategy based on online process data and model parameters, while eliminating the need for offline process data storage, greatly enhancing the adaptability and efficiency of the approach. The parameter determination criteria and theoretical analysis encompassing feasibility and stability assessments provide a robust foundation for the proposed approach. To illustrate its efficacy and feasibility, the proposed approach is applied to a continuous stirred tank heater (CSTH) benchmark system. Comparative results highlight its superiority over SPC and adaptive subspace predictive control (ASPC) methods, evident in enhanced tracking precision and predictive accuracy. Overall, the proposed NSPC-LWPR approach presents a promising solution for nonlinear control challenges in industrial process systems. Full article
(This article belongs to the Special Issue High Performance Control and Industrial Applications)
Show Figures

Figure 1

15 pages, 4548 KiB  
Article
Ovotransferrin Fibril—Gum Arabic Complexes as Stabilizers for Oleogel-in-Water Pickering Emulsions: Formation Mechanism, Physicochemical Properties, and Curcumin Delivery
by Zihao Wei, Yue Dong and Jingyu Si
Foods 2024, 13(9), 1323; https://doi.org/10.3390/foods13091323 (registering DOI) - 26 Apr 2024
Abstract
This project aimed to explore the influence of the interaction between ovotransferrin fibrils (OTF) and gum arabic (GA) on the formation mechanism, physicochemical properties, and curcumin delivery of the oleogel-in-water Pickering emulsion. Cryo-scanning electron microscopy results showed that OTF—GA complexes effectively adsorbed on [...] Read more.
This project aimed to explore the influence of the interaction between ovotransferrin fibrils (OTF) and gum arabic (GA) on the formation mechanism, physicochemical properties, and curcumin delivery of the oleogel-in-water Pickering emulsion. Cryo-scanning electron microscopy results showed that OTF—GA complexes effectively adsorbed on the oil–water interface, generating spatial hindrance to inhibit droplet coalescence. The texture analysis also proved that OTF—GA complexes endowed oleogel-in-water Pickering emulsion with preferable springiness (0.49 ± 0.03 mm), chewiness (0.43 ± 0.07 mJ), and adhesion (0.31 ± 0.01 mJ). By exploring the coalescence stability, droplet size, and rheological properties of OTF—GA complexes–stabilized oleogel-in-water Pickering emulsion (OGPE), the higher coagulation stability, larger average droplet size (46.22 ± 0.08 μm), and stronger gel strength were observed. The microrheological results also exhibited stronger attraction between the OGPE droplets, a more pronounced solid-like structure, and a slower speed of movement than OTF-stabilized oleogel-in-water Pickering emulsion (OPE). Meanwhile, OGPE significantly enhanced the extent of lipolysis, stability, and bioaccessibility of curcumin, suggesting that it possessed superior performance as a delivery system for bioactive substances. This project provided adequate theoretical references for protein–polysaccharide complexes–stabilized oleogel-in-water Pickering emulsion, and contributed to expanding the application of oleogel-in-water Pickering emulsion in the food industry. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

9 pages, 4064 KiB  
Case Report
Case Report: A Sudden Thyroid-Related Death of a 15-Year-Old Girl
by Kálmán Rácz, Gábor Simon, Andrea Kurucz, Gergő Tamás Harsányi, Miklós Török, László Tamás Herczeg and Péter Attila Gergely
Diagnostics 2024, 14(9), 905; https://doi.org/10.3390/diagnostics14090905 (registering DOI) - 26 Apr 2024
Abstract
A 15-year-old young girl was found dead at home. There were no indications of any intervention or the application of force. On the previous day, she was admitted to hospital because of palpitations, fatigue, a headache, and a swollen neck. During a physical [...] Read more.
A 15-year-old young girl was found dead at home. There were no indications of any intervention or the application of force. On the previous day, she was admitted to hospital because of palpitations, fatigue, a headache, and a swollen neck. During a physical examination, a swollen thyroid gland and tachycardia were found. In the family history, her mother had thyroid disease. According to the laboratory values, she had elevated thyroid hormone levels. After administration of beta-blockers, the patient was discharged and died at home during the night. The parents denounced the hospital for medical malpractice; therefore, a Forensic Autopsy was performed. Based on the available clinical data, the autopsy, histological and toxicological results, the cause of death was stated as multiorgan failure due to disseminated intravascular coagulation (DIC) caused by the autoimmune Graves disease. The forensic assessment of the case does not reveal medical malpractice. Post-mortem diagnoses of thyroid disorders in cases of sudden death can be challenging. However, as the reported case illustrates, the diagnosis could be established after a detailed evaluation of antemortem clinical data, autopsy results, histology, and a toxicological examination. Full article
(This article belongs to the Special Issue Forensic Diagnosis)
Show Figures

Figure 1

23 pages, 3097 KiB  
Review
Deciphering the Role of BCAR3 in Cancer Progression: Gene Regulation, Signal Transduction, and Therapeutic Implications
by Dong Oh Moon
Cancers 2024, 16(9), 1674; https://doi.org/10.3390/cancers16091674 (registering DOI) - 26 Apr 2024
Abstract
This review comprehensively explores the gene BCAR3, detailing its regulation at the gene, mRNA, and protein structure levels, and delineating its multifunctional roles in cellular signaling within cancer contexts. The discussion covers BCAR3’s involvement in integrin signaling and its impact on cancer cell [...] Read more.
This review comprehensively explores the gene BCAR3, detailing its regulation at the gene, mRNA, and protein structure levels, and delineating its multifunctional roles in cellular signaling within cancer contexts. The discussion covers BCAR3’s involvement in integrin signaling and its impact on cancer cell migration, its capability to induce anti-estrogen resistance, and its significant functions in cell cycle regulation. Further highlighted is BCAR3’s modulation of immune responses within the tumor microenvironment, a novel area of interest that holds potential for innovative cancer therapies. Looking forward, this review outlines essential future research directions focusing on transcription factor binding studies, isoform-specific expression profiling, therapeutic targeting of BCAR3, and its role in immune cell function. Each segment builds towards a holistic understanding of BCAR3′s operational mechanisms, presenting a critical evaluation of its therapeutic potential in oncology. This synthesis aims to not only extend current knowledge but also catalyze further research that could pivotally influence the development of targeted cancer treatments. Full article
Show Figures

Figure 1

11 pages, 1434 KiB  
Article
Monkeypox Virus Neutralizing Antibodies at Six Months from Mpox Infection: Virologic Factors Associated with Poor Immunologic Response
by Angelo Roberto Raccagni, Alessandro Mancon, Sara Diotallevi, Riccardo Lolatto, Elena Bruzzesi, Maria Rita Gismondo, Antonella Castagna, Davide Mileto and Silvia Nozza
Viruses 2024, 16(5), 681; https://doi.org/10.3390/v16050681 (registering DOI) - 26 Apr 2024
Abstract
A natural monkeypox virus infection may not induce sufficient neutralizing antibody responses in a subset of healthy individuals. The aim of this study was to evaluate monkeypox virus-neutralizing antibodies six months after infection and to assess the virological factors predictive of a poor [...] Read more.
A natural monkeypox virus infection may not induce sufficient neutralizing antibody responses in a subset of healthy individuals. The aim of this study was to evaluate monkeypox virus-neutralizing antibodies six months after infection and to assess the virological factors predictive of a poor immunological response. Antibodies were assessed using a plaque reduction neutralization test at six months from mpox infection; mpox cutaneous, oropharyngeal, and anal swabs, semen, and plasma samples were tested during infection. Overall, 95 people were included in the study; all developed detectable antibodies. People who were positive for the monkeypox virus for more days had higher levels of antibodies when considering all tested samples (p = 0.029) and all swabs (p = 0.005). Mpox cycle threshold values were not predictive of antibody titers. This study found that the overall days of monkeypox virus detection in the body, irrespective of the viral loads, were directly correlated with monkeypox virus neutralizing antibodies at six months after infection. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

25 pages, 2132 KiB  
Review
Artificial Intelligence and Healthcare: A Journey through History, Present Innovations, and Future Possibilities
by Rahim Hirani, Kaleb Noruzi, Hassan Khuram, Anum S. Hussaini, Esewi Iyobosa Aifuwa, Kencie E. Ely, Joshua M. Lewis, Ahmed E. Gabr, Abbas Smiley, Raj K. Tiwari and Mill Etienne
Life 2024, 14(5), 557; https://doi.org/10.3390/life14050557 (registering DOI) - 26 Apr 2024
Abstract
Artificial intelligence (AI) has emerged as a powerful tool in healthcare significantly impacting practices from diagnostics to treatment delivery and patient management. This article examines the progress of AI in healthcare, starting from the field’s inception in the 1960s to present-day innovative applications [...] Read more.
Artificial intelligence (AI) has emerged as a powerful tool in healthcare significantly impacting practices from diagnostics to treatment delivery and patient management. This article examines the progress of AI in healthcare, starting from the field’s inception in the 1960s to present-day innovative applications in areas such as precision medicine, robotic surgery, and drug development. In addition, the impact of the COVID-19 pandemic on the acceleration of the use of AI in technologies such as telemedicine and chatbots to enhance accessibility and improve medical education is also explored. Looking forward, the paper speculates on the promising future of AI in healthcare while critically addressing the ethical and societal considerations that accompany the integration of AI technologies. Furthermore, the potential to mitigate health disparities and the ethical implications surrounding data usage and patient privacy are discussed, emphasizing the need for evolving guidelines to govern AI’s application in healthcare. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

23 pages, 5232 KiB  
Article
Continual Monitoring of Respiratory Disorders to Enhance Therapy via Real-Time Lung Sound Imaging in Telemedicine
by Murdifi Muhammad, Minghui Li, Yaolong Lou and Chang-Sheng Lee
Electronics 2024, 13(9), 1669; https://doi.org/10.3390/electronics13091669 (registering DOI) - 26 Apr 2024
Abstract
This work presents a configurable Internet of Things architecture for acoustical sensing and analysis for frequent remote respiratory assessments. The proposed system creates a foundation for enabling real-time therapy and patient feedback adjustment in a telemedicine setting. By allowing continuous remote respiratory monitoring, [...] Read more.
This work presents a configurable Internet of Things architecture for acoustical sensing and analysis for frequent remote respiratory assessments. The proposed system creates a foundation for enabling real-time therapy and patient feedback adjustment in a telemedicine setting. By allowing continuous remote respiratory monitoring, the system has the potential to give clinicians access to assessments from which they could make decisions about modifying therapy in real-time and communicate changes directly to patients. The system comprises a wearable wireless microphone array interfaced with a programmable microcontroller with embedded signal conditioning. Experiments on the phantom model were conducted to demonstrate the feasibility of reconstructing acoustic lung images for detecting obstructions in the airway and provided controlled validation of noise resilience and imaging capabilities. An optimized denoising technique and design innovations provided 7 dB more SNR and 7% more imaging accuracy for the proposed system, benchmarked against digital stethoscopes. While further clinical studies are warranted, initial results suggest potential benefits over single-point digital stethoscopes for internet-enabled remote lung monitoring needing noise immunity and regional specificity. The flexible architecture aims to bridge critical technical gaps in frequent and connected respiratory function at home or in busy clinical settings challenged by ambient noise interference. Full article
(This article belongs to the Special Issue Smart Communication and Networking in the 6G Era)
Show Figures

Figure 1

16 pages, 1520 KiB  
Article
Unveiling the Untapped Potential of Bertagnini’s Salts in Microwave-Assisted Synthesis of Quinazolinones
by Shyamal Kanti Bera, Sourav Behera, Lidia De Luca, Francesco Basoccu, Rita Mocci and Andrea Porcheddu
Molecules 2024, 29(9), 1986; https://doi.org/10.3390/molecules29091986 (registering DOI) - 26 Apr 2024
Abstract
Microwave-assisted organic synthesis (MAOS) has emerged as a transformative technique in organic chemistry, significantly enhancing the speed, efficiency, and selectivity of chemical reactions. In our research, we have employed microwave irradiation to expedite the synthesis of quinazolinones, using water as an eco-friendly solvent [...] Read more.
Microwave-assisted organic synthesis (MAOS) has emerged as a transformative technique in organic chemistry, significantly enhancing the speed, efficiency, and selectivity of chemical reactions. In our research, we have employed microwave irradiation to expedite the synthesis of quinazolinones, using water as an eco-friendly solvent and thereby adhering to the principles of green chemistry. Notably, the purification of the product was achieved without the need for column chromatography, thus streamlining the process. A key innovation in our approach is using aldehyde bisulfite adducts (Bertagnini’s salts) as solid surrogates of aldehydes. Bertagnini’s salts offer several advantages over free aldehydes, including enhanced stability, easier purification, and improved reactivity. Green metrics and Eco-Scale score calculations confirmed the sustainability of this approach, indicating a reduction in waste generation and enhanced sustainability outcomes. This methodology facilitates the synthesis of a diverse array of compounds, offering substantial contributions to the field, with potential for widespread applications in pharmaceutical research and beyond. Full article
Show Figures

Figure 1

16 pages, 4382 KiB  
Systematic Review
Impact of Serious Games on Body Composition, Physical Activity, and Dietary Change in Children and Adolescents: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
by Mingchang Liu, Xinyue Guan, Xueqing Guo, Yixuan He, Zeqi Liu, Shiguang Ni and You Wu
Nutrients 2024, 16(9), 1290; https://doi.org/10.3390/nu16091290 (registering DOI) - 26 Apr 2024
Abstract
Over the past four decades, obesity in children of all ages has increased worldwide, which has intensified the search for innovative intervention strategies. Serious games, a youth-friendly form of intervention designed with educational or behavioral goals, are emerging as a potential solution to [...] Read more.
Over the past four decades, obesity in children of all ages has increased worldwide, which has intensified the search for innovative intervention strategies. Serious games, a youth-friendly form of intervention designed with educational or behavioral goals, are emerging as a potential solution to this health challenge. To analyze the effectiveness of serious games in improving body composition, physical activity, and dietary change, we performed a systematic review and meta-analysis of randomized controlled trials (RCTs) from PubMed, Web of Science, EMBASE, and Scopus databases. Pooled standardized mean differences (SMD) were calculated for 20 studies (n = 2238 the intervention group; n = 1983 in the control group) using random-effect models. The intervention group demonstrated a slightly better, although non-significant, body composition score, with a pooled SMD of −0.26 (95% CI: −0.61 to 0.09). The pooled effect tends to be stronger with longer duration of intervention (−0.40 [95% CI: −0.96, 0.16] for >3 months vs. −0.02 [95% CI: −0.33, 0.30] for ≤3 months), although the difference was not statistically significant (p-difference = 0.24). As for the specific pathways leading to better weight control, improvements in dietary habits due to serious game interventions were not significant, while a direct positive effect of serious games on increasing physical activity was observed (pooled SMD = 0.61 [95% CI: 0.04 to 1.19]). While the impact of serious game interventions on body composition and dietary changes is limited, their effectiveness in increasing physical activity is notable. Serious games show potential as tools for overweight/obesity control among children and adolescents but may require longer intervention to sustain its effect. Full article
(This article belongs to the Section Pediatric Nutrition)
Show Figures

Figure 1

4 pages, 161 KiB  
Editorial
Special Issue ‘Advances in Neurodegenerative Diseases Research and Therapy 2.0’
by Sumonto Mitra
Int. J. Mol. Sci. 2024, 25(9), 4709; https://doi.org/10.3390/ijms25094709 (registering DOI) - 26 Apr 2024
Abstract
Neurodegenerative disorders (NDs) and the development of various therapeutic strategies to combat them have received increased attention in recent decades [...] Full article
(This article belongs to the Special Issue Advances in Neurodegenerative Diseases Research and Therapy 2.0)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop