The 2023 MDPI Annual Report has
been released!
 
18 pages, 2421 KiB  
Article
The “Better Book” Approach to Addressing Equity in Statistics: Centering the Motivational Experiences of Students from Racially Marginalized Backgrounds for Widespread Benefit
by Claudia C. Sutter, Matthew C. Jackson, Karen B. Givvin, James W. Stigler and Ji Y. Son
Educ. Sci. 2024, 14(5), 487; https://doi.org/10.3390/educsci14050487 - 02 May 2024
Abstract
Although improving racial equity in critical college courses such as introductory statistics is a laudable goal, making research-based progress toward that aim in a scalable manner remains a challenge. To translate psychological insights to benefit racially marginalized students, we implemented the “Better Book” [...] Read more.
Although improving racial equity in critical college courses such as introductory statistics is a laudable goal, making research-based progress toward that aim in a scalable manner remains a challenge. To translate psychological insights to benefit racially marginalized students, we implemented the “Better Book” approach, where instructors, researchers, and developers work together to improve an online textbook used in introductory statistics. The “Better Book” approach to equity assumes that racially marginalized students are a “canary in the coal mine”, alerting us to systemic issues that can affect a broader array of students. We started by finding places in the textbook where racially marginalized students reported higher perceptions of costs (the effort and time required to learn the content) than non-marginalized students. Then we drew upon suggestions from users to redesign the textbook where gaps in cost perceptions peaked. We then analyzed data from both the original and redesigned versions of the textbook to evaluate the impact on students who were subsequently enrolled in the course. Results showed that perceptions of cost were dramatically reduced in the experience of racially marginalized students but also the redesign resulted in an improved experience for all students. Full article
(This article belongs to the Special Issue Long Overdue: Translating Learning Research into Educational Practice)
Show Figures

Figure 1

14 pages, 244 KiB  
Article
A Generic Multilevel Structure for Educational Escape Rooms
by Pedro Juan Roig, Salvador Alcaraz, Katja Gilly, Cristina Bernad and Carlos Juiz
Educ. Sci. 2024, 14(5), 488; https://doi.org/10.3390/educsci14050488 - 02 May 2024
Abstract
The use of active learning activities for evaluation purposes has been reported to improve results in all areas within the education field. In this paper we describe a generic multilevel structure for educational escape rooms, along with a use case where such a [...] Read more.
The use of active learning activities for evaluation purposes has been reported to improve results in all areas within the education field. In this paper we describe a generic multilevel structure for educational escape rooms, along with a use case where such a design was applied for assessment in a course within the STEM area. Furthermore, a project-based learning activity was also added to complement that assessment. The results obtained expose an increase in both academic performance and success rate, where the percentage rises in both cases go in line to the literature. Additionally, a high level of engagement was measured during those active learning activities, which is reported to lead to better performance and improved learning. Hence, this high engagement seems to be the primary source of the increments experienced. Full article
(This article belongs to the Special Issue Higher Education Research: Challenges and Practices)
Show Figures

Figure 1

17 pages, 1715 KiB  
Article
A Test of the Self-Medication Hypothesis Using a Latent Measurement Model: Are Stress and Impaired Control over Alcohol Mediating Mechanisms of Parenting Styles on Heavy Episodic Drinking and Alcohol-Related Problems among University Students?
by Felix B. Muniz, Elena Kalina, Julie A. Patock-Peckham, Sophia Berberian, Brittney Fulop, Jason Williams and Robert F. Leeman
Behav. Sci. 2024, 14(5), 384; https://doi.org/10.3390/bs14050384 - 02 May 2024
Abstract
Introduction: The self-medication hypothesis (SMH) suggests that individuals consume alcohol to alleviate stressful emotions. Still, the underlying mechanisms between stress and heavy episodic drinking remain to be explored. Impaired control over drinking (IC) reflects a failure of self-regulation specific to the drinking context, [...] Read more.
Introduction: The self-medication hypothesis (SMH) suggests that individuals consume alcohol to alleviate stressful emotions. Still, the underlying mechanisms between stress and heavy episodic drinking remain to be explored. Impaired control over drinking (IC) reflects a failure of self-regulation specific to the drinking context, with individuals exceeding self-prescribed limits. Parenting styles experienced during childhood have a lasting influence on the stress response, which may contribute to IC. Method: We examined the indirect influences of parenting styles (e.g., permissive, authoritarian, and authoritative) on heavy episodic drinking and alcohol-related problems through the mediating mechanisms of stress and IC. We fit a latent measurement model with 938 (473 men; 465 women) university students, utilizing bootstrap confidence intervals, in Mplus 8.0. Results: Higher levels of authoritative parenting (mother and father) were indirectly linked to fewer alcohol-related problems and less heavy episodic drinking through less stress and IC. Maternal permissiveness was indirectly linked to more alcohol-related problems and heavy episodic drinking through more stress and, in turn, more IC. Impaired control appeared to be a mediator for stress and alcohol-related problems. Conclusions: Maternal permissiveness contributes to the use of alcohol to alleviate stress. Thus, reducing stress may reduce problematic heavy drinking and alcohol problems among emerging adults with high IC who may also have experienced permissive parenting. Stress may exacerbate behavioral dysregulation of drinking within self-prescribed limits. Full article
(This article belongs to the Special Issue Stress and Drinking)
Show Figures

Figure 1

20 pages, 4737 KiB  
Technical Note
Mud Spectral Characteristics from the Lusi Eruption, East Java, Indonesia Using Satellite Hyperspectral Data
by Stefania Amici, Maria Fabrizia Buongiorno, Alessandra Sciarra and Adriano Mazzini
Geosciences 2024, 14(5), 124; https://doi.org/10.3390/geosciences14050124 - 02 May 2024
Abstract
Imaging spectroscopy allows us to identify surface materials by analyzing the spectra resulting from the light–material interaction. In this preliminary study, we analyze a pair of hyperspectral cubes acquired by PRISMA (on 20 April 2021) and EO1- Hyperion (on 4 July 2015) over [...] Read more.
Imaging spectroscopy allows us to identify surface materials by analyzing the spectra resulting from the light–material interaction. In this preliminary study, we analyze a pair of hyperspectral cubes acquired by PRISMA (on 20 April 2021) and EO1- Hyperion (on 4 July 2015) over the Indonesian Lusi mud eruption. We show the potential suitability of using the two sensors for characterizing the mineralogical features in demanding “wet and muddy” environments such as Lusi. We use spectral library reflectance spectra like Illite Chlorite from the USGS spectral library, which are known to be associated with Lusi volcanic products, to identify minerals. In addition, we have measured the reflectance spectra and composition of Lusi sampled mud collected in November 2014. Finally, we compare them with reflectance spectra from EO1-Hyperion and PRISMA. The use of hyperspectral sensors at improved SNR, such as PRISMA, has shown the potential to determine the mineral composition of Lusi PRISMA data, which allowed the distinction of areas with different turbidities as well. Artifacts in the VNIR spectral region of the L2 PRISMA reflectance product were found, suggesting that future work needs to take into account an independent atmospheric correction rather than using the L2D PRISMA product. Full article
(This article belongs to the Special Issue Remote Sensing Monitoring of Geomorphological Hazards)
22 pages, 2500 KiB  
Article
Pharmacokinetic and Environmental Risk Assessment of Prime-2-CoV, a Non-Replicating Orf Virus-Based Vaccine against SARS-CoV-2
by Carina Metz, Verena Haug, Melanie Müller and Ralf Amann
Vaccines 2024, 12(5), 492; https://doi.org/10.3390/vaccines12050492 - 02 May 2024
Abstract
Viral vector vaccines represent a substantial advancement in immunization technology, offering numerous benefits over traditional vaccine modalities. The Orf virus (ORFV) strain D1701-VrV is a particularly promising candidate for vaccine development due to its distinctive attributes, such as a good safety profile, the [...] Read more.
Viral vector vaccines represent a substantial advancement in immunization technology, offering numerous benefits over traditional vaccine modalities. The Orf virus (ORFV) strain D1701-VrV is a particularly promising candidate for vaccine development due to its distinctive attributes, such as a good safety profile, the ability to elicit both humoral and cellular immunity, and its favorable genetic and thermal stability. Despite ORFV’s theoretical safety advantages, such as its narrow host range and limited systemic spread post-inoculation, a critical gap persists between these theoretical benefits and the empirical evidence regarding its in vivo safety profile. This discrepancy underscores the need for comprehensive preclinical validations to bridge this knowledge gap, especially considering ORFV’s use in humans. Our research introduces Prime-2-CoV, an innovative ORFV-based vaccine candidate against COVID-19, designed to elicit a robust immune response by expressing SARS-CoV-2 Nucleocapsid and Spike proteins. Currently under clinical trials, Prime-2-CoV marks the inaugural application of ORFV in human subjects. Addressing the aforementioned safety concerns, our extensive preclinical evaluation, including an environmental risk assessment (ERA) and detailed pharmacokinetic studies in rats and immunocompromised NOG mice, demonstrates Prime-2-CoV’s favorable pharmacokinetic profile, negligible environmental impact, and minimal ERA risks. These findings not only affirm the vaccine’s safety and efficacy but also pioneer the use of ORFV-based therapeutics, highlighting its potential for wider therapeutic applications. Full article
(This article belongs to the Special Issue Safety and Immunogenicity of the COVID-19 Vaccine)
Show Figures

Figure 1

17 pages, 884 KiB  
Article
Impact of Lactic Acid Bacteria Fermentation on (Poly)Phenolic Profile and In Vitro Antioxidant and Anti-Inflammatory Properties of Herbal Infusions
by Tarik Ozturk, María Ángeles Ávila-Gálvez, Sylvie Mercier, Fernando Vallejo, Alexis Bred, Didier Fraisse, Christine Morand, Ebru Pelvan, Laurent-Emmanuel Monfoulet and Antonio González-Sarrías
Antioxidants 2024, 13(5), 562; https://doi.org/10.3390/antiox13050562 - 02 May 2024
Abstract
Recently, the development of functional beverages has been enhanced to promote health and nutritional well-being. Thus, the fermentation of plant foods with lactic acid bacteria can enhance their antioxidant capacity and others like anti-inflammatory activity, which may depend on the variations in the [...] Read more.
Recently, the development of functional beverages has been enhanced to promote health and nutritional well-being. Thus, the fermentation of plant foods with lactic acid bacteria can enhance their antioxidant capacity and others like anti-inflammatory activity, which may depend on the variations in the total content and profile of (poly)phenols. The present study aimed to investigate the impact of fermentation with two strains of Lactiplantibacillus plantarum of several herbal infusions from thyme, rosemary, echinacea, and pomegranate peel on the (poly)phenolic composition and whether lacto-fermentation can contribute to enhance their in vitro antioxidant and anti-inflammatory effects on human colon myofibroblast CCD18-Co cells. HPLC-MS/MS analyses revealed that fermentation increased the content of the phenolics present in all herbal infusions. In vitro analyses indicated that pomegranate infusion showed higher antioxidant and anti-inflammatory effects, followed by thyme, echinacea, and rosemary, based on the total phenolic content. After fermentation, despite increasing the content of phenolics, the antioxidant and anti-inflammatory effects via reduction pro-inflammatory markers (IL-6, IL-8 and PGE2) were similar to those of their corresponding non-fermented infusions, with the exception of a greater reduction in lacto-fermented thyme. Overall, the findings suggest that the consumption of lacto-fermented herbal infusions could be beneficial in alleviating intestinal inflammatory disorders. Full article
(This article belongs to the Special Issue Antioxidant Activity of Fermented Foods and Food Microorganisms)
Show Figures

Graphical abstract

14 pages, 820 KiB  
Article
Elevated Bile Acid 3β,5α,6β-Trihydroxycholanoyl Glycine in a Subset of Adult Ataxias Including Niemann–Pick Type C
by Nazgol Motamed-Gorji, Youssef Khalil, Cristina Gonzalez-Robles, Shamsher Khan, Philippa Mills, Hector Garcia-Moreno, Heather Ging, Ambreen Tariq, Peter T. Clayton and Paola Giunti
Antioxidants 2024, 13(5), 561; https://doi.org/10.3390/antiox13050561 - 02 May 2024
Abstract
Ataxia is a common neurological feature of Niemann–Pick disease type C (NPC). In this disease, unesterified cholesterol accumulates in lysosomes of the central nervous system and hepatic cells. Oxidation by reactive oxygen species produces oxysterols that can be metabolised to specific bile acids. [...] Read more.
Ataxia is a common neurological feature of Niemann–Pick disease type C (NPC). In this disease, unesterified cholesterol accumulates in lysosomes of the central nervous system and hepatic cells. Oxidation by reactive oxygen species produces oxysterols that can be metabolised to specific bile acids. These bile acids have been suggested as useful biomarkers to detect NPC. Concentrations of 3β,5α,6β-trihydroxycholanyl glycine (3β,5α,6β-triOH-Gly) and 3β,7β-dihydroxy-5-cholenyl glycine (3β,7β-diOH-Δ5-Gly) were measured in plasma of 184 adults with idiopathic ataxia. All patients were tested with whole genome sequencing containing hereditary ataxia panels, which include NPC1 and NPC2 mutations and other genetic causes of ataxia. Plasma 3β,5α,6β-triOH-Gly above normal (>90 nM) was found in 8 out of 184 patients. One patient was homozygous for the p.(Val1165Met) mutation in the NPC1 gene. The remaining seven included one patient with Friedreich’s ataxia and three patients with autoimmune diseases. Oxidative stress is known to be increased in Friedreich’s ataxia and in autoimmune diseases. Therefore, this subset of patients possibly shares a common mechanism that determines the increase of this bile acid. In a large cohort of adults with ataxia, plasma 3β,5α,6β-triOH-Gly was able to detect the one patient in the cohort with NPC1 disease, but also detected oxidation of cholesterol by ROS in other disorders. Plasma 3β,7β-diOH-Δ5-Gly is not a potential biomarker for NPC1. Full article
Show Figures

Figure 1

22 pages, 1030 KiB  
Article
Combined Supplementation of Two Selenium Forms (Organic and Inorganic) and Iodine in Dairy Cows’ Diet to Obtain Enriched Milk, Cheese, and Yogurt
by Irene Azorín, Josefa Madrid, Silvia Martínez-Miró, Marina López, María Belén López, Miguel José López and Fuensanta Hernández
Animals 2024, 14(9), 1373; https://doi.org/10.3390/ani14091373 - 02 May 2024
Abstract
This study evaluated the effects of dietary supplementation in dairy cows with two Se forms (organic and inorganic) and I at the maximum levels permitted in the European Union, with the aim to obtain naturally enriched milk and derived products. A total of [...] Read more.
This study evaluated the effects of dietary supplementation in dairy cows with two Se forms (organic and inorganic) and I at the maximum levels permitted in the European Union, with the aim to obtain naturally enriched milk and derived products. A total of 20 Holstein Friesian cows in lactation were fed 2 diets for 64 days: a control diet with a supply of 0.57 mg of inorganic Se and 0.57 mg of I per kg of ration in dry matter (DM), and an experimental diet (SeI) with a supply of 0.34 mg of inorganic Se, 0.23 mg of organic Se, and 5.68 mg of I per kg of ration in DM. The SeI diet did not modify the performance or, in general, the metabolic profile of cows. Se and I levels in milk were affected by diet type and time of measurement (p < 0.01). Thus, a marked increase of both microminerals was evident between the beginning and the end of the test, when the SeI diet was administered. For Se, this increase ranged from 1.95 to 3.29 μg/100 g of milk; and for I, from 19.69 to 110.06 μg/100 g of milk. The SeI diet increased (p < 0.01) the Se and I content in the cheese, reaching levels of 16.4 μg/100 g for Se and 269.7 μg/100 g for I. An increase in I was observed in yogurt from the SeI diet (p < 0.001). The supplementation of two forms of Se and I in the cows’ ration, at the levels evaluated, produced milk and dairy products enriched in these microelements without altering their quality parameters. However, a responsible intake of these products is necessary to avoid risks of deficiencies or excesses that could negatively affect the health of consumers. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

15 pages, 2877 KiB  
Article
Identification of Molecular Profile of Ear Fibroblasts Derived from Spindle-Transferred Holstein Cattle with Ooplasts from Taiwan Yellow Cattle under Heat Stress
by Yu-Ju Lee, Jai-Wei Lee, Chao-Wei Huang, Kuo-Tai Yang, Shao-Yu Peng, Chi Yu, Yen-Hua Lee, I-Ling Lai and Perng-Chih Shen
Animals 2024, 14(9), 1371; https://doi.org/10.3390/ani14091371 - 02 May 2024
Abstract
Global warming has a significant impact on the dairy farming industry, as heat stress causes reproductive endocrine imbalances and leads to substantial economic losses, particularly in tropical–subtropical regions. The Holstein breed, which is widely used for dairy production, is highly susceptible to heat [...] Read more.
Global warming has a significant impact on the dairy farming industry, as heat stress causes reproductive endocrine imbalances and leads to substantial economic losses, particularly in tropical–subtropical regions. The Holstein breed, which is widely used for dairy production, is highly susceptible to heat stress, resulting in a dramatic reduction in milk production during hot seasons. However, previous studies have shown that cells of cows produced from reconstructed embryos containing cytoplasm (o) from Taiwan yellow cattle (Y) have improved thermotolerance despite their nuclei (n) being derived from heat-sensitive Holstein cattle (H). Using spindle transfer (ST) technology, we successfully produced ST-Yo-Hn cattle and proved that the thermotolerance of their ear fibroblasts is similar to that of Y and significantly better than that of H (p < 0.05). Despite these findings, the genes and molecules responsible for the different sensitivities of cells derived from ST-Yo-Hn and H cattle have not been extensively investigated. In the present study, ear fibroblasts from ST-Yo-Hn and H cattle were isolated, and differentially expressed protein and gene profiles were compared with or without heat stress (hs) (42 °C for 12 h). The results revealed that the relative protein expression levels of pro-apoptotic factors, including Caspase-3, -8, and -9, in the ear fibroblasts from the ST-Yo-Hn-hs group were significantly lower (p < 0.05) than those from the H-hs group. Conversely, the relative expression levels of anti-apoptotic factors, including GNA14 protein and the CRELD2 and PRKCQ genes, were significantly higher (p < 0.05) in the ear fibroblasts from the ST-Yo-Hn-hs group compared to those from the H-hs group. Analysis of oxidative phosphorylation-related factors revealed that the relative expression levels of the GPX1 gene and Complex-I, Complex-IV, CAT, and PGLS proteins were significantly higher (p < 0.05) in the ear fibroblasts from the ST-Yo-Hn-hs group compared to those from the H-hs group. Taken together, these findings suggest that ear fibroblasts from ST-Yo-Hn cattle have superior thermotolerance compared to those from H cattle due to their lower expression of pro-apoptotic factors and higher expression of oxidative phosphorylation and antioxidant factors. Moreover, this improved thermotolerance is attributed, at least partially, to the cytoplasm derived from more heat-tolerant Y cattle. Hence, using ST technology to produce more heat-tolerant H cattle containing Y cytoplasm could be a feasible approach to alleviate the negative impacts of heat stress on dairy cattle in tropical–subtropical regions. Full article
Show Figures

Figure 1

34 pages, 996 KiB  
Review
Highly Pathogenic Avian Influenza (HPAI) H5 Clade 2.3.4.4b Virus Infection in Birds and Mammals
by Giulia Graziosi, Caterina Lupini, Elena Catelli and Silvia Carnaccini
Animals 2024, 14(9), 1372; https://doi.org/10.3390/ani14091372 - 02 May 2024
Abstract
Avian influenza viruses (AIVs) are highly contagious respiratory viruses of birds, leading to significant morbidity and mortality globally and causing substantial economic losses to the poultry industry and agriculture. Since their first isolation in 2013-2014, the Asian-origin H5 highly pathogenic avian influenza viruses [...] Read more.
Avian influenza viruses (AIVs) are highly contagious respiratory viruses of birds, leading to significant morbidity and mortality globally and causing substantial economic losses to the poultry industry and agriculture. Since their first isolation in 2013-2014, the Asian-origin H5 highly pathogenic avian influenza viruses (HPAI) of clade 2.3.4.4b have undergone unprecedented evolution and reassortment of internal gene segments. In just a few years, it supplanted other AIV clades, and now it is widespread in the wild migratory waterfowl, spreading to Asia, Europe, Africa, and the Americas. Wild waterfowl, the natural reservoir of LPAIVs and generally more resistant to the disease, also manifested high morbidity and mortality with HPAIV clade 2.3.4.4b. This clade also caused overt clinical signs and mass mortality in a variety of avian and mammalian species never reported before, such as raptors, seabirds, sealions, foxes, and others. Most notably, the recent outbreaks in dairy cattle were associated with the emergence of a few critical mutations related to mammalian adaptation, raising concerns about the possibility of jumping species and acquisition of sustained human-to-human transmission. The main clinical signs and anatomopathological findings associated with clade 2.3.4.4b virus infection in birds and non-human mammals are hereby summarized. Full article
15 pages, 5373 KiB  
Article
The Role of the MYL4 Gene in Porcine Muscle Development and Its Molecular Regulatory Mechanisms
by Yourong Ye, Guoxin Wu, Haoqi Wang, Mengqi Duan, Peng Shang and Yangzom Chamba
Animals 2024, 14(9), 1370; https://doi.org/10.3390/ani14091370 - 02 May 2024
Abstract
Muscle growth stands as a pivotal economic trait within pig production, governed by a complex interplay of multiple genes, each playing a role in its quantitative manifestation. Understanding the intricate regulatory mechanisms of porcine muscle development is crucial for enhancing both pork yield [...] Read more.
Muscle growth stands as a pivotal economic trait within pig production, governed by a complex interplay of multiple genes, each playing a role in its quantitative manifestation. Understanding the intricate regulatory mechanisms of porcine muscle development is crucial for enhancing both pork yield and quality. This study used the GSE99749 dataset downloaded from the GEO database, conducting a detailed analysis of the RNA-seq results from the longissimus dorsi muscle (LD) of Tibetan pigs (TP), Wujin pigs (WJ) and large white pigs (LW) at 60 days of gestation, representing diverse body sizes and growth rates. Comparative analyses between TPvsWJ and TPvsLW, along with differential gene expression (DEG) analysis, functional enrichment analysis, and protein–protein interaction (PPI) network analysis, revealed 1048 and 1157 significantly differentially expressed genes (p < 0.001) in TPvsWJ and TPvsLW, respectively. With stricter screening criteria, 37 DEGs were found to overlap between the 2 groups. PPI analysis identified MYL5, MYL4, and ACTC1 as the three core genes. This article focuses on exploring the MYL4 gene. Molecular-level experimental validation, through overexpression and interference of the MYL4 gene combined with EDU staining experiments, demonstrated that overexpression of MYL4 significantly promoted the proliferation of porcine skeletal muscle satellite cells (PSMSC), while interference with MYL4 inhibited their proliferation. Furthermore, by examining the effects of overexpressing and interfering with the MYL4 gene on the muscle hypertrophy marker Fst gene and the muscle degradation marker FOXO3 gene, the pivotal role of the MYL4 gene in promoting muscle growth and preventing muscle degradation was further confirmed. These findings offer a new perspective on the molecular mechanisms behind porcine muscle growth and development, furnishing valuable data and insights for muscle biology research. Full article
(This article belongs to the Special Issue Biotechnology and Bioinformatics in Livestock)
Show Figures

Figure 1

17 pages, 4187 KiB  
Article
Perpetuation of Gender Bias in Visual Representation of Professions in the Generative AI Tools DALL·E and Bing Image Creator
by Teresa Sandoval-Martin and Ester Martínez-Sanzo
Soc. Sci. 2024, 13(5), 250; https://doi.org/10.3390/socsci13050250 - 02 May 2024
Abstract
Artificial intelligence (AI)-based generative imaging systems such as DALL·E, Midjourney, Stable Diffusion, and Adobe Firefly, which work by transforming natural language descriptions into images, are revolutionizing computer vision. In this exploratory and qualitative research, we have replicated requests for images of women in [...] Read more.
Artificial intelligence (AI)-based generative imaging systems such as DALL·E, Midjourney, Stable Diffusion, and Adobe Firefly, which work by transforming natural language descriptions into images, are revolutionizing computer vision. In this exploratory and qualitative research, we have replicated requests for images of women in different professions by comparing these representations in previous studies with DALL·E, observing that this model continues to provide in its last version, DALL·E 3, inequitable results in terms of gender. In addition, Bing Image Creator, Microsoft’s free tool that is widely used among the population and runs under DALL·E, has been tested for the first time. It also presents a sexualization of women and stereotypical children’s representations. The results reveal the following: 1. A slight improvement in terms of the presence of women in professions previously shown only with men. 2. They continue to offer biased results in terms of the objectification of women by showing sexualized women. 3. The representation of children highlights another level of gender bias, reinforcing traditional stereotypes associated with gender roles from childhood, which can impact future decisions regarding studies and occupations. Full article
Show Figures

Figure 1

19 pages, 2532 KiB  
Article
Study on the Effect of Post-Freezing Mechanical Properties of Polypropylene Fibre Concrete Based on BAS-BPNN
by Cundong Xu, Jun Cao, Jiahao Chen, Zhihang Wang and Wenhao Han
Buildings 2024, 14(5), 1289; https://doi.org/10.3390/buildings14051289 - 02 May 2024
Abstract
An indoor accelerated freezing and thawing test of polypropylene fibre-reinforced concrete in chloride and sulphate environments was conducted using the “fast-freezing method” with the objective of investigating the damage law of the post-freezing mechanical properties of hydraulic concrete structures and studying the effects [...] Read more.
An indoor accelerated freezing and thawing test of polypropylene fibre-reinforced concrete in chloride and sulphate environments was conducted using the “fast-freezing method” with the objective of investigating the damage law of the post-freezing mechanical properties of hydraulic concrete structures and studying the effects of different mixing amounts of polypropylene fibres on the mechanical properties of concrete. Furthermore, in order to reduce the cost of concrete tests and shorten the time required for conducting concrete tests, a backpropagation neural network based on a Beetle Antenna Search algorithm (BAS-BPNN) was established to simulate and predict the mechanical properties of polypropylene fibre-reinforced concrete. The accuracy of the model was verified. The results indicate that the order of improvement in the macro-physical properties of concrete due to fibre doping is as follows: PPF1.2 exhibited the greatest improvement in macro-physical properties of concrete, followed by PPF0.9, PPF1.5, PPF0.6, and PC. When the freezing and thawing medium and the number of cycles are identical, all four assessment indexes (R2, RMSE, SI, MAPE) demonstrate that the four groups of polypropylene fibre concrete exhibit superior performance to the control group of ordinary concrete. This indicates that polypropylene fibre can enhance the mechanical properties and freezing resistance of the concrete matrix, delay the process of freezing and thawing damage to the matrix, and extend the lifespan of the matrix, yet cannot prevent the ultimate failure of the matrix. The application of intelligent algorithms to optimise the parameters of an artificial neural network model can enhance its capacity to generalise and predict the mechanical properties of concrete. In terms of the coefficient of determination (R2), the Beetle Antenna Search algorithm (0.9782) outperforms the Particle Swarm Optimization (PSO; 0.9676), the Genetic Algorithm (GA; 0.9645), and the backpropagation neural network (BPNN; 0.9460). The improved backpropagation neural network based on the Beetle Antenna Search algorithm not only avoids the trap of local optimality but also improves the model accuracy while further accelerating the convergence speed. This approach can address the complexity, non-linearity, and modelling difficulties encountered during the freezing process of concrete. Moreover, it offers relatively accurate prediction outcomes at a reduced cost in comparison to traditional experimental methodologies. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
28 pages, 3091 KiB  
Article
Exploring the Impact of Rice Husk Ash Masonry Blocks on Building Energy Performance
by Nwakaego C. Onyenokporo, Ahmad Taki, Luis Zapata Montalvo and Muyiwa A. Oyinlola
Buildings 2024, 14(5), 1290; https://doi.org/10.3390/buildings14051290 - 02 May 2024
Abstract
Operational building energy consumption accounts for 55% of global energy consumption. Most of this is attributed to residential buildings, as they make up the largest building type when compared to the total building stock worldwide. As the building envelope is a major contributor [...] Read more.
Operational building energy consumption accounts for 55% of global energy consumption. Most of this is attributed to residential buildings, as they make up the largest building type when compared to the total building stock worldwide. As the building envelope is a major contributor to building energy performance, especially the external walls, its optimisation is therefore imperative to reduce energy consumption and carbon emissions. This study set out to assess the effects of waste material additions to external walls and their effect on building energy performance. This research aimed to critically investigate the effect of rice husk ash (RHA) masonry blocks on building energy performance when compared to conventional masonry blocks in tropical climates. A mix of methods, including experimental investigation and simulation studies, were employed for this study. Three variations of RHA block samples were created for this investigation: RHA 5%, RHA 10%, and RHA 15%. Using prototype buildings from the study context, the building simulation results helped quantify the impact on building energy performance from the reuse of rice waste. The largest improvement to the building fabric was recorded with the RHA15% blocks, which resulted in a 9.9% and 11.3% reduction in solar heat gains through the external walls for the selected bungalow and duplex/storey building, respectively. This resulted in a 6.55% and 4.2% reduction in cooling loads and a 4.1% and 2.8% reduction in carbon emissions, respectively, for the bungalow and duplex/storey building. The findings of this research will prove valuable to householders, researchers, architects, and policymakers in their decision-making processes. The findings will also be useful in introducing new methods that can be adopted for similar studies, bridging the knowledge gap while promoting a circular economy through the reuse of landfilled waste. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
20 pages, 1451 KiB  
Technical Note
Comparing Small Water Bodies’ Impact on Subtropical Campus Outdoor Temperature: Measured vs. Simulated Data
by Ming-Cheng Liao, Wen-Pei Sung and Qing-Qing Chen Shi
Buildings 2024, 14(5), 1288; https://doi.org/10.3390/buildings14051288 - 02 May 2024
Abstract
This study investigates the impact of small water bodies on outdoor temperatures in their vicinity, using a campus located in the subtropical region of Taichung City, Taiwan, as the research subject. By employing on-site measurements and Computational Fluid Dynamics (CFD) simulations, we examined [...] Read more.
This study investigates the impact of small water bodies on outdoor temperatures in their vicinity, using a campus located in the subtropical region of Taichung City, Taiwan, as the research subject. By employing on-site measurements and Computational Fluid Dynamics (CFD) simulations, we examined their temporal and spatial influence, as well as comparisons between actual measurements and software predictions. Key findings include the following: (1) Small water bodies exhibit discernible temperature-regulating effects on their surrounding areas. While the influence diminishes with distance, this attenuation is not stark, and is potentially constrained by the water body’s patch size. (2) Regulatory effects vary between day and night. In summer, temperature reductions of up to 3.5 °C (simulated) and 3.2 °C (measured) were observed. Conversely, in winter, daytime temperatures around water bodies may rise by up to 3.9 °C. (3) Discrepancies between CFD simulations and actual measurements, influenced by fluctuations in Global Horizontal Irradiation (GHI), range from +2.5 °C to −1.8 °C. During high GHI periods, measured values surpass simulations, whereas during low or zero GHI conditions, simulations exceed measurements. Moreover, high regression analysis R2 values validate the feasibility of CFD simulations for predicting water body-induced temperature changes. Insights from this study offer valuable guidance for urban planners and policymakers seeking sustainable urban climate management strategies. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
26 pages, 13768 KiB  
Article
Study on the Coupled Heat Transfer of Conduction, Convection, and Radiation in Foam Concrete Based on a Microstructure Numerical Model
by Tao Huang, Mengge Wang, Shuang Feng, Zhongqi Peng, Xiaoyu Huang and Yaohua Song
Buildings 2024, 14(5), 1287; https://doi.org/10.3390/buildings14051287 - 02 May 2024
Abstract
Foam concrete is a typical cement-based porous material; its special microstructure endows it with excellent properties, such as light weight, energy efficiency, thermal insulation, and fire resistance. Therefore, it is widely used as a thermal insulation material for buildings. The heat transfer modes [...] Read more.
Foam concrete is a typical cement-based porous material; its special microstructure endows it with excellent properties, such as light weight, energy efficiency, thermal insulation, and fire resistance. Therefore, it is widely used as a thermal insulation material for buildings. The heat transfer modes of foam concrete include conduction, convection, and radiation. However, previous studies considered conduction to be the dominant mode, often neglecting the effects of convection and radiation. In this study, a stochastic numerical model of the foam concrete microstructure is established based on the statistical parameters of the pore structure. With this model, the heat transfer mechanism of foam concrete is analyzed at the mesoscopic level, and the equivalent thermal conductivity is calculated. By comparing four different working conditions, the influence of conduction, convection, and radiation on the heat transfer of foam concrete is analyzed, and the specific contribution rates of conduction, convection, and radiation are calculated. The results show that the convection effect is weak due to the pore size being smaller than 1 ; so, the influence of convection can be neglected in the heat transfer analysis of foam concrete. The contribution of radiation increases with the decrease in foam concrete density and the increase in temperature difference. When the temperature difference is 40 and the density is 300 , the contribution of radiation exceeds 20. Therefore, for low-density and high-temperature difference situations, the influence of radiation cannot be ignored. The heat transfer in foam concrete is mainly through conduction, but with the decrease in density and the increase in temperature difference, the contribution of conduction shows a downward trend. Nevertheless, the contribution of conduction is still much larger than that of radiation and convection. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
12 pages, 3806 KiB  
Article
Novel Genotype of HA Clade 2.3.4.4b H5N8 Subtype High Pathogenicity Avian Influenza Virus Emerged at a Wintering Site of Migratory Birds in Japan, 2021/22 Winter
by Berihun Dires Mihiretu, Tatsufumi Usui, Masahiro Kiyama, Kosuke Soda and Tsuyoshi Yamaguchi
Pathogens 2024, 13(5), 380; https://doi.org/10.3390/pathogens13050380 - 02 May 2024
Abstract
Surveillance of avian influenza virus (AIV) was conducted in the 2021–2022 winter season at a wintering site of migratory Anatidae in Japan. An H5N8 subtype high pathogenicity AIV (HPAIV) with a unique gene constellation and four low pathogenicity AIVs (LPAIVs) were isolated from [...] Read more.
Surveillance of avian influenza virus (AIV) was conducted in the 2021–2022 winter season at a wintering site of migratory Anatidae in Japan. An H5N8 subtype high pathogenicity AIV (HPAIV) with a unique gene constellation and four low pathogenicity AIVs (LPAIVs) were isolated from environmental samples. The genetic origin of the HPAIV (NK1201) was determined with whole-genome sequencing and phylogenetic analyses. Six of NK1201’s eight genes were closely related to HA clade 2.3.4.4b H5N8 subtype HPAIVs, belonging to the G2a group, which was responsible for outbreaks in poultry farms in November 2021 in Japan. However, the remaining two genes, PB1 and NP, most closely matched those of the LPAIVs H7N7 and H1N8, which were isolated at the same place in the same 2021–2022 winter. No virus of the NK1201 genotype had been detected prior to the 2021–2022 winter, indicating that it emerged via genetic reassortment among HPAIV and LPAIVs, which were prevalent at the same wintering site. In addition, experimental infection in chickens indicated that NK1201 had slightly different infectivity compared to the reported infectivity of the representative G2a group H5N8 HPAIV, suggesting that the PB1 and NP genes derived from LPAIVs might have affected the pathogenicity of the virus in chickens. Our results directly demonstrate the emergence of a novel genotype of H5N8 HPAIV through gene reassortment at a wintering site. Analyses of AIVs at wintering sites can help to identify the emergence of novel HPAIVs, which pose risks to poultry, livestock, and humans. Full article
Show Figures

Figure 1

16 pages, 7765 KiB  
Article
Al and A356 Alloy Foam Castings Modified with Low Concentrations of Nano-Sized Particles: Structural Study and Compressive Strength Tests
by Rositza Dimitrova, Tatiana Simeonova, Boyko Krastev, Angel Velikov, Veselin Petkov and Valentin Manolov
Metals 2024, 14(5), 542; https://doi.org/10.3390/met14050542 - 02 May 2024
Abstract
Aluminum and A356 alloy foam castings are produced using a melt-foaming method. Prior to foaming, the melt is modified with nano-sized particles (SiC, TiN, or Al2O3). The nano-sized particles are mixed with micro-sized Al particles, which are ultrasonically treated [...] Read more.
Aluminum and A356 alloy foam castings are produced using a melt-foaming method. Prior to foaming, the melt is modified with nano-sized particles (SiC, TiN, or Al2O3). The nano-sized particles are mixed with micro-sized Al particles, which are ultrasonically treated and hot-extruded. Thus, the so-called “modifying nano-composition” is obtained. The resulting compositions are introduced into the melt of the Al foam at the following mass concentrations of nanoparticles: SiC: 0.038 wt. %; TiN: 0.045 wt. %; and Al2O3: 0.046 wt. %. For the A356 foam, we use the following concentrations: SiC: 0.039 wt. %; TiN: 0.052 wt. %; and Al2O3: 0.086 wt. %. The macrostructure of the foam castings is investigated by CT scanning and 3D analysis. The pore size distributions and accumulative fraction dependencies are determined for all samples. The microstructure of the foam castings is investigated by SEM-EDS analysis. The results confirmed the presence of individual nano-sized particles, as well as clusters of particles in foam walls. The conducted compression tests show a significant increase in the plateau stress (up to 237%) of the modified aluminum foam castings compared to non-modified castings. However, a similar effect of the nano-compositions on A356 alloy foam castings is not observed. The obtained results show that the above-indicated concentrations of nanoparticles can positively influence the mechanical properties of aluminum foam castings. The novelty of the current study is two-fold: (1) such low concentrations of added nanoparticles have never been used before to alter Al foam’s properties, and (2) an original method of introducing the nanoparticles into the melt is applied in the form of nano-compositions. Full article
Show Figures

Figure 1

13 pages, 28485 KiB  
Article
Revealing the Enhancement Mechanism of Laser Cutting on the Strength–Ductility Combination in Low Carbon Steel
by Jie Chen, Feiyue Tu, Pengfei Wang and Yu Cao
Metals 2024, 14(5), 541; https://doi.org/10.3390/met14050541 - 02 May 2024
Abstract
The strength–ductility mechanism of the low-carbon steels processed by laser cutting is investigated in this paper. A typical gradient-phased structure can be obtained near the laser cutting surface, which consists of a laser-remelted layer (LRL, with the microstructure of lath bainite + granular [...] Read more.
The strength–ductility mechanism of the low-carbon steels processed by laser cutting is investigated in this paper. A typical gradient-phased structure can be obtained near the laser cutting surface, which consists of a laser-remelted layer (LRL, with the microstructure of lath bainite + granular bainite) and heat-affected zone (HAZ). As the distance from the laser cutting surface increases, the content of lath martensite decreases in the HAZ, which is accompanied by a rise in the content of ferrite. Considering that the microstructures of the LRL and HAZ are completely different from the base metal (BM, ferrite + pearlite), a significant strain gradient can be inevitably generated by the remarkable microhardness differences in the gradient-phased structure. The hetero-deformation-induced strengthening and hardening will be produced, which is related to the pileups of the geometrically necessary dislocations (GNDs) that are generated to accommodate the strain gradient near interfaces. Plural phases of the HAZ can also contribute to the increment of the hetero-deformation-induced strengthening and hardening during deformation. Due to the gradient-phased structure, the low carbon steels under the process of laser cutting have a superior combination of strength and ductility as yield strength of ~487 MPa, tensile strength of ~655 MPa, and total elongation of ~32.7%. Full article
Show Figures

Figure 1

15 pages, 28225 KiB  
Article
Effect of Force and Heat Coupling on Machined Surface Integrity and Fatigue Performance of Superalloy GH4169 Specimens
by Xun Li, Ruijie Gou and Ning Zhang
Metals 2024, 14(5), 540; https://doi.org/10.3390/met14050540 - 02 May 2024
Abstract
GH4169 is one of the key materials used to manufacture high-temperature load-bearing parts for aero-engines, and the surface integrity of these parts in service conditions significantly affects their high-temperature fatigue performance. Under a coupling effect of high temperature and alternating load, the evolution [...] Read more.
GH4169 is one of the key materials used to manufacture high-temperature load-bearing parts for aero-engines, and the surface integrity of these parts in service conditions significantly affects their high-temperature fatigue performance. Under a coupling effect of high temperature and alternating load, the evolution process of the machined surface integrity index of superalloy GH4169 specimens was studied, and fatigue performance tests at 20 °C, 450 °C, and 650 °C were carried out to analyze the primary factors affecting the high-temperature fatigue performance of specimens. The results indicated that the surface roughness of specimens remained essentially unchanged. However, the value of surface residual stress decreased significantly, with a release of more than 60% at the highest temperature. At 650 °C, the surface microhardness increased, while the degree of surface plastic deformation decreased under alternating loads. Simultaneously, when the surface roughness was less than Ra 0.4 μm, surface microhardness was the main factor affecting the high-temperature fatigue performance of specimens. The influence of surface microhardness on low-cycle fatigue performance was not consistent with that on high-cycle fatigue performance. The latter increased monotonically, whereas the former initially increased and then decreased with increasing surface microhardness. Full article
(This article belongs to the Special Issue Advances in Lightweight Alloys)
Show Figures

Figure 1

22 pages, 931 KiB  
Article
A Hybrid MCDM Approach Using the BWM and the TOPSIS for a Financial Performance-Based Evaluation of Saudi Stocks
by Abdulrahman T. Alsanousi, Ammar Y. Alqahtani, Anas A. Makki and Majed A. Baghdadi
Information 2024, 15(5), 258; https://doi.org/10.3390/info15050258 - 02 May 2024
Abstract
This study presents a hybrid multicriteria decision-making approach for evaluating stocks in the Saudi Stock Market. The objective is to provide investors and stakeholders with a robust evaluation methodology to inform their investment decisions. With a market value of USD 2.89 trillion dollars [...] Read more.
This study presents a hybrid multicriteria decision-making approach for evaluating stocks in the Saudi Stock Market. The objective is to provide investors and stakeholders with a robust evaluation methodology to inform their investment decisions. With a market value of USD 2.89 trillion dollars in September 2022, the Saudi Stock Market is of significant importance for the country’s economy. However, navigating the complexities of stock market performance poses investment challenges. This study employs the best–worst method and the technique for order preference by similarity to identify an ideal solution to address these challenges. Utilizing data from the Saudi Stock Market (Tadawul), this study evaluates stock performance based on financial criteria, including return on equity, return on assets, net profit margin, and asset turnover. The findings reveal valuable insights, particularly in the banking sector, which exhibited the highest net profit margin ratios among sectors. The hybrid multicriteria decision-making-based approach enhances investment decisions. This research provides a foundation for future investigations, facilitating a deeper exploration and analysis of additional aspects of the Saudi Stock Market’s performance. The developed methodology and findings have implications for investors and stakeholders, aiding their investment decisions and maximizing returns. Full article
(This article belongs to the Special Issue New Applications in Multiple Criteria Decision Analysis II)
Show Figures

Figure 1

21 pages, 11491 KiB  
Article
FIWARE-Compatible Smart Data Models for Satellite Imagery and Flood Risk Assessment to Enhance Data Management
by Ioannis-Omiros Kouloglou, Gerasimos Antzoulatos, Georgios Vosinakis, Francesca Lombardo, Alberto Abella, Marios Bakratsas, Anastasia Moumtzidou, Evangelos Maltezos, Ilias Gialampoukidis, Eleftherios Ouzounoglou, Stefanos Vrochidis, Angelos Amditis, Ioannis Kompatsiaris and Michele Ferri
Information 2024, 15(5), 257; https://doi.org/10.3390/info15050257 - 02 May 2024
Abstract
The increasing rate of adoption of innovative technological achievements along with the penetration of the Next Generation Internet (NGI) technologies and Artificial Intelligence (AI) in the water sector are leading to a shift to a Water-Smart Society. New challenges have emerged in terms [...] Read more.
The increasing rate of adoption of innovative technological achievements along with the penetration of the Next Generation Internet (NGI) technologies and Artificial Intelligence (AI) in the water sector are leading to a shift to a Water-Smart Society. New challenges have emerged in terms of data interoperability, sharing, and trustworthiness due to the rapidly increasing volume of heterogeneous data generated by multiple technologies. Hence, there is a need for efficient harmonization and smart modeling of the data to foster advanced AI analytical processes, which will lead to efficient water data management. The main objective of this work is to propose two Smart Data Models focusing on the modeling of the satellite imagery data and the flood risk assessment processes. The utilization of those models reinforces the fusion and homogenization of diverse information and data, facilitating the adoption of AI technologies for flood mapping and monitoring. Furthermore, a holistic framework is developed and evaluated via qualitative and quantitative performance indicators revealing the efficacy of the proposed models concerning the usage of the models in real cases. The framework is based on the well-known and compatible technologies on NGSI-LD standards which are customized and applicable easily to support the water data management processes effectively. Full article
11 pages, 1784 KiB  
Article
Influence of Laser Texturing and Coating on the Tribological Properties of the Tool Steels Properties
by Jana Moravčíková, Roman Moravčík, Martin Sahul and Martin Necpal
Machines 2024, 12(5), 311; https://doi.org/10.3390/machines12050311 - 02 May 2024
Abstract
The article is aimed at identifying the influence of laser texturing and subsequent coating with a hard, wear-resistant coating AlCrSiN (nACRo®) on selected tribological properties of the analyzed tool steels for cold work, produced by conventional and powder metallurgy. The substrate [...] Read more.
The article is aimed at identifying the influence of laser texturing and subsequent coating with a hard, wear-resistant coating AlCrSiN (nACRo®) on selected tribological properties of the analyzed tool steels for cold work, produced by conventional and powder metallurgy. The substrate from each steel was heat treated to achieve optimal properties regarding the chemical composition and the method of production of the material. Böhler K100 and K390 Microclean® steels were used. These are highly alloyed tool steels used for various types of tools intended for cold work. The obtained results show that the coefficient of friction is increased by coating, but the wear rate is lower compared to the samples which were only textured. Full article
(This article belongs to the Special Issue Precision Manufacturing and Machine Tools)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop