The 2023 MDPI Annual Report has
been released!
 
13 pages, 2252 KiB  
Article
Fermentation of Sugar by Thermotolerant Hansenula polymorpha Yeast for Ethanol Production
by Adnan Asad Karim, Mª Lourdes Martínez-Cartas and Manuel Cuevas-Aranda
Fermentation 2024, 10(5), 260; https://doi.org/10.3390/fermentation10050260 - 16 May 2024
Abstract
Hansenula polymorpha is a non-conventional and thermo-tolerant yeast that is well-known for its use in the industrial production of recombinant proteins. However, research to evaluate this yeast’s potential for the high-temperature fermentation of sugar to produce alcohols for biofuel applications is limited. The [...] Read more.
Hansenula polymorpha is a non-conventional and thermo-tolerant yeast that is well-known for its use in the industrial production of recombinant proteins. However, research to evaluate this yeast’s potential for the high-temperature fermentation of sugar to produce alcohols for biofuel applications is limited. The present work investigated a wild-type H. polymorpha strain (DSM 70277) for the production of ethanol at a temperature of 40 °C under limited oxygen presence by using a batch fermentation reactor. Fermentation experiments were performed using three types of sugar (glucose, fructose, xylose) as substrates with two initial inoculum concentrations (1.1 g·L−1 and 5.0 g·L−1). The maximum specific growth rates of H. polymorpha yeast were 0.121–0.159 h−1 for fructose, 0.140–0.175 h−1 for glucose, and 0.003–0.009 h−1 for xylose. The biomass volumetric productivity was 0.270–0.473 g·L−1h−1 (fructose), 0.185–0.483 g·L−1h−1 (glucose), and 0.001–0.069 g·L−1h−1 (xylose). The overall yield of ethanol from glucose (0.470 g·g−1) was higher than that from fructose (0.434 g·g−1) and xylose (0.071 g·g−1). The H. polymorpha yeast exhibited different behavior and efficacy regarding the use of glucose, fructose, and xylose as substrates for producing ethanol. The present knowledge could be applied to improve the fermentation process for valorization of waste biomass to produce bioethanol. Full article
Show Figures

Figure 1

12 pages, 1564 KiB  
Article
Biogas Production Potential of Mixed Banana and Pineapple Waste as Assessed by Long-Term Laboratory-Scale Anaerobic Digestion
by Vita Aleksandrovna Rabinovich, Carsten Linnenberg, Ulf Theilen and Harald Weigand
Fermentation 2024, 10(5), 261; https://doi.org/10.3390/fermentation10050261 - 16 May 2024
Abstract
Biogas is a renewable energy source generated through the anaerobic digestion (AD) of organic feedstocks. This study aims to quantify the biogas production potential (BPP) of fruit wastes via semi-continuous lab-scale mesophilic AD over a total of 100 days. The feed was composed [...] Read more.
Biogas is a renewable energy source generated through the anaerobic digestion (AD) of organic feedstocks. This study aims to quantify the biogas production potential (BPP) of fruit wastes via semi-continuous lab-scale mesophilic AD over a total of 100 days. The feed was composed of 80% banana peelings and 20% pineapple residues, mimicking the waste composition of a Costa Rican fruit processing facility used as a test case. The average loading rate of volatile suspended solids (VSS) corresponded to 3.6 kg VSS·m−3·d−1. Biogas yield and composition were monitored, along with the concentration of ammonium, volatile fatty acids, and pH. Discounting the start-up phase, the BPP averaged to 526 LN (kg VSS)−1 with a methane concentration of around 54%, suggesting suitability of the substrate for AD. We calculated that if upscaled to the Costa Rican test case facility, these values translate into a gross average heat and electricity production via AD of around 5100 MWhel·a−1 and 5100 MWhth·a−1, respectively. Deducting self-consumption of the AD treatment, this is equivalent to 73% of the facility’s electricity demand, and could save about 450,000 L of heavy oil per year for heat generation. To circumvent nitrogen shortage, the addition of a co-substrate such as dry manure seems advisable. Full article
(This article belongs to the Special Issue Anaerobic Digestion: Waste to Energy)
Show Figures

Figure 1

13 pages, 4017 KiB  
Article
Characterization Data for the Establishment of Scale-Up and Process Transfer Strategies between Stainless Steel and Single-Use Bioreactors
by Vincent Bernemann, Jürgen Fitschen, Marco Leupold, Karl-Heinz Scheibenbogen, Marc Maly, Marko Hoffmann, Thomas Wucherpfennig and Michael Schlüter
Fluids 2024, 9(5), 115; https://doi.org/10.3390/fluids9050115 - 16 May 2024
Abstract
The reliable transfer of bioprocesses from single-use bioreactors (SUBs) of different scales to conventional stainless steel stirred-tank bioreactors is of steadily growing interest. In this publication, a scale-up study for SUBs with volumes of 200 L and 2000 L and the transfer to [...] Read more.
The reliable transfer of bioprocesses from single-use bioreactors (SUBs) of different scales to conventional stainless steel stirred-tank bioreactors is of steadily growing interest. In this publication, a scale-up study for SUBs with volumes of 200 L and 2000 L and the transfer to an industrial-scale conventional stainless steel stirred-tank bioreactor with a volume of 15,000 L is presented. The scale-up and transfer are based on a comparison of mixing times and the modeling of volumetric mass transfer coefficients kLa, measured in all three reactors in aqueous PBS/Kolliphor solution. The mass transfer coefficients are compared with the widely used correlation of van’t Riet at constant stirrer tip speeds. It can be shown that a van’t Riet correlation enables a robust and reliable prediction of mass transfer coefficients on each scale for a wide range of stirrer tip speeds and aeration rates. The process transfer from single-use bioreactors to conventional stainless steel stirred-tank bioreactors is proven to be uncritical concerning mass transfer performance. This provides higher flexibility with respect to bioreactor equipment considered for specific processes. Full article
(This article belongs to the Special Issue Mass Transfer in Multiphase Reactors)
Show Figures

Figure 1

17 pages, 3085 KiB  
Article
Denaturing Gradient Gel Electrophoresis Approach for Microbial Shift Analysis in Thermophilic and Mesophilic Anaerobic Digestions
by Pramod Pandey, Dhrubajyoti Chowdhury and Yi Wang
Gels 2024, 10(5), 339; https://doi.org/10.3390/gels10050339 - 16 May 2024
Abstract
To determine the evolution of microbial community and microbial shift under anaerobic processes, this study investigates the use of denaturing gradient gel electrophoresis (DGGE). In the DGGE, short- and medium-sized DNA fragments are separated based on their melting characteristics, and this technique is [...] Read more.
To determine the evolution of microbial community and microbial shift under anaerobic processes, this study investigates the use of denaturing gradient gel electrophoresis (DGGE). In the DGGE, short- and medium-sized DNA fragments are separated based on their melting characteristics, and this technique is used in this study to understand the dominant bacterial community in mesophilic and thermophilic anaerobic digestion processes. Dairy manure is known for emitting greenhouse gases (GHGs) such as methane, and GHG emissions from manure is a biological process that is largely dependent on the manure conditions, microbial community presence in manure, and their functions. Additional efforts are needed to understand the GHG emissions from manure and develop control strategies to minimize the biological GHG emissions from manure. To study the microbial shift during anaerobic processes responsible for GHG emission, we conducted a series of manure anaerobic digestion experiments, and these experiments were conducted in lab-scale reactors operated under various temperature conditions (28 °C, 36 °C, 44 °C, and 52 °C). We examined the third variable region (V3) of the 16S rRNA gene fingerprints of bacterial presence in anaerobic environment by PCR amplification and DGGE separation. Results showed that bacterial community was affected by the temperature conditions and anaerobic incubation time of manure. The microbial community structure of the original manure changed over time during anaerobic processes, and the community composition changed substantially with the temperature of the anaerobic process. At Day 0, the sequence similarity confirmed that most of the bacteria were similar (>95%) to Acinetobacter sp. (strain: ATCC 31012), a Gram-negative bacteria, regardless of temperature conditions. At day 7, the sequence similarity of DNA fragments of reactors (28 °C) was similar to Acinetobacter sp.; however, the DNA fragments of effluent of reactors at 44 °C and 52 °C were similar to Coprothermobacter proteolyticus (strain: DSM 5265) (similarity: 97%) and Tepidimicrobium ferriphilum (strain: DSM 16624) (similarity: 100%), respectively. At day 60, the analysis showed that DNA fragments of effluent of 28 °C reactor were similar to Galbibacter mesophilus (strain: NBRC 10162) (similarity: 87%), and DNA fragments of effluent of 36 °C reactors were similar to Syntrophomonas curvata (strain: GB8-1) (similarity: 91%). In reactors with a relatively higher temperature, the DNA fragments of effluent of 44 °C reactor were similar to Dielma fastidiosa (strain: JC13) (similarity: 86%), and the DNA fragments of effluent of 52 °C reactor were similar to Coprothermobacter proteolyticus (strain: DSM 5265) (similarity: 99%). To authors’ knowledge, this is one of the few studies where DGGE-based approach is utilized to study and compare microbial shifts under mesophilic and thermophilic anaerobic digestions of manure simultaneously. While there were challenges in identifying the bands during gradient gel electrophoresis, the joint use of DGGE and sequencing tool can be potentially useful for illustrating and comparing the change in microbial community structure under complex anaerobic processes and functionality of microbes for understanding the consequential GHG emissions from manure. Full article
(This article belongs to the Special Issue Gels for Water Treatment)
Show Figures

Graphical abstract

46 pages, 6375 KiB  
Review
Chemical and Physical Architecture of Macromolecular Gels for Fracturing Fluid Applications in the Oil and Gas Industry; Current Status, Challenges, and Prospects
by Majad Khan
Gels 2024, 10(5), 338; https://doi.org/10.3390/gels10050338 - 16 May 2024
Abstract
Hydraulic fracturing is vital in recovering hydrocarbons from oil and gas reservoirs. It involves injecting a fluid under high pressure into reservoir rock. A significant part of fracturing fluids is the addition of polymers that become gels or gel-like under reservoir conditions. Polymers [...] Read more.
Hydraulic fracturing is vital in recovering hydrocarbons from oil and gas reservoirs. It involves injecting a fluid under high pressure into reservoir rock. A significant part of fracturing fluids is the addition of polymers that become gels or gel-like under reservoir conditions. Polymers are employed as viscosifiers and friction reducers to provide proppants in fracturing fluids as a transport medium. There are numerous systems for fracturing fluids based on macromolecules. The employment of natural and man-made linear polymers, and also, to a lesser extent, synthetic hyperbranched polymers, as additives in fracturing fluids in the past one to two decades has shown great promise in enhancing the stability of fracturing fluids under various challenging reservoir conditions. Modern innovations demonstrate the importance of developing chemical structures and properties to improve performance. Key challenges include maintaining viscosity under reservoir conditions and achieving suitable shear-thinning behavior. The physical architecture of macromolecules and novel crosslinking processes are essential in addressing these issues. The effect of macromolecule interactions on reservoir conditions is very critical in regard to efficient fluid qualities and successful fracturing operations. In future, there is the potential for ongoing studies to produce specialized macromolecular solutions for increased efficiency and sustainability in oil and gas applications. Full article
(This article belongs to the Special Issue Polymer Gels for the Oil and Gas Industry)
Show Figures

Graphical abstract

15 pages, 7536 KiB  
Article
Preparation and Performance Evaluation of Temperature-Resistant and Salt-Resistant Gels
by Xudong Li, Meilong Fu and Jiani Hu
Gels 2024, 10(5), 337; https://doi.org/10.3390/gels10050337 - 16 May 2024
Abstract
In order to improve the plugging performance of high-temperature and high-salt oil reservoir plugging agents, this paper utilizes a copolymer composed of acrylamide and 2-acrylamide-2-methylpropanesulfonic acid (AM/AMPS) as the polymer, polyethyleneimine as the cross-linking agent, and nylon fiber as the stabilizer to develop [...] Read more.
In order to improve the plugging performance of high-temperature and high-salt oil reservoir plugging agents, this paper utilizes a copolymer composed of acrylamide and 2-acrylamide-2-methylpropanesulfonic acid (AM/AMPS) as the polymer, polyethyleneimine as the cross-linking agent, and nylon fiber as the stabilizer to develop a high-temperature- and high-salt-resistant gel system. This study analyzed and evaluated the temperature resistance, salt resistance and blocking performance of the gel system. The evaluation results show that the gel-forming strength of this gel system can reach an H level, and it has good thermal stability at the high temperature of 130 °C. At the high salinity of 240,720 mg/L, the syneresis rate remains below 2.5%, and the gel-forming time is greater than 15 h; the higher the temperature, the shorter the gelling time. The results of our sand-filled pipe-plugging experiment show that the gel system can adapt to sand-filled pipes with different levels of permeability, and reaching a plugging rate of 94%. Full article
Show Figures

Figure 1

21 pages, 4292 KiB  
Article
Improving the Generalizability of Deep Learning for T2-Lesion Segmentation of Gliomas in the Post-Treatment Setting
by Jacob Ellison, Francesco Caliva, Pablo Damasceno, Tracy L. Luks, Marisa LaFontaine, Julia Cluceru, Anil Kemisetti, Yan Li, Annette M. Molinaro, Valentina Pedoia, Javier E. Villanueva-Meyer and Janine M. Lupo
Bioengineering 2024, 11(5), 497; https://doi.org/10.3390/bioengineering11050497 - 16 May 2024
Abstract
Although fully automated volumetric approaches for monitoring brain tumor response have many advantages, most available deep learning models are optimized for highly curated, multi-contrast MRI from newly diagnosed gliomas, which are not representative of post-treatment cases in the clinic. Improving segmentation for treated [...] Read more.
Although fully automated volumetric approaches for monitoring brain tumor response have many advantages, most available deep learning models are optimized for highly curated, multi-contrast MRI from newly diagnosed gliomas, which are not representative of post-treatment cases in the clinic. Improving segmentation for treated patients is critical to accurately tracking changes in response to therapy. We investigated mixing data from newly diagnosed (n = 208) and treated (n = 221) gliomas in training, applying transfer learning (TL) from pre- to post-treatment imaging domains, and incorporating spatial regularization for T2-lesion segmentation using only T2 FLAIR images as input to improve generalization post-treatment. These approaches were evaluated on 24 patients suspected of progression who had received prior treatment. Including 26% of treated patients in training improved performance by 13.9%, and including more treated and untreated patients resulted in minimal changes. Fine-tuning with treated glioma improved sensitivity compared to data mixing by 2.5% (p < 0.05), and spatial regularization further improved performance when used with TL by 95th HD, Dice, and sensitivity (6.8%, 0.8%, 2.2%; p < 0.05). While training with ≥60 treated patients yielded the majority of performance gain, TL and spatial regularization further improved T2-lesion segmentation to treated gliomas using a single MR contrast and minimal processing, demonstrating clinical utility in response assessment. Full article
(This article belongs to the Special Issue Artificial Intelligence in Auto-Diagnosis and Clinical Applications)
Show Figures

Graphical abstract

17 pages, 3160 KiB  
Article
Antioxidant and Anti-Inflammatory Properties of Hydrolyzed Royal Jelly Peptide in Human Dermal Fibroblasts: Implications for Skin Health and Care Applications
by Chang-Yu Yan, Qian-Qian Zhu, Cheng-Xi Guan, Gui-Lan Xiong, Xin-Xing Chen, Hai-Biao Gong, Jia-Wei Li, Shu-Hua Ouyang, Hiroshi Kurihara, Yi-Fang Li and Rong-Rong He
Bioengineering 2024, 11(5), 496; https://doi.org/10.3390/bioengineering11050496 - 16 May 2024
Abstract
Hydrolyzed royal jelly peptide (RJP) has garnered attention for its health-promoting functions. However, the potential applications of RJP in skincare have not been fully explored. In this study, we prepared RJP through the enzymatic hydrolysis of royal jelly protein with trypsin and investigated [...] Read more.
Hydrolyzed royal jelly peptide (RJP) has garnered attention for its health-promoting functions. However, the potential applications of RJP in skincare have not been fully explored. In this study, we prepared RJP through the enzymatic hydrolysis of royal jelly protein with trypsin and investigated its antioxidant and anti-inflammatory properties on primary human dermal fibroblasts (HDFs). Our results demonstrate that RJP effectively inhibits oxidative damage induced by H2O2 and lipid peroxidation triggered by AAPH and t-BuOOH in HDFs. This effect may be attributed to the ability of RJP to enhance the level of glutathione and the activities of catalase and glutathione peroxidase 4, as well as its excellent iron chelating capacity. Furthermore, RJP modulates the NLRP3 inflammasome-mediated inflammatory response in HDFs, suppressing the mRNA expressions of NLRP3 and IL-1β in the primer stage induced by LPS and the release of mature IL-1β induced by ATP, monosodium urate, or nigericin in the activation stage. RJP also represses the expressions of COX2 and iNOS induced by LPS. Finally, we reveal that RJP exhibits superior antioxidant and anti-inflammatory properties over unhydrolyzed royal jelly protein. These findings suggest that RJP exerts protective effects on skin cells through antioxidative and anti-inflammatory mechanisms, indicating its promise for potential therapeutic avenues for managing oxidative stress and inflammation-related skin disorders. Full article
Show Figures

Graphical abstract

26 pages, 2066 KiB  
Review
Navigating the Immunological Crossroads: Mesenchymal Stem/Stromal Cells as Architects of Inflammatory Harmony in Tissue-Engineered Constructs
by Saeed Farzamfar, Luciana Melo Garcia, Mahya Rahmani and Stephane Bolduc
Bioengineering 2024, 11(5), 494; https://doi.org/10.3390/bioengineering11050494 - 16 May 2024
Abstract
In the dynamic landscape of tissue engineering, the integration of tissue-engineered constructs (TECs) faces a dual challenge—initiating beneficial inflammation for regeneration while avoiding the perils of prolonged immune activation. As TECs encounter the immediate reaction of the immune system upon implantation, the unique [...] Read more.
In the dynamic landscape of tissue engineering, the integration of tissue-engineered constructs (TECs) faces a dual challenge—initiating beneficial inflammation for regeneration while avoiding the perils of prolonged immune activation. As TECs encounter the immediate reaction of the immune system upon implantation, the unique immunomodulatory properties of mesenchymal stem/stromal cells (MSCs) emerge as key navigators. Harnessing the paracrine effects of MSCs, researchers aim to craft a localized microenvironment that not only enhances TEC integration but also holds therapeutic promise for inflammatory-driven pathologies. This review unravels the latest advancements, applications, obstacles, and future prospects surrounding the strategic alliance between MSCs and TECs, shedding light on the immunological symphony that guides the course of regenerative medicine. Full article
(This article belongs to the Section Biofabrication and Biomanufacturing)
Show Figures

Graphical abstract

11 pages, 622 KiB  
Article
Research of Global Tilt and Functional Independence: Insights into Spinal Health of Older Women
by Yu-Chieh Chiu, Ping-Chiao Tsai, Ssu-Hsien Lee, Wen-Tien Wu, Tzai-Chiu Yu, Ru-Ping Lee, Ing-Ho Chen, Jen-Hung Wang and Kuang-Ting Yeh
Bioengineering 2024, 11(5), 493; https://doi.org/10.3390/bioengineering11050493 - 16 May 2024
Abstract
Spinal alignment intricately influences functional independence, particularly in older women with osteopenia experiencing mild neck and back pain. This study elucidates the interplay between spinal alignment, bone mineral density (BMD), and muscle strength in elderly women presenting with mild neck and back pain. [...] Read more.
Spinal alignment intricately influences functional independence, particularly in older women with osteopenia experiencing mild neck and back pain. This study elucidates the interplay between spinal alignment, bone mineral density (BMD), and muscle strength in elderly women presenting with mild neck and back pain. Focusing on a cohort of 189 older women, we examined the associations among global tilt (GT), coronal and sagittal alignment, BMD, grip strength, and functional independence as gauged by the Barthel index. Our findings indicate significant associations between functional capacity and grip strength, bone density, GT, and pelvic tilt (PT). Elderly women with a Barthel Index above 80 demonstrated higher grip strength and better bone quality, reflected by less negative average T scores. These individuals also exhibited lower values of GT and PT, suggesting a better sagittal alignment compared to those with a Barthel index of 80 or below. The results highlight that deviations in GT and PT are significantly associated with decreased functional independence. These insights emphasize the importance of maintaining optimal spinal alignment and muscle strength to support functional independence in elderly women. This study underscores the potential for targeted interventions that improve postural stability and manage pain effectively in this vulnerable population. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Figure 1

15 pages, 14887 KiB  
Article
Titanium Dioxide Nanoparticles Induce Maternal Preeclampsia-like Syndrome and Adverse Birth Outcomes via Disrupting Placental Function in SD Rats
by Haixin Li, Dandan Miao, Haiting Hu, Pingping Xue, Kun Zhou and Zhilei Mao
Toxics 2024, 12(5), 367; https://doi.org/10.3390/toxics12050367 - 16 May 2024
Abstract
The escalating utilization of titanium dioxide nanoparticles (TiO2 NPs) in everyday products has sparked concerns regarding their potential hazards to pregnant females and their offspring. To address these concerns and shed light on their undetermined adverse effects and mechanisms, we established a [...] Read more.
The escalating utilization of titanium dioxide nanoparticles (TiO2 NPs) in everyday products has sparked concerns regarding their potential hazards to pregnant females and their offspring. To address these concerns and shed light on their undetermined adverse effects and mechanisms, we established a pregnant rat model to investigate the impacts of TiO2 NPs on both maternal and offspring health and to explore the underlying mechanisms of those impacts. Pregnant rats were orally administered TiO2 NPs at a dose of 5 mg/kg body weight per day from GD5 to GD18 during pregnancy. Maternal body weight, organ weight, and birth outcomes were monitored and recorded. Maternal pathological changes were examined by HE staining and TEM observation. Maternal blood pressure was assessed using a non-invasive blood analyzer, and the urinary protein level was determined using spot urine samples. Our findings revealed that TiO2 NPs triggered various pathological alterations in maternal liver, kidney, and spleen, and induced maternal preeclampsia-like syndrome, as well as leading to growth restriction in the offspring. Further examination unveiled that TiO2 NPs hindered trophoblastic cell invasion into the endometrium via the promotion of autophagy. Consistent hypertension and proteinuria resulted from the destroyed the kidney GBM. In total, an exposure to TiO2 NPs during pregnancy might increase the risk of human preeclampsia through increased maternal arterial pressure and urinary albumin levels, as well as causing fetal growth restriction in the offspring. Full article
(This article belongs to the Special Issue State-of-the-Art Environmental Chemicals Exposomics and Metabolomics)
Show Figures

Figure 1

10 pages, 1549 KiB  
Communication
Hair Mercury Levels in Pregnant Women: Fish Consumption as a Determinant of Exposure
by Olga Rumiantseva, Viktor Komov, Mikhail Kutuzov, Hicham Zaroual, Ksenia Mizina, Maria Belova, Igor Nikitin, Alla Stolyarova, Dmitry Mashin and Daria Vilkova
Toxics 2024, 12(5), 366; https://doi.org/10.3390/toxics12050366 - 16 May 2024
Abstract
The consumption of fish in food may contain mercury, a harmful element and dangerous chemical detrimental to human health. The purpose of this study was to determine the mercury level in the hair of pregnant women with different fish intakes in their diets. [...] Read more.
The consumption of fish in food may contain mercury, a harmful element and dangerous chemical detrimental to human health. The purpose of this study was to determine the mercury level in the hair of pregnant women with different fish intakes in their diets. The concentration of total mercury in hair was determined using an atomic absorption spectrometer. In this study, 98 pregnant women were invited to participate (aged from 18 to 48 years). The mean content of mercury in the hair of pregnant women in Northwestern Russia was 0.428 mg/kg (ranging from 0.018 to 3.1 mg/kg). As a result, 22% of women had mercury values above 0.58 mg/kg, which is considered dangerous for the fetus. The hair mercury concentration in a village area was higher than that in a city area (i.e., 0.548 mg/kg and 0.326 mg/kg). Moreover, the maximum level of mercury was noted for a group of pregnant women who consumed more than 5 kg/month of fish and fish products. Furthermore, the consumption of freshwater fish in the diet leads to a higher mercury content in the hair of pregnant women than the consumption of marine fish. Full article
(This article belongs to the Special Issue Mercury Cycling and Health Effects)
Show Figures

Graphical abstract

5 pages, 194 KiB  
Editorial
Detection, Control, Risk Assessment, and Prevention of Foodborne Microorganisms
by Arícia Possas and Fernando Pérez-Rodríguez
Foods 2024, 13(10), 1551; https://doi.org/10.3390/foods13101551 - 16 May 2024
Abstract
Despite significant efforts from government and industry, enteric foodborne diseases continue to pose a substantial public health challenge worldwide [...] Full article
13 pages, 2262 KiB  
Article
Chemical Composition of Turmeric (Curcuma longa L.) Ethanol Extract and Its Antimicrobial Activities and Free Radical Scavenging Capacities
by Huan Wu, Zhihao Liu, Yaqiong Zhang, Boyan Gao, Yanfang Li, Xiaohua He, Jianghao Sun, Uyory Choe, Pei Chen, Ryan A. Blaustein and Liangli Yu
Foods 2024, 13(10), 1550; https://doi.org/10.3390/foods13101550 - 16 May 2024
Abstract
Turmeric (Curcuma longa L.) is a perennial tuberous plant from the genus Curcuma (Zingiberaceae) and has been widely used in foods for thousands of years. The present study examined the ethanol extract of turmeric for its chemical composition, antimicrobial activity, and free [...] Read more.
Turmeric (Curcuma longa L.) is a perennial tuberous plant from the genus Curcuma (Zingiberaceae) and has been widely used in foods for thousands of years. The present study examined the ethanol extract of turmeric for its chemical composition, antimicrobial activity, and free radical scavenging properties. UHPLC-MS/MS analysis tentatively identified eight compounds in the turmeric extract. Potential antimicrobial effects of 0.1, 1.0, and 10 mg turmeric equivalents (TE)/mL were evaluated in vitro against a variety of Gram-negative bacteria (i.e., Escherichia coli, Klebsiella pneumoniae, and Pseudomonas sp.) and Gram-positive bacteria (i.e., Enterococcus faecalis, Listeria innocua, and Staphylococcus aureus). Concentrations of 0.1 and 1.0 mg TE/mL inhibited the growth of S. aureus and significantly suppressed that of Pseudomonas sp., E. faecalis, and L. innocua. The growth of all strains, including E. coli, was inhibited by 10 mg TE/mL. Moreover, free radical scavenging capacities were determined using HO, ABTS●+, and DPPH (HOSC, ABTS, and RDSC, respectively) radicals. The turmeric ethanol extract had a TPC value of 27.12 mg GAE/g, together with HOSC, RDSC, and ABTS values of 1524.59, 56.38, and 1.70 μmol TE/g, respectively. Our results suggest that turmeric extract has potential applications for use in functional foods to reduce microbial burdens and oxidative stress-related health problems. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

18 pages, 1920 KiB  
Article
Obtaining Bixin- and Tocotrienol-Rich Extracts from Peruvian Annatto Seeds Using Supercritical CO2 Extraction: Experimental and Economic Evaluation
by Fiorella P. Cárdenas-Toro, Jennifer H. Meza-Coaquira, Gabriela K. Nakama-Hokamura and Giovani Leone Zabot
Foods 2024, 13(10), 1549; https://doi.org/10.3390/foods13101549 - 16 May 2024
Abstract
Currently, Bixa orellana L. extracts are used as a color source in the food, pharmaceutical, and cosmetic industries because they are important as a potential source of antioxidant activity. The extraction is carried out by conventional methods, using alkaline solutions or organic solvents. [...] Read more.
Currently, Bixa orellana L. extracts are used as a color source in the food, pharmaceutical, and cosmetic industries because they are important as a potential source of antioxidant activity. The extraction is carried out by conventional methods, using alkaline solutions or organic solvents. These extraction methods do not take advantage of the lipid fraction of annatto (Bixa orellana L.) seeds, and the process is not friendly to the environment. In this work, the objective was to obtain an extract rich in nutraceuticals (bixin and tocols) of high antioxidant power from Peruvian annatto seeds as a potential source for a functional food or additive in the industry using supercritical fluid extraction (SFE). Experiments related to extraction yield, bixin, tocotrienols, tocopherols, and antioxidant activity were carried out. The SFE was performed at 40 °C, 50 °C, and 60 °C, and 100, 150, and 250 bar with 0.256 kg/h carbon dioxide as the supercritical solvent (solvent-to-feed ratio of 10.2). Supercritical extraction at 60 °C and 250 bar presented the best results in terms of global extraction yield of 1.40 ± 0.01 g/100 g d.b., extract concentration of 0.564 ± 0.005 g bixin/g extract, 307.8 mg α-tocotrienol/g extract, 39.2 mg β-tocotrienol/g extract, 2 mg γ-tocopherol/g extract, and IC50 of 989.96 μg extract/mL. Economical evaluation showed that 60 °C, 250 bar, and 45 min presented the lowest cost of manufacturing (2 × 2000 L, COM of USD 212.39/kg extract). This extract is a potential source for functional food production. Full article
(This article belongs to the Special Issue Application of Green Extraction Technology for Foods)
Show Figures

Graphical abstract

15 pages, 7585 KiB  
Article
Tea Quality of the Mysterious “Dahongpao Mother Tree” (Camellia sinensis)
by Jianghua Ye, Qi Zhang, Mingzhe Li, Yuhua Wang, Miao Jia, Lei Hong, Yiling Chen, Xiaomin Pang, Xiaoli Jia and Haibin Wang
Foods 2024, 13(10), 1548; https://doi.org/10.3390/foods13101548 - 16 May 2024
Abstract
The quality of the Dahongpao mother tree (Camellia sinensis) remains a mystery to this day. In this study, for the first time, the differences between the Dahongpao mother tree (MD) and Dahongpao cuttings (PD), in terms of odor characteristics and taste [...] Read more.
The quality of the Dahongpao mother tree (Camellia sinensis) remains a mystery to this day. In this study, for the first time, the differences between the Dahongpao mother tree (MD) and Dahongpao cuttings (PD), in terms of odor characteristics and taste characteristics were analyzed by metabomics. The results showed that MD had stronger floral, fruity, green, and woody odor characteristics than PD, and that the contributions were mainly from dihydromyrcenol, methyl salicylate, 2-isobutylpyrazine, 1,6-dihydrocarveol, gamma-terpineol, and linalyl acetate. Further, fresh and brisk taste and mellowness taste characteristics of MD were significantly higher than PD, with contributions mainly from amino acids and derivatives and organic acids. Secondly, bitterness taste characteristics of PD were significantly higher than MD, with contributions from phenolic acids, flavones, and flavonols. This study preliminarily unraveled the legend of the superior quality of the Dahongpao mother tree, and also provided an important reference for the breeding of tea-tree cuttings. Full article
(This article belongs to the Special Issue Study on Aroma Components and Bioactive Compounds of Tea)
Show Figures

Figure 1

11 pages, 1760 KiB  
Article
Modulatory Effects of the Kuwanon-Rich Fraction from Mulberry Root Bark on the Renin–Angiotensin System
by Ji-Hae Lee, Heon-Woong Kim, So-Ah Kim, Wan-Taek Ju, Seong-Ryul Kim, Hyun-Bok Kim, Ik-Seob Cha, Seong-Wan Kim, Jong-Woo Park and Sang-Kuk Kang
Foods 2024, 13(10), 1547; https://doi.org/10.3390/foods13101547 - 16 May 2024
Abstract
In this study, we investigated the anti-hypertensive properties of mulberry products by modulating the renin–angiotensin system (RAS). Comparative analysis showed that the ethyl acetate fractions, particularly from the Cheongil and Daeshim cultivars, contained the highest levels of polyphenols and flavonoids, with concentrations reaching [...] Read more.
In this study, we investigated the anti-hypertensive properties of mulberry products by modulating the renin–angiotensin system (RAS). Comparative analysis showed that the ethyl acetate fractions, particularly from the Cheongil and Daeshim cultivars, contained the highest levels of polyphenols and flavonoids, with concentrations reaching 110 mg gallic acid equivalent (GE)/g and 471 mg catechin equivalent (CE)/g of extract, respectively. The ethyl acetate fraction showed superior angiotensin-converting enzyme (ACE) inhibitory activity, mainly because of the presence of the prenylated flavonoids kuwanon G and H. UPLC/Q-TOF-MS analysis identified kuwanon G and H as the primary active components, which significantly contributed to the pharmacological efficacy of the extract. In vivo testing of mice fed a high-salt diet showed that the ethyl acetate fraction substantially reduced the heart weight and lowered the serum renin and angiotensinogen levels by 34% and 25%, respectively, highlighting its potential to modulate the RAS. These results suggested that the ethyl acetate fraction of mulberry root bark is a promising candidate for the development of natural ACE inhibitors. This finding has significant implications for the management of hypertension through RAS regulation and the promotion of cardiovascular health in the functional food industry. Full article
Show Figures

Figure 1

15 pages, 6572 KiB  
Article
The Emulsification and Stabilization Mechanism of an Oil-in-Water Emulsion Constructed from Tremella Polysaccharide and Citrus Pectin
by Fangwei Liu, Weiwei He, Xiaojun Huang, Junyi Yin and Shaoping Nie
Foods 2024, 13(10), 1545; https://doi.org/10.3390/foods13101545 - 16 May 2024
Abstract
The objective of this study was to investigate the feasibility of the mixture of tremella polysaccharide (TP) and citrus pectin (CP) as an emulsifier by evaluating its emulsifying ability/stability. The results showed that the TP:CP ratio of 5:5 (w/w) [...] Read more.
The objective of this study was to investigate the feasibility of the mixture of tremella polysaccharide (TP) and citrus pectin (CP) as an emulsifier by evaluating its emulsifying ability/stability. The results showed that the TP:CP ratio of 5:5 (w/w) could effectively act as an emulsifier. CP, owing its lower molecular weight and highly methyl esterification, facilitated the emulsification of oil droplets, thereby promoting the dispersion of droplets. Meanwhile, the presence of TP enhanced the viscosity of emulsion system and increased the electrostatic interactions and steric hindrance, therefore hindering the migration of emulsion droplets, reducing emulsion droplets coalesce, and enhancing emulsion stability. The emulsification and stabilization performances were influenced by the molecular weight, esterified carboxyl groups content, and electric charge of TP and CP, and the potential mechanism involved their impact on the buoyant force of droplet size, viscosity, and steric hindrance of emulsion system. The emulsions stabilized by TP-CP exhibited robust environmental tolerance, but demonstrated sensitivity to Ca2+. Conclusively, the study demonstrated the potential application of the mixture of TP and CP as a natural polysaccharide emulsifier. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

16 pages, 9701 KiB  
Article
Compact Quantum Random Number Generator Based on a Laser Diode and a Hybrid Chip with Integrated Silicon Photonics
by Xuyang Wang, Tao Zheng, Yanxiang Jia, Jin Huang, Xinyi Zhu, Yuqi Shi, Ning Wang, Zhenguo Lu, Jun Zou and Yongmin Li
Photonics 2024, 11(5), 468; https://doi.org/10.3390/photonics11050468 - 16 May 2024
Abstract
In this study, a compact and low-power-consumption quantum random number generator (QRNG) based on a laser diode and a hybrid chip with integrated silicon photonics is proposed and verified experimentally. The hybrid chip’s size is 8.8 × 2.6 × 1 mm3, [...] Read more.
In this study, a compact and low-power-consumption quantum random number generator (QRNG) based on a laser diode and a hybrid chip with integrated silicon photonics is proposed and verified experimentally. The hybrid chip’s size is 8.8 × 2.6 × 1 mm3, and the power of the entropy source is 80 mW. A common-mode rejection ratio greater than 40 dB was achieved using an optimized 1 × 2 multimode interferometer structure. A method for optimizing the quantum-to-classical noise ratio is presented. A quantum-to-classical noise ratio of approximately 9 dB was achieved when the photoelectron current is 1 μA using a balance homodyne detector with a high dark current GeSi photodiode. The proposed QRNG has the potential for use in scenarios of moderate MHz random number generation speed, with low power, small volume, and low cost prioritized. Full article
(This article belongs to the Topic Hybrid and Heterogeneous Integration on Photonic Circuits)
Show Figures

Figure 1

13 pages, 5541 KiB  
Article
Solid–Liquid Two-Phase Flowmeter Flow-Passage Wall Erosion Evolution Characteristics and Calibration of Measurement Accuracy
by Wei Han, Lumin Yan, Rennian Li, Jing Zhang, Xiang Yang, Lei Ji and Yan Qiang
Processes 2024, 12(5), 1012; https://doi.org/10.3390/pr12051012 - 16 May 2024
Abstract
Solid–liquid two-phase flowmeters are widely used in critical sectors, such as petrochemicals, energy, manufacturing, the environment, and various other fields. They are indispensable devices for measuring flow. Currently, research has primarily focused on gas–liquid two-phase flow within the flowmeter, giving limited attention to [...] Read more.
Solid–liquid two-phase flowmeters are widely used in critical sectors, such as petrochemicals, energy, manufacturing, the environment, and various other fields. They are indispensable devices for measuring flow. Currently, research has primarily focused on gas–liquid two-phase flow within the flowmeter, giving limited attention to the impact of solid phases. In practical applications, crude oil frequently contains solid particles and other impurities, leading to equipment deformation and a subsequent reduction in measuring accuracy. This paper investigates how particle dynamic parameters affect the erosion evolution characteristics of flowmeters operating in solid–liquid two-phase conditions, employing the dynamic boundary erosion prediction method. The results indicate that the erosion range and peak erosion position on the overcurrent wall of the solid–liquid two-phase flowmeter vary with different particle dynamic parameters. Erosion mainly occurs at the contraction section of the solid–liquid two-phase flowmeter. When the particle inflow velocity increases, the erosion range shows no significant change, but the peak erosion position shifts to the right, primarily due to the evolution of the erosion process. With an increase in particle diameter, the erosion range expands along the inlet direction due to turbulent diffusion, as particles with lower kinetic energy exhibit better followability. There is no significant change in the erosion range and peak erosion position with an increase in particle volume fraction and particle sphericity. With a particle inflow velocity of 8.4 m/s, the maximum erosion depth reaches 750 μm. In contrast, at a particle sphericity of 0.58, the minimum erosion depth is 251 μm. Furthermore, a particle volume fraction of 0.5 results in a maximum flow coefficient increase of 1.99 × 10−3. Full article
(This article belongs to the Special Issue New Research on Oil and Gas Equipment and Technology)
Show Figures

Figure 1

14 pages, 6089 KiB  
Article
Circulating Neutrophil Profiles Undergo a Dynamic Shift during Metabolic Dysfunction-Associated Steatohepatitis (MASH) Progression
by Ana C. Maretti-Mira, Matthew P. Salomon, Shefali Chopra, Liyun Yuan and Lucy Golden-Mason
Biomedicines 2024, 12(5), 1105; https://doi.org/10.3390/biomedicines12051105 - 16 May 2024
Abstract
Neutrophils play a crucial role in host defense against infection. Aberrant neutrophil activation may induce tissue damage via sterile inflammation. Neutrophil accumulation has been identified as a feature of the inflammatory response observed in metabolic dysfunction-associated steatohepatitis (MASH) and has been associated with [...] Read more.
Neutrophils play a crucial role in host defense against infection. Aberrant neutrophil activation may induce tissue damage via sterile inflammation. Neutrophil accumulation has been identified as a feature of the inflammatory response observed in metabolic dysfunction-associated steatohepatitis (MASH) and has been associated with liver fibrosis and cirrhosis. Here, we performed the transcriptomic analysis of circulating neutrophils from mild and advanced MASH patients to identify the potential mechanism behind neutrophil contribution to MASH progression. Our findings demonstrated that circulating neutrophils from mild and advanced MASH display an increased activated transcriptional program, with the expression of pro-inflammatory factors and an amplified lifespan compared to cells from non-diseased controls. Our results also suggest that MASH progression is associated with a dynamic shift in the profile of circulating neutrophils. In the early stages of MASH, mature neutrophils predominate in the bloodstream. As hepatic inflammation and fibrosis progress, the premature release of immature neutrophils into the circulation occurs. These immature neutrophils exhibit a pro-inflammatory profile that may exacerbate inflammation and promote fibrosis in MASH. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

16 pages, 9563 KiB  
Article
Antimicrobial and Antibiofilm Potential of Green-Synthesized Graphene–Silver Nanocomposite against Multidrug-Resistant Nosocomial Pathogens
by Preeti Negi, Jatin Chadha, Kusum Harjai, Vijay Singh Gondil, Seema Kumari and Khem Raj
Biomedicines 2024, 12(5), 1104; https://doi.org/10.3390/biomedicines12051104 - 16 May 2024
Abstract
Hospital-acquired infections (HAIs) pose a significant risk to global health, impacting millions of individuals globally. These infections have increased rates of morbidity and mortality due to the prevalence of widespread antimicrobial resistance (AMR). Graphene-based nanoparticles (GBNs) are known to possess extensive antimicrobial properties [...] Read more.
Hospital-acquired infections (HAIs) pose a significant risk to global health, impacting millions of individuals globally. These infections have increased rates of morbidity and mortality due to the prevalence of widespread antimicrobial resistance (AMR). Graphene-based nanoparticles (GBNs) are known to possess extensive antimicrobial properties by inflicting damage to the cell membrane, suppressing virulence, and inhibiting microbial biofilms. Developing alternative therapies for HAIs and addressing AMR can be made easier and more affordable by combining nanoparticles with medicinal plants harboring antimicrobial properties. Hence, this study was undertaken to develop a novel graphene–silver nanocomposite via green synthesis using Trillium govanianum plant extract as a reducing agent. The resulting nanocomposite comprised silver nanoparticles embedded in graphene sheets. The antibacterial and antifungal properties of graphene–silver nanocomposites were investigated against several nosocomial pathogens, namely, Candida auris, Candida glabrata, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The nanocomposite displayed broad-range antimicrobial potential against the test pathogens, with minimum inhibitory concentrations (MICs) ranging between 31.25 and 125.0 µg/mL, and biofilm inhibition up to 80–96%. Moreover, nanocomposite-functionalized urinary catheters demonstrated hemocompatibility towards sheep erythrocytes and imparted anti-fouling activity to the biomaterial, while also displaying biocompatibility towards HEK 293 cells. Collectively, this investigation highlights the possible application of green-synthesized GBNs as an effective alternative to conventional antibiotics for combating multidrug-resistant pathogens. Full article
(This article belongs to the Special Issue Drug-Resistant Bacterial Infections and Alternative Therapies)
Show Figures

Figure 1

11 pages, 1633 KiB  
Article
SMAD3 rs17228212 Polymorphism Is Associated with Advanced Carotid Atherosclerosis in a Slovenian Population
by David Petrovič, Jernej Letonja and Danijel Petrovič
Biomedicines 2024, 12(5), 1103; https://doi.org/10.3390/biomedicines12051103 - 16 May 2024
Abstract
Smad proteins influence the TGFβ signaling pathway, which plays an important role in the progression of atherosclerosis. The aim of our study was to investigate the association between the rs17228212 polymorphism of the SMAD3 gene and advanced carotid atherosclerosis in Slovenian subjects and [...] Read more.
Smad proteins influence the TGFβ signaling pathway, which plays an important role in the progression of atherosclerosis. The aim of our study was to investigate the association between the rs17228212 polymorphism of the SMAD3 gene and advanced carotid atherosclerosis in Slovenian subjects and to investigate the effect of the rs17228212 SMAD3 polymorphism on the expression of SMAD3 in endarterectomy sequesters. In this cross-sectional case-control study, 881 unrelated Caucasians were divided into two groups. The first group included 308 patients with advanced carotid atherosclerosis of the common or internal carotid artery with stenosis greater than 75% that underwent a revascularization procedure (cases). The control group consisted of 573 subjects without hemodynamically significant carotid atherosclerosis. We analyzed the rs17228212 polymorphism of the SMAD3 gene using the StepOne real-time polymerase chain reaction system and TaqMan SNP genotyping assay. The results in the two genetic models showed a statistically significant association, codominant (OR 4.05; CI 1.10–17.75; p = 0.037) and dominant (OR 3.60; CI 1.15–15.45; p = 0.045). An immunohistochemical analysis of SMAD3 expression was conducted for 26 endarterectomy specimens. The T allele of the rs17228212 SMAD3 gene was shown to be associated with an increased numerical area density of SMAD3-positive cells in carotid plaques. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop