The 2023 MDPI Annual Report has
been released!
 
23 pages, 15008 KiB  
Review
Review of the Real-Time Monitoring Technologies for Lithium Dendrites in Lithium-Ion Batteries
by Yifang Liang, Daiheng Song, Wenju Wu, Yanchao Yu, Jun You and Yuanpeng Liu
Molecules 2024, 29(9), 2118; https://doi.org/10.3390/molecules29092118 (registering DOI) - 03 May 2024
Abstract
Lithium-ion batteries (LIBs) have the advantage of high energy density, which has attracted the wide attention of researchers. Nevertheless, the growth of lithium dendrites on the anode surface causes short life and poor safety, which limits their application. Therefore, it is necessary to [...] Read more.
Lithium-ion batteries (LIBs) have the advantage of high energy density, which has attracted the wide attention of researchers. Nevertheless, the growth of lithium dendrites on the anode surface causes short life and poor safety, which limits their application. Therefore, it is necessary to deeply understand the growth mechanism of lithium dendrites. Here, the growth mechanism of lithium dendrites is briefly summarized, and the real-time monitoring technologies of lithium dendrite growth in recent years are reviewed. The real-time monitoring technologies summarized here include in situ X-ray, in situ Raman, in situ resonance, in situ microscopy, in situ neutrons, and sensors, and their representative studies are summarized. This paper is expected to provide some guidance for the research of lithium dendrites, so as to promote the development of LIBs. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Electrochemistry)
Show Figures

Figure 1

15 pages, 1319 KiB  
Article
Study on the Optimization, Extraction Kinetics and Thermodynamics of the Ultrasound-Assisted Enzymatic Extraction of Tremella fuciformis Polysaccharides
by Furong Hou, Shasha Song, Shuhui Yang, Yansheng Wang, Fengjuan Jia and Wenliang Wang
Foods 2024, 13(9), 1408; https://doi.org/10.3390/foods13091408 (registering DOI) - 03 May 2024
Abstract
In this study, Tremella fuciformis polysaccharides (TFPs) were extracted by ultrasound-assisted enzymatic extraction (UAE) at different extraction parameters in order to explore the potential of ultrasound in intensifying the extraction yield. The effects of experimental conditions on the extraction yields were optimized using [...] Read more.
In this study, Tremella fuciformis polysaccharides (TFPs) were extracted by ultrasound-assisted enzymatic extraction (UAE) at different extraction parameters in order to explore the potential of ultrasound in intensifying the extraction yield. The effects of experimental conditions on the extraction yields were optimized using response surface methodology, with the optimal ultrasonic power of 700 W, temperature of 45 °C and time of 50 min. The kinetic analysis revealed that UAE significantly promoted the dissolution, diffusion and migration with the maximum yield of 26.39%, which was enhanced by 40.45% and 156.96% compared with individual ultrasonic extraction (UE) and enzymatic extraction (EE). According to the modified Fick’s second law of diffusion, the extraction process of TFPs illustrated a good linear correlation (R2 ≥ 0.9), and the rate constant gradually elevated as the temperature increased from 25 to 45 °C, while the presence of ultrasound exerted a vital role in extracting TFPs. Regarding to the thermodynamic results, the positive values of ΔH and ΔG demonstrated that UAE, UE and EE were endothermic and unspontaneous processes. This study provides a theoretical basis for polysaccharide extraction processing. Full article
(This article belongs to the Special Issue Ultrasound Processing and Modification of Food Systems)
19 pages, 1581 KiB  
Review
Estrogen Signals through ERβ in Breast Cancer; What We Have Learned since the Discovery of the Receptor
by Harika Nagandla and Christoforos Thomas
Receptors 2024, 3(2), 182-200; https://doi.org/10.3390/receptors3020010 (registering DOI) - 03 May 2024
Abstract
Estrogen receptor (ER) β (ERβ) is the second ER subtype that mediates the effects of estrogen in target tissues along with ERα that represents a validated biomarker and target for endocrine therapy in breast cancer. ERα was the only known ER subtype until [...] Read more.
Estrogen receptor (ER) β (ERβ) is the second ER subtype that mediates the effects of estrogen in target tissues along with ERα that represents a validated biomarker and target for endocrine therapy in breast cancer. ERα was the only known ER subtype until 1996 when the discovery of ERβ opened a new chapter in endocrinology and prompted a thorough reevaluation of the estrogen signaling paradigm. Unlike the oncogenic ERα, ERβ has been proposed to function as a tumor suppressor in breast cancer, and extensive research is underway to uncover the full spectrum of ERβ activities and elucidate its mechanism of action. Recent studies have relied on new transgenic models to capture effects in normal and malignant breast that were not previously detected. They have also benefited from the development of highly specific synthetic ligands that are used to demonstrate distinct mechanisms of gene regulation in cancer. As a result, significant new information about the biology and clinical importance of ERβ is now available, which is the focus of discussion in the present article. Full article
Show Figures

Figure 1

13 pages, 1531 KiB  
Article
MD3F: Multivariate Distance Drift Diffusion Framework for High-Dimensional Datasets
by Jessica Zielinski, Patricia Corby and Alexander V. Alekseyenko
Genes 2024, 15(5), 582; https://doi.org/10.3390/genes15050582 (registering DOI) - 03 May 2024
Abstract
High-dimensional biomedical datasets have become easier to collect in the last two decades with the advent of multi-omic and single-cell experiments. These can generate over 1000 measurements per sample or per cell. More recently, focus has been drawn toward the need for longitudinal [...] Read more.
High-dimensional biomedical datasets have become easier to collect in the last two decades with the advent of multi-omic and single-cell experiments. These can generate over 1000 measurements per sample or per cell. More recently, focus has been drawn toward the need for longitudinal datasets, with the appreciation that important dynamic changes occur along transitions between health and disease. Analysis of longitudinal omics data comes with many challenges, including type I error inflation and corresponding loss in power when thousands of hypothesis tests are needed. Multivariate analysis can yield approaches with higher statistical power; however, multivariate methods for longitudinal data are currently limited. We propose a multivariate distance-based drift-diffusion framework (MD3F) to tackle the need for a multivariate approach to longitudinal, high-throughput datasets. We show that MD3F can result in surprisingly simple yet valid and powerful hypothesis testing and estimation approaches using generalized linear models. Through simulation and application studies, we show that MD3F is robust and can offer a broadly applicable method for assessing multivariate dynamics in omics data. Full article
(This article belongs to the Special Issue Application of Bioinformatics in Microbiome)
Show Figures

Figure 1

20 pages, 2073 KiB  
Review
Are Clay Minerals Systematically the Products of Aqueous Alteration in Cosmic Bodies?
by Abderrazak El Albani, Ibtissam Chraiki, Hasnaa Chennaoui Aoudjehane, Mohamed Ghnahalla, Fatima Abdelfadel, Ahmed Abd Elmola, Olabode Bankole, Julie Ngwal’ghoubou Ikouanga, Anna El Khoury, Claude Fontaine, El Hafid Bouougri, France Westall and Alain Meunier
Minerals 2024, 14(5), 486; https://doi.org/10.3390/min14050486 (registering DOI) - 03 May 2024
Abstract
The formation of chondrite materials represents one of the earliest mineralogical processes in the solar system. Phyllosilicates are encountered at various stages of the chondrule formation, from the initial stages (IDP agglomerates) to the final steps (chondrule internal alteration). While typically linked to [...] Read more.
The formation of chondrite materials represents one of the earliest mineralogical processes in the solar system. Phyllosilicates are encountered at various stages of the chondrule formation, from the initial stages (IDP agglomerates) to the final steps (chondrule internal alteration). While typically linked to aqueous alteration, recent studies reveal that phyllosilicates could precipitate directly from residual fluids in post-magmatic or deuteric conditions and under a wide range of temperatures, pressures, water/rock ratios, and H2/H2O ratio conditions. This study re-examined the formation of hydrated phyllosilicates in chondrules and associated fine-grained rims (FGRs) using published petrographical, mineralogical, and chemical data on carbonaceous chondrites. Given that chondrules originate from the melting of interplanetary dust particles, the water liberated by the devolatilization of primary phyllosilicates, including clay minerals or ice melting, reduces the melting temperature and leads to water dissolution into the silicate melt. Anhydrous minerals (e.g., olivine and diopside) form first, while volatile and incompatible components are concentrated in the residual liquid, diffusing into the matrix and forming less porous FGRs. Serpentine and cronstedtite are the products of thermal metamorphic-like mineral reactions. The mesostasis in some lobated chondrules is composed of anhydrous and hydrous minerals, i.e., diopside and serpentine. The latter is probably not the alteration product of a glassy precursor but rather a symplectite component (concomitant crystallization of diopside and serpentine). If so, the symplectite has been formed at the end of the cooling process (eutectic-like petrographical features). Water trapped inside chondrule porosity can lead to the local replacement of olivine by serpentine without external water input (auto-alteration). In the absence of water, hydrated phyllosilicates do not crystallize, forming a different mineral assemblage. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
16 pages, 10269 KiB  
Article
Effect of Temperature and NaClO on the Corrosion Behavior of Copper in Synthetic Tap Water
by Fei Sun, Na Zhang, Shen Chen and Moucheng Li
Metals 2024, 14(5), 543; https://doi.org/10.3390/met14050543 (registering DOI) - 03 May 2024
Abstract
The corrosion behavior of copper was investigated in synthetic tap water with and without sodium hypochlorite (NaClO) at different temperatures during immersion for 70 d by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurement techniques. The weight loss corrosion rate [...] Read more.
The corrosion behavior of copper was investigated in synthetic tap water with and without sodium hypochlorite (NaClO) at different temperatures during immersion for 70 d by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurement techniques. The weight loss corrosion rate and pit depth of copper first increase and then decrease with the change in solution temperature from 25 to 80 °C. This is mainly related to the corrosion products formed on the copper surface. The main corrosion products change from Cu2O and Cu2(OH)2CO3 to CuO with the increase in solution temperature. The presence of 3 ppm NaClO slightly increases the weight loss corrosion rate and pit depth of copper under all temperatures except for 50 °C and reduces the temperature of the maximum corrosion rate from 50 to 40 °C. Free chlorine reduction accelerates the cathodic reaction of the corrosion process. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

11 pages, 541 KiB  
Article
Selenoprotein P in a Rodent Model of Exercise; Theorizing Its Interaction with Brain Reward Dysregulation, Addictive Behavior, and Aging
by Patrick Mohr, Colin Hanna, Aidan Powell, Samantha Penman, Kenneth Blum, Alireza Sharafshah, Kai-Uwe Lewandrowski, Rajendra D. Badgaiyan, Abdalla Bowirrat, Albert Pinhasov and Panayotis K. Thanos
J. Pers. Med. 2024, 14(5), 489; https://doi.org/10.3390/jpm14050489 (registering DOI) - 03 May 2024
Abstract
Exercise promotes health and wellness, including its operation as a protective factor against a variety of psychological, neurological, and chronic diseases. Selenium and its biomarker, selenoprotein P (SEPP1), have been implicated in health, including cancer prevention, neurological function, and dopamine signaling. SEPP1 blood [...] Read more.
Exercise promotes health and wellness, including its operation as a protective factor against a variety of psychological, neurological, and chronic diseases. Selenium and its biomarker, selenoprotein P (SEPP1), have been implicated in health, including cancer prevention, neurological function, and dopamine signaling. SEPP1 blood serum levels were compared with a one-way ANOVA between sedentary (SED), moderately exercised (MOD) [10 m/min starting at 10 min, increasing to 60 min], and high-intensity interval training (HIIT) exercised rats [30 min in intervals of 2-min followed by a 1-min break, speed progressively increased from 10 to 21 m/min]. HIIT rats showed significantly higher serum SEPP1 concentrations compared to MOD and SED. More specifically, HIIT exercise showed an 84% increase in SEPP1 levels compared to sedentary controls. MOD rats had greater serum SEPP1 concentrations compared to SED, a 33% increase. The results indicated that increased exercise intensity increases SEPP1 levels. Exercise-induced increases in SEPP1 may indicate an adaptive response to the heightened oxidative stress. Previous studies found a significant increase in dopamine D2 receptor (D2R) binding in these same rats, suggesting a potential association between SEPP1 and dopamine signaling during exercise. Modulating antioxidants like SEPP1 through personalized therapies, including exercise, has broad implications for health, disease, and addiction. Full article
(This article belongs to the Section Personalized Therapy and Drug Delivery)
Show Figures

Figure 1

14 pages, 2559 KiB  
Article
Interaction of Norsecurinine-Type Oligomeric Alkaloids with α-Tubulin: A Molecular Docking Study
by Gérard Vergoten and Christian Bailly
Plants 2024, 13(9), 1269; https://doi.org/10.3390/plants13091269 (registering DOI) - 03 May 2024
Abstract
The medicinal plant Securinega virosa (Roxb ex. Willd) Baill., also known as Flueggea virosa (Roxb. ex Willd.) Royle, is commonly used in traditional medicine in Africa and Asia for the management of diverse pathologies, such as parasite infections, diabetes, and gastrointestinal diseases. Numerous [...] Read more.
The medicinal plant Securinega virosa (Roxb ex. Willd) Baill., also known as Flueggea virosa (Roxb. ex Willd.) Royle, is commonly used in traditional medicine in Africa and Asia for the management of diverse pathologies, such as parasite infections, diabetes, and gastrointestinal diseases. Numerous alkaloids have been isolated from the twigs and leaves of the plant, notably a variety of oligomeric indolizidine alkaloids derived from the monomers securinine and norsecurinine which both display anticancer properties. The recent discovery that securinine can bind to tubulin and inhibit microtubule assembly prompted us to investigate the potential binding of two series of alkaloids, fluevirosines A–H and fluevirosinine A-J, with the tubulin dimer by means of molecular modeling. These natural products are rare high-order alkaloids with tri-, tetra-, and pentameric norsecurinine motifs. Despite their large size (up to 2500 Å3), these alkaloids can bind easily to the large drug-binding cavity (about 4800 Å3) on α-tubulin facing the β-tubulin unit. The molecular docking analysis suggests that these hydrophobic macro-alkaloids can form stable complexes with α/β-tubulin. The tubulin-binding capacity varies depending on the alkaloid size and structure. Structure-binding relationships are discussed. The docking analysis identifies the trimer fluevirosine D, tetramer fluevirosinine D, and pentamer fluevirosinine H as the most interesting tubulin ligands in the series. This study is the first to propose a molecular target for these atypical oligomeric Securinega alkaloids. Full article
23 pages, 37441 KiB  
Article
Model Test and Numerical Simulation for Tunnel Leakage-Induced Seepage Erosion in Different Strata
by Qihao Sun, Wouter De Corte, Xian Liu and Luc Taerwe
Appl. Sci. 2024, 14(9), 3908; https://doi.org/10.3390/app14093908 (registering DOI) - 03 May 2024
Abstract
Leakage in underground structures, especially tunnels, may cause seepage erosion in the surrounding soil, which in turn leads to ground subsidence, posing a great threat to urban safety. The current literature mainly focuses on seepage erosion in the sand but lacks a systematic [...] Read more.
Leakage in underground structures, especially tunnels, may cause seepage erosion in the surrounding soil, which in turn leads to ground subsidence, posing a great threat to urban safety. The current literature mainly focuses on seepage erosion in the sand but lacks a systematic study on the development process of seepage erosion induced by tunnel leakage in different strata. To investigate the different seepage erosion modes induced by tunnel leakage in different stratum types, a series of reduced-scale model tests were carried out. A coupled fluid–solid numerical model was further established to analyze the fine-scale characteristics of different seepage erosion modes. The results show that (1) the soil seepage erosion modes can be divided into three categories: no soil cave, unstable soil cave, and stable soil cave; (2) the adopted coupled fluid–solid numerical model based on DEM, which takes into account the degradation of clay during seepage erosion, can effectively simulate the erosion process of soil with different seepage erosion modes; (3) the phenomena of the three erosion modes are different in the process of erosion development; and (4) the micro-mechanisms of the three seepage erosion modes are different, which are manifested in the erosion range, soil arching effect, and displacement. Full article
(This article belongs to the Special Issue Advances in Tunnel and Underground Engineering)
Show Figures

Figure 1

14 pages, 5133 KiB  
Article
Qualitative Changes in Birch Sap after Freezing and Thawing
by Justas Mingaila, Vladas Vilimas, Pranas Viškelis, Vitas Marozas, Česlovas Bobinas and Jonas Viškelis
Forests 2024, 15(5), 809; https://doi.org/10.3390/f15050809 (registering DOI) - 03 May 2024
Abstract
In this study, the qualitative changes in raw birch sap after freezing and thawing were determined. Ten-liter bottles and one-ton plastic containers with six replications were used for the freezing of birch sap and thawing of frozen sap. During and after the thawing, [...] Read more.
In this study, the qualitative changes in raw birch sap after freezing and thawing were determined. Ten-liter bottles and one-ton plastic containers with six replications were used for the freezing of birch sap and thawing of frozen sap. During and after the thawing, the physical and physical–chemical properties of the sap were measured. According to the results, as the ice melts, the concentration of acids and other soluble substances in the sap decreases, but changes in qualitative indicators indicate the beginning of fermentation processes through color changes and pH as the temperature of the melting sap becomes positive. As a result, to freeze raw sap in large-volume containers, it is necessary to develop fast thawing technology using auxiliary means—circulation, external energy sources, and mechanical ice crushing. Full article
(This article belongs to the Special Issue Non-timber Forest Products: Beyond the Wood)
Show Figures

Figure 1

25 pages, 947 KiB  
Article
The Impact of Change Orders Caused by Legislative Changes on Program Management in the UAE Construction Industry
by Yara Mattar, Mhd Amer Alzaim, Mariam AlAli, Inas Alkhatib and Salwa Beheiry
Buildings 2024, 14(5), 1294; https://doi.org/10.3390/buildings14051294 (registering DOI) - 03 May 2024
Abstract
Program management is an important strategy for organizing and managing multiple interdependent construction projects to achieve strategic goals. However, when change orders occur, they can have a serious impact on the quality, time, cost of projects and, ultimately, affect the construction program. Furthermore, [...] Read more.
Program management is an important strategy for organizing and managing multiple interdependent construction projects to achieve strategic goals. However, when change orders occur, they can have a serious impact on the quality, time, cost of projects and, ultimately, affect the construction program. Furthermore, when change orders are caused particularly by legislative changes, such as environmental laws, taxes, tolls, safety codes, transportation, design or building codes, their impacts are unavoidable, yet can be managed through mitigation strategies. The existing literature only reports the implications of change orders on the project level and reports legislative changes as one of the contributing factors to change orders, but does not consider the implications on a program level. This study aims to close this knowledge gap by assessing the implications of change orders caused by legislative changes on program management in the construction industry during the construction phase, and explore what the possible mitigation strategies to manage change orders caused by legislative changes are. The objectives of the study include identifying the implications of change orders on construction projects in the UAE through a literature review using peer-reviewed journals and reliable industry sources. Additionally, we investigate the implications of change orders caused by legislative changes on construction programs through interviewing subject matter experts, evaluating the importance of the reported impacts, with possible mitigation strategies, through a structured questionnaire and Relative Importance Index (RII) and, finally, proposing a set of recommendations for key industry stakeholders. A mixed methods approach is adopted in this qualitative study, and the participants include clients, contractors and consultants from the construction industry, with a defined scope covering the construction stage only. The outcomes of the study can guide program managers, decision-makers and practitioners in the construction industry to successfully deliver all projects by directing proper resources to accommodate legislative changes. Full article
(This article belongs to the Special Issue Advances in Project Development and Construction Management)
Show Figures

Figure 1

19 pages, 817 KiB  
Article
AI Concepts for System of Systems Dynamic Interoperability
by Jacob Nilsson, Saleha Javed, Kim Albertsson, Jerker Delsing, Marcus Liwicki and Fredrik Sandin
Sensors 2024, 24(9), 2921; https://doi.org/10.3390/s24092921 (registering DOI) - 03 May 2024
Abstract
Interoperability is a central problem in digitization and sos engineering, which concerns the capacity of systems to exchange information and cooperate. The task to dynamically establish interoperability between heterogeneous cps at run-time is a challenging problem. Different aspects of the interoperability problem have [...] Read more.
Interoperability is a central problem in digitization and sos engineering, which concerns the capacity of systems to exchange information and cooperate. The task to dynamically establish interoperability between heterogeneous cps at run-time is a challenging problem. Different aspects of the interoperability problem have been studied in fields such as sos, neural translation, and agent-based systems, but there are no unifying solutions beyond domain-specific standardization efforts. The problem is complicated by the uncertain and variable relations between physical processes and human-centric symbols, which result from, e.g., latent physical degrees of freedom, maintenance, re-configurations, and software updates. Therefore, we surveyed the literature for concepts and methods needed to automatically establish sos with purposeful cps communication, focusing on machine learning and connecting approaches that are not integrated in the present literature. Here, we summarize recent developments relevant to the dynamic interoperability problem, such as representation learning for ontology alignment and inference on heterogeneous linked data; neural networks for transcoding of text and code; concept learning-based reasoning; and emergent communication. We find that there has been a recent interest in deep learning approaches to establishing communication under different assumptions about the environment, language, and nature of the communicating entities. Furthermore, we present examples of architectures and discuss open problems associated with ai-enabled solutions in relation to sos interoperability requirements. Although these developments open new avenues for research, there are still no examples that bridge the concepts necessary to establish dynamic interoperability in complex sos, and realistic testbeds are needed. Full article
(This article belongs to the Section Sensor Networks)
27 pages, 9141 KiB  
Article
Predicting Bus Travel Time in Cheonan City Through Deep Learning Utilizing Digital Tachograph Data
by Ghulam Mustafa, Youngsup Hwang and Seong-Je Cho
Electronics 2024, 13(9), 1771; https://doi.org/10.3390/electronics13091771 (registering DOI) - 03 May 2024
Abstract
Urban transportation systems are increasingly burdened by traffic congestion, a consequence of population growth and heightened reliance on private vehicles. This congestion not only disrupts travel efficiency but also undermines productivity and urban resident’s overall well-being. A critical step in addressing this challenge [...] Read more.
Urban transportation systems are increasingly burdened by traffic congestion, a consequence of population growth and heightened reliance on private vehicles. This congestion not only disrupts travel efficiency but also undermines productivity and urban resident’s overall well-being. A critical step in addressing this challenge is the accurate prediction of bus travel times, which is essential for mitigating congestion and improving the experience of public transport users. To tackle this issue, this study introduces the Hybrid Temporal Forecasting Network (HTF-NET) model, a framework that integrates machine learning techniques. The model combines an attention mechanism with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers, enhancing its predictive capabilities. Further refinement is achieved through a Support Vector Regressor (SVR), enabling the generation of precise bus travel time predictions. To evaluate the performance of the HTF-NET model, comparative analyses are conducted with six deep learning models using real-world digital tachograph (DTG) data obtained from intracity buses in Cheonan City, South Korea. These models includes various architectures, including different configurations of LSTM and GRU, such as bidirectional and stacked architectures. The primary focus of the study is on predicting travel times from the Namchang Village bus stop to the Dongnam-gu Public Health Center, a crucial route in the urban transport network. Various experimental scenarios are explored, incorporating overall test data, and weekday and weekend data, with and without weather information, and considering different route lengths. Comparative evaluations against a baseline ARIMA model underscore the performance of the HTF-NET model. Particularly noteworthy is the significant improvement in prediction accuracy achieved through the incorporation of weather data. Evaluation metrics, including root mean squared error (RMSE), mean absolute error (MAE), and mean squared error (MSE), consistently highlight the superiority of the HTF-NET model, outperforming the baseline ARIMA model by a margin of 63.27% in terms of the RMSE. These findings provide valuable insights for transit agencies and policymakers, facilitating informed decisions regarding the management and optimization of public transportation systems. Full article
33 pages, 48967 KiB  
Article
Medical Support Vehicle Location and Deployment at Mass Casualty Incidents
by Miguel Medina-Perez, Giovanni Guzmán, Magdalena Saldana-Perez and Valeria Karina Legaria-Santiago
Information 2024, 15(5), 260; https://doi.org/10.3390/info15050260 (registering DOI) - 03 May 2024
Abstract
Anticipating and planning for the urgent response to large-scale disasters is critical to increase the probability of survival at these events. These incidents present various challenges that complicate the response, such as unfavorable weather conditions, difficulties in accessing affected areas, and the geographical [...] Read more.
Anticipating and planning for the urgent response to large-scale disasters is critical to increase the probability of survival at these events. These incidents present various challenges that complicate the response, such as unfavorable weather conditions, difficulties in accessing affected areas, and the geographical spread of the victims. Furthermore, local socioeconomic factors, such as inadequate prevention education, limited disaster resources, and insufficient coordination between public and private emergency services, can complicate these situations. In large-scale emergencies, multiple demand points (DPs) are generally observed, which requires efforts to coordinate the strategic allocation of human and material resources in different geographical areas. Therefore, the precise management of these resources based on the specific needs of each area becomes fundamental. To address these complexities, this paper proposes a methodology that models these scenarios as a multi-objective optimization problem, focusing on the location-allocation problem of resources in Mass Casualty Incidents (MCIs). The proposed case study is Mexico City in a earthquake post-disaster scenario, using voluntary geographic information, open government data, and historical data from the 19 September 2017 earthquake. It is assumed that the resources that require optimal location and allocation are ambulances, which focus on medical issues that affect the survival of victims. The designed solution involves the use of a metaheuristic optimization technique, along with a parameter tuning technique, to find configurations that perform at different instances of the problem, i.e., different hypothetical scenarios that can be used as a reference for future possible situations. Finally, the objective is to present the different solutions graphically, accompanied by relevant information to facilitate the decision-making process of the authorities responsible for the practical implementation of these solutions. Full article
(This article belongs to the Special Issue Telematics, GIS and Artificial Intelligence)
Show Figures

Figure 1

16 pages, 4146 KiB  
Article
Podocyte-Specific Deletion of MCP-1 Fails to Protect against Angiotensin II- or Adriamycin-Induced Glomerular Disease
by Corry D. Bondi, Hannah L. Hartman, Brittney M. Rush and Roderick J. Tan
Int. J. Mol. Sci. 2024, 25(9), 4987; https://doi.org/10.3390/ijms25094987 (registering DOI) - 03 May 2024
Abstract
Investigating the role of podocytes in proteinuric disease is imperative to address the increasing global burden of chronic kidney disease (CKD). Studies strongly implicate increased levels of monocyte chemoattractant protein-1 (MCP-1/CCL2) in proteinuric CKD. Since podocytes express the receptor for MCP-1 (i.e., CCR2), [...] Read more.
Investigating the role of podocytes in proteinuric disease is imperative to address the increasing global burden of chronic kidney disease (CKD). Studies strongly implicate increased levels of monocyte chemoattractant protein-1 (MCP-1/CCL2) in proteinuric CKD. Since podocytes express the receptor for MCP-1 (i.e., CCR2), we hypothesized that podocyte-specific MCP-1 production in response to stimuli could activate its receptor in an autocrine manner, leading to further podocyte injury. To test this hypothesis, we generated podocyte-specific MCP-1 knockout mice (Podo-Mcp-1fl/fl) and exposed them to proteinuric injury induced by either angiotensin II (Ang II; 1.5 mg/kg/d, osmotic minipump) or Adriamycin (Adr; 18 mg/kg, intravenous bolus). At baseline, there were no between-group differences in body weight, histology, albuminuria, and podocyte markers. After 28 days, there were no between-group differences in survival, change in body weight, albuminuria, kidney function, glomerular injury, and tubulointerstitial fibrosis. The lack of protection in the knockout mice suggests that podocyte-specific MCP-1 production is not a major contributor to either Ang II- or Adr-induced glomerular disease, implicating that another cell type is the source of pathogenic MCP-1 production in CKD. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 2391 KiB  
Article
Multispectral Pedestrian Detection Based on Prior-Saliency Attention and Image Fusion
by Jiaren Guo, Zihao Huang and Yanyun Tao
Electronics 2024, 13(9), 1770; https://doi.org/10.3390/electronics13091770 (registering DOI) - 03 May 2024
Abstract
Detecting pedestrians in varying illumination conditions poses a significant challenge, necessitating the development of innovative solutions. In response to this, we introduce Prior-AttentionNet, a pedestrian detection model featuring a Prior-Attention mechanism. This model leverages the stark contrast between thermal objects and their backgrounds [...] Read more.
Detecting pedestrians in varying illumination conditions poses a significant challenge, necessitating the development of innovative solutions. In response to this, we introduce Prior-AttentionNet, a pedestrian detection model featuring a Prior-Attention mechanism. This model leverages the stark contrast between thermal objects and their backgrounds in far-infrared (FIR) images by employing saliency attention derived from FIR images via UNet. However, extracting salient regions of diverse scales from FIR images poses a challenge for saliency attention. To address this, we integrate Simple Linear Iterative Clustering (SLIC) superpixel segmentation, embedding the segmentation feature map as prior knowledge into UNet’s decoding stage for comprehensive end-to-end training and detection. This integration enhances the extraction of focused attention regions, with the synergy of segmentation prior and saliency attention forming the core of Prior-AttentionNet. Moreover, to enrich pedestrian details and contour visibility in low-light conditions, we implement multispectral image fusion. Experimental evaluations were conducted on the KAIST and OTCBVS datasets. Applying Prior-Attention mode to FIR-RGB images significantly improves the delineation and focus on multi-scale pedestrians. Prior-AttentionNet’s general detector demonstrates the capability of detecting pedestrians with minimal computational resources. The ablation studies indicate that the FIR-RGB+ Prior-Attention mode markedly enhances detection robustness over other modes. When compared to conventional multispectral pedestrian detection models, Prior-AttentionNet consistently surpasses them by achieving higher mean average precision and lower miss rates in diverse scenarios, during both day and night. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

23 pages, 2276 KiB  
Article
Context-Aware System for Information Flow Management in Factories of the Future
by Pedro Monteiro, Rodrigo Pereira, Ricardo Nunes, Arsénio Reis and Tiago Pinto
Appl. Sci. 2024, 14(9), 3907; https://doi.org/10.3390/app14093907 (registering DOI) - 03 May 2024
Abstract
The trends of the 21st century are challenging the traditional production process due to the reduction in the life cycle of products and the demand for more complex products in greater quantities. Industry 4.0 (I4.0) was introduced in 2011 and it is recognized [...] Read more.
The trends of the 21st century are challenging the traditional production process due to the reduction in the life cycle of products and the demand for more complex products in greater quantities. Industry 4.0 (I4.0) was introduced in 2011 and it is recognized as the fourth industrial revolution, with the aim of improving manufacturing processes and increasing the competitiveness of industry. I4.0 uses technological concepts such as Cyber-Physical Systems, Internet of Things and Cloud Computing to create services, reduce costs and increase productivity. In addition, concepts such as Smart Factories are emerging, which use context awareness to assist people and optimize tasks based on data from the physical and virtual world. This article explores and applies the capabilities of context-aware applications in industry, with a focus on production lines. In specific, this paper proposes a context-aware application based on a microservices approach, intended for integration into a context-aware information system, with specific application in the area of manufacturing. The manuscript presents a detailed architecture for structuring the application, explaining components, functions and contributions. The discussion covers development technologies, integration and communication between the application and other services, as well as experimental findings, which demonstrate the applicability and advantages of the proposed solution. Full article
Show Figures

Figure 1

14 pages, 1262 KiB  
Article
Low-Carbon Ecological Tea: The Key to Transforming the Tea Industry towards Sustainability
by Waner Zhang, Mingyue Zhao, Youcheng Chen, Yinlong Xu, Yongqiang Ma and Shuisheng Fan
Agriculture 2024, 14(5), 722; https://doi.org/10.3390/agriculture14050722 (registering DOI) - 03 May 2024
Abstract
The realization of the value of ecological products has led to an economic means for reducing carbon emissions in China. Tea is one of the most important cash crops and one of the most popular beverages in the world. Due to the complex [...] Read more.
The realization of the value of ecological products has led to an economic means for reducing carbon emissions in China. Tea is one of the most important cash crops and one of the most popular beverages in the world. Due to the complex the tea industrial chain, it is considered to be an industry with high carbon emissions. Ecological tea products with low-carbon attributes can be considered a linkage of ecology, economy, and society. Based on this, this paper presents research on low-carbon ecological tea (LCT). Herein, we construct the formational logic of low-carbon ecological products, explore the connotations of LCT, and form a conceptual pathway for realizing LCT to contribute to climate change mitigation and adaptation. This paper starts from the upstream, midstream, and downstream of the industrial chain; it establishes three value realization pathways that keep, as a priority, the promotion of ecological industrialization, focus on restoration to improve the ecology of the industrial chain, and innovate technology to expand the industrial chain. The pathways are a set of low-emission production solutions that use techniques to enhance carbon sequestration in soil, reduce the use of fertilizers and pesticides, and help shift to clean energy from low-emission sources in the stages of plantation, processing, and distribution. In the process of realizing LCT, the government plays an important role, and its support and guidance are needed. Based on stakeholder theory, this paper builds an implementation mechanism that focuses on the micro perspective (users, organizations), integrates the mesoscopic perspective (industry), and relies on the macro perspective (government). Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

17 pages, 3346 KiB  
Article
Calculation of Characteristic Point Parameters for Restoring Model of Corroded Short-Pier RC Shear Walls
by Qing Qin, Haojie Cheng, Chenghua Zhang and Sha Ding
Buildings 2024, 14(5), 1293; https://doi.org/10.3390/buildings14051293 (registering DOI) - 03 May 2024
Abstract
Based on the quasi-static tests of 12 corroded RC (reinforced concrete) shear walls, it was found that reinforcement corrosion has a great influence on the skeleton curve of RC shear walls. With an increase in the degree of corrosion, the bearing capacity of [...] Read more.
Based on the quasi-static tests of 12 corroded RC (reinforced concrete) shear walls, it was found that reinforcement corrosion has a great influence on the skeleton curve of RC shear walls. With an increase in the degree of corrosion, the bearing capacity of specimens decreases, and the deformation capacity worsens. Increasing the diameter of longitudinal reinforcements can significantly improve the bearing capacity of corroded RC shear walls, while the deformation capacity of corroded specimens can be improved by increasing the lateral distributed reinforcement or the transverse reinforcement in the embedded column. In order to accurately evaluate the seismic performance of corroded RC shear walls, we considered descent segments of four broken-line models to estimate the skeleton curve. After considering the influence of corrosion on the parameters of the characteristic point for the skeleton curve, the calculation formulas of the characteristic point parameters of the skeleton curve for the corroded RC shear wall were determined based on the test data fitting. It was proven that the formula for the characteristic point parameters for the skeleton curve of corroded RC shear walls has good applicability. This study lays a theoretical foundation for the seismic performance evaluation of an RC shear wall structure in a salt fog environment. It provides a theoretical basis for further improving the life-cycle seismic capacity evaluation system for RC structures. Full article
(This article belongs to the Special Issue Seismic Performance and Durability of Engineering Structures)
Show Figures

Figure 1

22 pages, 11463 KiB  
Article
VOD: Vision-Based Building Energy Data Outlier Detection
by Jinzhao Tian, Tianya Zhao, Zhuorui Li, Tian Li, Haipei Bie and Vivian Loftness
Mach. Learn. Knowl. Extr. 2024, 6(2), 965-986; https://doi.org/10.3390/make6020045 (registering DOI) - 03 May 2024
Abstract
Outlier detection plays a critical role in building operation optimization and data quality maintenance. However, existing methods often struggle with the complexity and variability of building energy data, leading to poorly generalized and explainable results. To address the gap, this study introduces a [...] Read more.
Outlier detection plays a critical role in building operation optimization and data quality maintenance. However, existing methods often struggle with the complexity and variability of building energy data, leading to poorly generalized and explainable results. To address the gap, this study introduces a novel Vision-based Outlier Detection (VOD) approach, leveraging computer vision models to spot outliers in the building energy records. The models are trained to identify outliers by analyzing the load shapes in 2D time series plots derived from the energy data. The VOD approach is tested on four years of workday time-series electricity consumption data from 290 commercial buildings in the United States. Two distinct models are developed for different usage purposes, namely a classification model for broad-level outlier detection and an object detection model for the demands of precise pinpointing of outliers. The classification model is also interpreted via Grad-CAM to enhance its usage reliability. The classification model achieves an F1 score of 0.88, and the object detection model achieves an Average Precision (AP) of 0.84. VOD is a very efficient path to identifying energy consumption outliers in building operations, paving the way for the enhancement of building energy data quality, operation efficiency, and energy savings. Full article
Show Figures

Figure 1

8 pages, 2922 KiB  
Perspective
Detection of Oncogene Hotspot Mutations in Female NSCLC Tumor DNA and Cell-Free DNA
by Ieva Drejeriene, Saulius Cicenas, Diana Stanciute, Arnoldas Krasauskas and Jurate Gruode
Cancers 2024, 16(9), 1770; https://doi.org/10.3390/cancers16091770 (registering DOI) - 03 May 2024
Abstract
Non-small-cell lung cancer (NSCLC) is the most prevalent type of lung cancer, with extensively characterized mutational spectra. Several biomarkers (such as EGFR, BRAF, KRAS gene mutations, etc.) have emerged as predictive and prognostic markers for NSCLC. Unfortunately, the quality of the [...] Read more.
Non-small-cell lung cancer (NSCLC) is the most prevalent type of lung cancer, with extensively characterized mutational spectra. Several biomarkers (such as EGFR, BRAF, KRAS gene mutations, etc.) have emerged as predictive and prognostic markers for NSCLC. Unfortunately, the quality of the available tumor biopsy and/or cytology material is not always adequate to perform the necessary molecular testing, prompting the search for alternatives. Cell-free DNA (cfDNA) found in plasma is emerging as a highly promising avenue or a supplementary method for assessing the efficacy of cancer treatments. This is especially valuable in instances where conventional biopsy specimens, like formalin-fixed, paraffin-embedded (FFPE), or freshly frozen tumor tissues prove inadequate for conducting molecular pathology analyses subsequent to the initial diagnostic procedures. By leveraging cfDNA from plasma, clinicians gain an additional tool to gauge the effectiveness of cancer therapies, thereby enhancing their ability to optimize tailored treatment strategies. In this study, 51 Lithuanian females with NSCLC were analyzed, with adenocarcinoma being the predominant pathology diagnosis in 40 cases (78%). Target mutations were identified in 38 out of 51 patients (74.5%) in tumor tissue samples, while in plasma samples, they were identified in only 10 patients’ samples (19.6%). Even though we did not have enough voluminous plasma samples in our study, gene mutations were detected in plasma from ten women, three of whom were diagnosed with early stages of lung cancer (stages I and II). For these patients, the following mutations were detected: deletion in exon 19 of the EGFR gene and single nucleotide polymorphisms in the TP53 and MET genes. All other women were diagnosed with stages III or IV of lung cancer. This indicates that the later stages of cancer contribute more cfDNA in plasma, making extraction less complicated. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

12 pages, 4525 KiB  
Article
High-Molecular-Weight Hyaluronic Acid Can Be Used as a Food Additive to Improve the Symptoms of Persistent Inflammation, Immunosuppression and Catabolism Syndrome (PICS)
by Yuanyuan Jiang, Ye Jiang, Lu Li, Xiangyu Liu, Xiaoming Hou and Wenfei Wang
Biology 2024, 13(5), 319; https://doi.org/10.3390/biology13050319 (registering DOI) - 03 May 2024
Abstract
Hyaluronic acid (HA) is a new functional food additive which has the potential to ameliorate persistent inflammation, immunosuppression and catabolism syndrome (PICS), but the biological effects of HA with various molecular weights differ dramatically. To systematically investigate the efficacy of HA in altering [...] Read more.
Hyaluronic acid (HA) is a new functional food additive which has the potential to ameliorate persistent inflammation, immunosuppression and catabolism syndrome (PICS), but the biological effects of HA with various molecular weights differ dramatically. To systematically investigate the efficacy of HA in altering PICS symptoms, medium-molecular-weight (MMW) HA was specifically selected to test its intervention effect on a PICS mouse model induced by CLP through oral administration, with high-molecular-weight (HMW) and low-molecular-weight (LMW) HA also participating in the experimental validation process. The results of pathological observations and gut flora showed that MMW HA rapidly alleviated lung lesions and intestinal structural changes in PICS mice in the short term. However, although long-term MMW HA administration significantly reduced the proportions of harmful bacteria in gut flora, inflammatory responses in the intestines and lungs of PICS mice were significantly higher in the MMW HA group than in the HMW HA and LMW HA groups. The use of HMW HA not only rapidly reduced the mortality rate of PICS mice but also improved their grip strength and the recovery of spleen and thymus indices. Furthermore, it consistently promoted the recovery of lung and intestinal tissues in PICS mice, and it also assisted in the sustained restoration of their gut microbiota. These effects were superior to those of LMW HA and MMW HA. The experimental results indicate that HMW weight HA has the greatest potential to be an adjunct in alleviating PICS as a food additive, while the safety of other HAs requires further attention. Full article
Show Figures

Figure 1

17 pages, 2293 KiB  
Article
Motor Imagery Classification Using Effective Channel Selection of Multichannel EEG
by Abdullah Al Shiam, Kazi Mahmudul Hassan, Md. Rabiul Islam, Ahmed M. M. Almassri, Hiroaki Wagatsuma and Md. Khademul Islam Molla
Brain Sci. 2024, 14(5), 462; https://doi.org/10.3390/brainsci14050462 (registering DOI) - 03 May 2024
Abstract
Electroencephalography (EEG) is effectively employed to describe cognitive patterns corresponding to different tasks of motor functions for brain–computer interface (BCI) implementation. Explicit information processing is necessary to reduce the computational complexity of practical BCI systems. This paper presents an entropy-based approach to select [...] Read more.
Electroencephalography (EEG) is effectively employed to describe cognitive patterns corresponding to different tasks of motor functions for brain–computer interface (BCI) implementation. Explicit information processing is necessary to reduce the computational complexity of practical BCI systems. This paper presents an entropy-based approach to select effective EEG channels for motor imagery (MI) classification in brain–computer interface (BCI) systems. The method identifies channels with higher entropy scores, which is an indication of greater information content. It discards redundant or noisy channels leading to reduced computational complexity and improved classification accuracy. High entropy means a more disordered pattern, whereas low entropy means a less disordered pattern with less information. The entropy of each channel for individual trials is calculated. The weight of each channel is represented by the mean entropy of the channel over all the trials. A set of channels with higher mean entropy are selected as effective channels for MI classification. A limited number of sub-band signals are created by decomposing the selected channels. To extract the spatial features, the common spatial pattern (CSP) is applied to each sub-band space of EEG signals. The CSP-based features are used to classify the right-hand and right-foot MI tasks using a support vector machine (SVM). The effectiveness of the proposed approach is validated using two publicly available EEG datasets, known as BCI competition III–IV(A) and BCI competition IV–I. The experimental results demonstrate that the proposed approach surpasses cutting-edge techniques. Full article
(This article belongs to the Special Issue EEG and Event-Related Potentials)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop