The 2023 MDPI Annual Report has
been released!
 
17 pages, 3153 KiB  
Article
Effects of UV/H2O2 Degradation on the Physicochemical and Antibacterial Properties of Fucoidan
by Zhicheng He, Biyang Zhu, Lijuan Deng and Lijun You
Mar. Drugs 2024, 22(5), 209; https://doi.org/10.3390/md22050209 (registering DOI) - 03 May 2024
Abstract
The applications of fucoidan in the food industry were limited due to its high molecular weight and low solubility. Moderate degradation was required to depolymerize fucoidan. A few studies have reported that fucoidan has potential antibacterial activity, but its antibacterial mechanism needs further [...] Read more.
The applications of fucoidan in the food industry were limited due to its high molecular weight and low solubility. Moderate degradation was required to depolymerize fucoidan. A few studies have reported that fucoidan has potential antibacterial activity, but its antibacterial mechanism needs further investigation. In this study, the degraded fucoidans were obtained after ultraviolet/hydrogen peroxide treatment (UV/H2O2) at different times. Their physicochemical properties and antibacterial activities against Staphylococcus aureus and Escherichia coli were investigated. The results showed that the average molecular weights of degraded fucoidans were significantly decreased (up to 22.04 times). They were mainly composed of fucose, galactose, and some glucuronic acid. Fucoidan degraded for 90 min (DFuc-90) showed the strongest antibacterial activities against Staphylococcus aureus and Escherichia coli, with inhibition zones of 27.70 + 0.84 mm and 9.25 + 0.61 mm, respectively. The minimum inhibitory concentrations (MIC) were 8 mg/mL and 4 mg/mL, respectively. DFuc-90 could inhibit the bacteria by damaging the cell wall, accumulating intracellular reactive oxygen species, reducing adenosine triphosphate synthesis, and inhibiting bacterial metabolic activity. Therefore, UV/H2O2 treatment could effectively degrade fucoidan and enhance its antibacterial activity. Full article
(This article belongs to the Special Issue Bioactive Polysaccharides from Seaweeds)
Show Figures

Figure 1

18 pages, 341 KiB  
Article
Global Generalized Mersenne Numbers: Definition, Decomposition, and Generalized Theorems
by Vladimir Pletser
Symmetry 2024, 16(5), 551; https://doi.org/10.3390/sym16050551 (registering DOI) - 03 May 2024
Abstract
A new generalized definition of Mersenne numbers is proposed of the form ana1n, called global generalized Mersenne numbers and noted GMa,n with base a and exponent n positive integers. The properties are [...] Read more.
A new generalized definition of Mersenne numbers is proposed of the form ana1n, called global generalized Mersenne numbers and noted GMa,n with base a and exponent n positive integers. The properties are investigated for prime n and several theorems on Mersenne numbers regarding their congruence properties are generalized and demonstrated. It is found that for any a, GMa,n1 is even and divisible by n, a and a1 for any prime n>2, and by aa1+1 for any prime n>5. The remaining factor is a function of triangular numbers of a1, specific for each prime n. Four theorems on Mersenne numbers are generalized and four new theorems are demonstrated, showing first that GMa,n1or7mod12 depending on the congruence of amod4; second, that GMa,n1 are divisible by 10 if n1mod4 and, if n3mod4, GMa,n1or7or9mod10, depending on the congruence of amod5; third, that all factors ci of GMa,n are of the form 2nfi+1 such that ci is either prime or the product of primes of the form 2nj+1, with fi,j natural integers; fourth, that for prime n>2, all GMa,n are periodically congruent to ±1or±3mod8 depending on the congruence of amod8; and fifth, that the factors of a composite GMa,n are of the form 2nfi+1 with fiumod4 with u=0, 1, 2 or 3 depending on the congruences of nmod4 and of amod8. The potential use of generalized Mersenne primes in cryptography is shortly addressed. Full article
(This article belongs to the Section Physics)
16 pages, 2225 KiB  
Article
Performance of Corn Cob Combustion in a Low-Temperature Fluidized Bed
by Rolandas Paulauskas, Marius Praspaliauskas, Ignas Ambrazevičius, Kęstutis Zakarauskas, Egidijus Lemanas, Justas Eimontas and Nerijus Striūgas
Energies 2024, 17(9), 2196; https://doi.org/10.3390/en17092196 (registering DOI) - 03 May 2024
Abstract
This study investigates the combustion of agricultural biomass rich in alkali elements in the fluidized bed. The experiments were performed with smashed corn cob in a 500 kW fluidized bed combustor which was designed for work under low bed temperatures (650–700 °C). During [...] Read more.
This study investigates the combustion of agricultural biomass rich in alkali elements in the fluidized bed. The experiments were performed with smashed corn cob in a 500 kW fluidized bed combustor which was designed for work under low bed temperatures (650–700 °C). During the experiments, the formed compounds from corn cob combustion were measured by sampling particulate matter, and mineral compositions were determined. Also, the temperature profile of the FBC was established. It was determined that the emissions of K and Na elements from the FBC increased from 4 to 7.3% and from 1.69 to 3%, respectively, changing the bed temperature from 650 to 700 °C. Though alkali emissions are reduced at a 650 °C bed temperature, CO emissions are higher by about 50% compared to the case of 700 °C. The addition of 3% of dolomite reduced the pollutant emissions and alkali emissions as well. Potassium content decreased by about 1% and 4%, respectively, at the bed temperatures of 650 °C and 700 °C. The NOx emissions were less than 300 mg/m3 and did not exceed the limit for medium plants regarding DIRECTIVE (EU) 2015/2193. During extended experiments lasting 8 h, no agglomeration of the fluidized bed was observed. Moreover, the proposed configuration of the FBC and its operational parameters prove suitable for facilitating the efficient combustion of agricultural biomass. Full article
Show Figures

Figure 1

23 pages, 15006 KiB  
Review
Review of the Real-Time Monitoring Technologies for Lithium Dendrites in Lithium-Ion Batteries
by Yifang Liang, Daiheng Song, Wenju Wu, Yanchao Yu, Jun You and Yuanpeng Liu
Molecules 2024, 29(9), 2118; https://doi.org/10.3390/molecules29092118 (registering DOI) - 03 May 2024
Abstract
Lithium-ion batteries (LIBs) have the advantage of high energy density, which has attracted the wide attention of researchers. Nevertheless, the growth of lithium dendrites on the anode surface causes short life and poor safety, which limits their application. Therefore, it is necessary to [...] Read more.
Lithium-ion batteries (LIBs) have the advantage of high energy density, which has attracted the wide attention of researchers. Nevertheless, the growth of lithium dendrites on the anode surface causes short life and poor safety, which limits their application. Therefore, it is necessary to deeply understand the growth mechanism of lithium dendrites. Here, the growth mechanism of lithium dendrites is briefly summarized, and the real-time monitoring technologies of lithium dendrite growth in recent years are reviewed. The real-time monitoring technologies summarized here include in situ X-ray, in situ Raman, in situ resonance, in situ microscopy, in situ neutrons, and sensors, and their representative studies are summarized. This paper is expected to provide some guidance for the research of lithium dendrites, so as to promote the development of LIBs. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Electrochemistry)
Show Figures

Figure 1

28 pages, 1456 KiB  
Article
Optimizing the Timeliness of Hybrid OFDMA-NOMA Sensor Networks with Stability Constraints
by Wei Wang, Yunquan Dong and Chengsheng Pan
Electronics 2024, 13(9), 1768; https://doi.org/10.3390/electronics13091768 (registering DOI) - 03 May 2024
Abstract
In this paper, we analyze the timeliness of a multi-user system in terms of the age of information (AoI) and the corresponding stability region in which the packet rates of users lead to finite queue lengths. Specifically, we consider a hybrid OFDMA-NOMA system [...] Read more.
In this paper, we analyze the timeliness of a multi-user system in terms of the age of information (AoI) and the corresponding stability region in which the packet rates of users lead to finite queue lengths. Specifically, we consider a hybrid OFDMA-NOMA system where the users are partitioned into several groups. While users in each group share the same resource block using non-orthogonal multiple access (NOMA), different groups access the fading channel using orthogonal frequency division multiple access (OFDMA). For this system, we consider three decoding schemes at the service terminals: interfering decoding, which treats signals from other users as interference; serial interference cancellation, which removes signals from other users once they have been decoded; and the enhanced SIC strategy, where the receiver attempts to decode for another user if decoding for a previous user fails. We present the average AoI for each of the three decoding schemes in closed form. Under the constraint of the stable region, we find the minimum AoI of each decoding scheme efficiently. The numerical results show that by optionally choosing the decoding scheme and transmission rate, the hybrid OFDMA-NOMA outperforms conventional OFDMA in terms of both system timeliness and stability. Full article
(This article belongs to the Special Issue Featured Advances in Real-Time Networks)
Show Figures

Figure 1

19 pages, 4634 KiB  
Article
Development of a Static Avascular and Dynamic Vascular Human Skin Equivalent Employing Collagen/Keratin Hydrogels
by Kameel Zuniga, Neda Ghousifam, Lucy Shaffer, Sean Brocklehurst, Mark Van Dyke, Robert Christy, Shanmugasundaram Natesan and Marissa Nichole Rylander
Int. J. Mol. Sci. 2024, 25(9), 4992; https://doi.org/10.3390/ijms25094992 (registering DOI) - 03 May 2024
Abstract
One of the primary complications in generating physiologically representative skin tissue is the inability to integrate vasculature into the system, which has been shown to promote the proliferation of basal keratinocytes and consequent keratinocyte differentiation, and is necessary for mimicking representative barrier function [...] Read more.
One of the primary complications in generating physiologically representative skin tissue is the inability to integrate vasculature into the system, which has been shown to promote the proliferation of basal keratinocytes and consequent keratinocyte differentiation, and is necessary for mimicking representative barrier function in the skin and physiological transport properties. We created a 3D vascularized human skin equivalent (VHSE) with a dermal and epidermal layer, and compared keratinocyte differentiation (immunomarker staining), epidermal thickness (H&E staining), and barrier function (transepithelial electrical resistance (TEER) and dextran permeability) to a static, organotypic avascular HSE (AHSE). The VHSE had a significantly thicker epidermal layer and increased resistance, both an indication of increased barrier function, compared to the AHSE. The inclusion of keratin in our collagen hydrogel extracellular matrix (ECM) increased keratinocyte differentiation and barrier function, indicated by greater resistance and decreased permeability. Surprisingly, however, endothelial cells grown in a collagen/keratin extracellular environment showed increased cell growth and decreased vascular permeability, indicating a more confluent and tighter vessel compared to those grown in a pure collagen environment. The development of a novel VHSE, which incorporated physiological vasculature and a unique collagen/keratin ECM, improved barrier function, vessel development, and skin structure compared to a static AHSE model. Full article
(This article belongs to the Special Issue Research Progress on 3D Cultures for Modeling the Microenvironment)
Show Figures

Figure 1

15 pages, 1698 KiB  
Article
How Bacteria Cope with Oxidative Stress Induced by Cadmium: Volatile Communication Is Differentially Perceived among Strains
by Paulo Cardoso, Ricardo Pinto, Tiago Lopes and Etelvina Figueira
Antioxidants 2024, 13(5), 565; https://doi.org/10.3390/antiox13050565 (registering DOI) - 03 May 2024
Abstract
Soil is an environment with numerous niches, where bacteria are exposed to diverse conditions. Some bacteria are exposed earlier than others to pressure, and the emission of signals that other bacteria can receive and perceive may allow a better response to an eminent [...] Read more.
Soil is an environment with numerous niches, where bacteria are exposed to diverse conditions. Some bacteria are exposed earlier than others to pressure, and the emission of signals that other bacteria can receive and perceive may allow a better response to an eminent stimulus. To shed light on how bacteria trigger their response and adapt to changes in the environment, the intra- and interspecific influences of volatiles on bacterial strains growing under non-stressed and cadmium-stressed conditions were assessed. Each strain was exposed to its volatiles emitted by cells growing under different conditions to test whether the environment in which a cell grows influences neighboring cells. The five genera tested showed different responses, with Rhizobium displaying the greatest influence. In a second experiment, 13 strains from different genera were grown under control conditions but exposed to volatiles released by Cd-stressed Rhizobium cells to ascertain whether Rhizobium’s observed influence was strain-specific or broader. Our results showed that the volatiles emitted by some bacteria under stress are differentially perceived and translated into biochemical changes (growth, alteration of the antioxidant response, and oxidative damage) by other bacteria, which may increase the adaptability and resilience of bacterial communities to environmental changes, especially those with a prooxidant nature. Cadmium (Cd) contamination of soils constitutes a risk to the environment and human health. Here, we showed the effects of Cd exposure on bacteria and how volatile communication influences the biochemistry related to coping with oxidative stress. This knowledge can be important for remediation and risk assessment and highlights that new biological features, such as volatile communication, should be considered when studying and assessing the impact of contaminants on soil ecosystems. Full article
(This article belongs to the Special Issue Environmental Pollution and Oxidative Stress)
Show Figures

Graphical abstract

10 pages, 4921 KiB  
Article
Comparative Analysis of Monoaxial and Polyaxial Pedicle Screws in the Surgical Correction of Adolescent Idiopathic Scoliosis
by Jae Hyuk Yang, Hong Jin Kim, Tae Yeong Chang, Seung Woo Suh and Dong-Gune Chang
J. Clin. Med. 2024, 13(9), 2689; https://doi.org/10.3390/jcm13092689 (registering DOI) - 03 May 2024
Abstract
Background: Although several biomechanical studies have been reported, few clinical studies have compared the efficacy of monoaxial and polyaxial pedicle screws in the surgical treatment of adolescent idiopathic scoliosis (AIS). This study aims to compare the radiological and clinical outcomes of mono- [...] Read more.
Background: Although several biomechanical studies have been reported, few clinical studies have compared the efficacy of monoaxial and polyaxial pedicle screws in the surgical treatment of adolescent idiopathic scoliosis (AIS). This study aims to compare the radiological and clinical outcomes of mono- and polyaxial pedicle screws in the surgical treatment of AIS. Methods: A total of 46 AIS patients who underwent surgery to treat scoliosis using pedicle screw instrumentation (PSI) and rod derotation (RD) were divided into two groups according to the use of pedicle screws: the monoaxial group (n = 23) and polyaxial group (n = 23). Results: The correction rate of the main Cobb’s angle was higher in the monoaxial group (70.2%) than in the polyaxial group (65.3%) (p = 0.040). No differences in the rotational correction of the apical vertebra were evident between the two groups. SRS-22 scores showed no significant differences according to the type of pedicle screws used. Conclusions: The use of polyaxial pedicle screws resulted in coronal, sagittal, and rotational correction outcomes comparable to those associated with the use of monoaxial pedicle screws for surgical treatment using PSI and RD to treat moderate cases of AIS. Full article
Show Figures

Figure 1

21 pages, 5411 KiB  
Article
Influence of Cold Stress on Physiological and Phytochemical Characteristics and Secondary Metabolite Accumulation in Microclones of Juglans regia L.
by Nina V. Terletskaya, Elvira A. Shadenova, Yuliya A. Litvinenko, Kazhybek Ashimuly, Malika Erbay, Aigerim Mamirova, Irada Nazarova, Nataliya D. Meduntseva, Nataliya O. Kudrina, Nazym K. Korbozova and Erika D. Djangalina
Int. J. Mol. Sci. 2024, 25(9), 4991; https://doi.org/10.3390/ijms25094991 (registering DOI) - 03 May 2024
Abstract
The current study investigated the impact of cold stress on the morphological, physiological, and phytochemical properties of Juglans regia L. (J. regia) using in vitro microclone cultures. The study revealed significant stress-induced changes in the production of secondary antioxidant metabolites. According [...] Read more.
The current study investigated the impact of cold stress on the morphological, physiological, and phytochemical properties of Juglans regia L. (J. regia) using in vitro microclone cultures. The study revealed significant stress-induced changes in the production of secondary antioxidant metabolites. According to gas chromatography–mass spectrometry (GC–MS) analyses, the stress conditions profoundly altered the metabolism of J. regia microclones. Although the overall spectrum of metabolites was reduced, the production of key secondary antioxidant metabolites significantly increased. Notably, there was a sevenfold (7×) increase in juglone concentration. These findings are crucial for advancing walnut metabolomics and enhancing our understanding of plant responses to abiotic stress factors. Additionally, study results aid in identifying the role of individual metabolites in these processes, which is essential for developing strategies to improve plant resilience and tolerance to adverse conditions. Full article
(This article belongs to the Special Issue Recent Analysis and Applications of Mass Spectrum in Biochemistry 2.0)
Show Figures

Figure 1

13 pages, 822 KiB  
Article
The Effect of LENA (Language ENvironment Analysis) for Children with Hearing Loss in Denmark including a Pilot Validation for the Danish Language
by Jane Lignel Josvassen, Victoria Amalie Michael Hedegaard, Mie Lærkegård Jørgensen and Lone Percy-Smith
J. Clin. Med. 2024, 13(9), 2688; https://doi.org/10.3390/jcm13092688 (registering DOI) - 03 May 2024
Abstract
Background/Objectives: This study aimed to investigate whether day-long recordings with Language Environment Analysis (LENA) can be utilized in a hospital-based Auditory Verbal Therapy (AVT) program in Denmark for children with hearing loss and to conduct a pilot validation in the Danish language. Methods [...] Read more.
Background/Objectives: This study aimed to investigate whether day-long recordings with Language Environment Analysis (LENA) can be utilized in a hospital-based Auditory Verbal Therapy (AVT) program in Denmark for children with hearing loss and to conduct a pilot validation in the Danish language. Methods and materials: A license for the LENA system (LENA SP) was purchased, and trials were offered to three families enrolled in the AVT program. Each family made two day-long recordings with 3–4 months in between and received feedback during the therapy sessions. From 18 × 10-min clips randomly pulled out of the recordings, a comparison of adult word counts (AWC) between the LENA algorithm counts and the counts made by two human transcribers was made and used for the pilot validation. Results: LENA proved to be valuable as a guiding tool for Danish parents. Pilot validation showed good correlations and an acceptable limit of agreement (LoA). Conclusions: LENA holds the potential for Danish validation and use in AVT/clinical practice. When used in clinical practice, parents must be informed of the biases and limitations, and possible ethical issues must be considered. Because of the GDPR rules, there is a need to discuss the possibility of implementing this tool clinically in Denmark and the EU. Full article
(This article belongs to the Special Issue Advances in the Diagnosis, Treatment, and Prognosis of Hearing Loss)
Show Figures

Figure 1

16 pages, 4185 KiB  
Article
Kiwi 4.0: In Vivo Real-Time Monitoring to Improve Water Use Efficiency in Yellow Flesh Actinidia chinensis
by Filippo Vurro, Luigi Manfrini, Alexandra Boini, Manuele Bettelli, Vito Buono, Stefano Caselli, Beniamino Gioli, Andrea Zappettini, Nadia Palermo and Michela Janni
Biosensors 2024, 14(5), 226; https://doi.org/10.3390/bios14050226 (registering DOI) - 03 May 2024
Abstract
This manuscript reports the application of sensors for water use efficiency with a focus on the application of an in vivo OECT biosensor. In two distinct experimental trials, the in vivo sensor bioristor was applied in yellow kiwi plants to monitor, in real-time [...] Read more.
This manuscript reports the application of sensors for water use efficiency with a focus on the application of an in vivo OECT biosensor. In two distinct experimental trials, the in vivo sensor bioristor was applied in yellow kiwi plants to monitor, in real-time and continuously, the changes in the composition and concentration of the plant sap in an open field during plant growth and development. The bioristor response and physiological data, together with other fruit sensor monitoring data, were acquired and combined in both trials, giving a complete picture of the biosphere conditions. A high correlation was observed between the bioristor index (ΔIgs), the canopy cover expressed as the fraction of intercepted PAR (fi_PAR), and the soil water content (SWC). In addition, the bioristor was confirmed to be a good proxy for the occurrence of drought in kiwi plants; in fact, a period of drought stress was identified within the month of July. A novelty of the bioristor measurements was their ability to detect in advance the occurrence of defoliation, thereby reducing yield and quality losses. A plant-based irrigation protocol can be achieved and tailored based on real plant needs, increasing water use sustainability and preserving high-quality standards. Full article
(This article belongs to the Special Issue Biosensing for Environmental Monitoring)
Show Figures

Figure 1

14 pages, 769 KiB  
Article
Predicting Transcription Factor Binding Sites with Deep Learning
by Nimisha Ghosh, Daniele Santoni, Indrajit Saha and Giovanni Felici
Int. J. Mol. Sci. 2024, 25(9), 4990; https://doi.org/10.3390/ijms25094990 (registering DOI) - 03 May 2024
Abstract
Prediction of binding sites for transcription factors is important to understand how the latter regulate gene expression and how this regulation can be modulated for therapeutic purposes. A consistent number of references address this issue with different approaches, Machine Learning being one of [...] Read more.
Prediction of binding sites for transcription factors is important to understand how the latter regulate gene expression and how this regulation can be modulated for therapeutic purposes. A consistent number of references address this issue with different approaches, Machine Learning being one of the most successful. Nevertheless, we note that many such approaches fail to propose a robust and meaningful method to embed the genetic data under analysis. We try to overcome this problem by proposing a bidirectional transformer-based encoder, empowered by bidirectional long-short term memory layers and with a capsule layer responsible for the final prediction. To evaluate the efficiency of the proposed approach, we use benchmark ChIP-seq datasets of five cell lines available in the ENCODE repository (A549, GM12878, Hep-G2, H1-hESC, and Hela). The results show that the proposed method can predict TFBS within the five different cell lines very well; moreover, cross-cell predictions provide satisfactory results as well. Experiments conducted across cell lines are reinforced by the analysis of five additional lines used only to test the model trained using the others. The results confirm that prediction across cell lines remains very high, allowing an extensive cross-transcription factor analysis to be performed from which several indications of interest for molecular biology may be drawn. Full article
(This article belongs to the Special Issue Deep Learning in Bioinformatics and Biological Data Analysis)
Show Figures

Figure 1

18 pages, 4753 KiB  
Review
Advances in Catalysts for Urea Electrosynthesis Utilizing CO2 and Nitrogenous Materials: A Mechanistic Perspective
by Mengfei Zhang, Tianjian Feng, Xuanming Che, Yuhan Wang, Pengxian Wang, Mao Chai and Menglei Yuan
Materials 2024, 17(9), 2142; https://doi.org/10.3390/ma17092142 (registering DOI) - 03 May 2024
Abstract
Electrocatalytic urea synthesis from CO2 and nitrogenous substances represents an essential advance for the chemical industry, enabling the efficient utilization of resources and promoting sustainable development. However, the development of electrocatalytic urea synthesis has been severely limited by weak chemisorption, poor activation [...] Read more.
Electrocatalytic urea synthesis from CO2 and nitrogenous substances represents an essential advance for the chemical industry, enabling the efficient utilization of resources and promoting sustainable development. However, the development of electrocatalytic urea synthesis has been severely limited by weak chemisorption, poor activation and difficulties in C–N coupling reactions. In this review, catalysts and corresponding reaction mechanisms in the emerging fields of bimetallic catalysts, MXenes, frustrated Lewis acid–base pairs and heterostructures are summarized in terms of the two central mechanisms of molecule–catalyst interactions as well as chemical bond cleavage and directional coupling, which provide new perspectives for improving the efficiency of electrocatalytic synthesis of urea. This review provides valuable insights to elucidate potential electrocatalytic mechanisms. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

10 pages, 246 KiB  
Review
Is Neonatal Uterine Bleeding Involved in Early-Onset Endometriosis?
by Marwan Habiba, Sun-Wei Guo and Giuseppe Benagiano
Biomolecules 2024, 14(5), 549; https://doi.org/10.3390/biom14050549 (registering DOI) - 03 May 2024
Abstract
Background: There has been considerable progress in our understanding of endometriosis, but its pathophysiology remains uncertain. Uncovering the underlying mechanism of the rare instances of endometriosis reported in early postmenarcheal years and in girls before menarche can have wide implications. Methods: We conducted [...] Read more.
Background: There has been considerable progress in our understanding of endometriosis, but its pathophysiology remains uncertain. Uncovering the underlying mechanism of the rare instances of endometriosis reported in early postmenarcheal years and in girls before menarche can have wide implications. Methods: We conducted a literature review of all relevant articles on Medline. Results: In the review, we explore the pathogenetic theories of premenarcheal endometriosis, the role of retrograde menstruation in the adult and its potential role in early-onset disease, as well as the factors that argue against the existence of a link between early-onset endometriosis (EOE) and neonatal uterine bleeding (NUB). Conclusions: As with endometriosis in adult women, the pathogenesis of early-onset disease remains unclear. A link between NUB and EOE is plausible, but there are considerable challenges to collating supporting evidence. The state of our understanding of early uterine development and of the pathophysiology of NUB leaves many unknowns that need exploration. These include proof of the existence of viable endometrial cells or endometrial mesenchymal stem cells in NUB, their passage to the pelvic cavity, their possible response to steroids, and whether they can reside within the pelvic cavity and remain dormant till menarche. Full article
(This article belongs to the Section Molecular Medicine)
11 pages, 2367 KiB  
Article
Amber (Succinite) Extract Enhances Glucose Uptake through the Up-Regulation of ATP and Down-Regulation of ROS in Mouse C2C12 Cells
by Mahmoud Ben Othman, Reiko Takeda, Marie Sekita, Kazuma Okazaki and Kazuichi Sakamoto
Pharmaceuticals 2024, 17(5), 586; https://doi.org/10.3390/ph17050586 (registering DOI) - 03 May 2024
Abstract
Traditionally, amber (Succinite) has been used to alleviate all types of pain, skin allergies, and headaches. However, no studies have been conducted on its antidiabetic and antioxidant effects. In this study, differentiated skeletal muscle C2C12 cells were used to demonstrate the protective effects [...] Read more.
Traditionally, amber (Succinite) has been used to alleviate all types of pain, skin allergies, and headaches. However, no studies have been conducted on its antidiabetic and antioxidant effects. In this study, differentiated skeletal muscle C2C12 cells were used to demonstrate the protective effects of amber (AMB) against H2O2-induced cell death. In addition, the effects of AMB on glucose uptake and ATP production were investigated. Our results showed that AMB at 10, 25, and 50 μg/mL suppressed the elevation of ROS production induced by H2O2 in a dose-dependent manner. Moreover, AMB enhanced glucose utilization in C2C12 cells through the improvement of ATP production and an increase in PGC-1α gene expression resulting in an amelioration of mitochondrial activity. On the other hand, AMB significantly increased the gene expression of glucose transporters GLUT4 and GLUT1. Our finding suggests that AMB can be used as a natural supplement for diabetes treatment and for the promotion of skeletal muscle function. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

14 pages, 10149 KiB  
Article
Smart Textile Impact Sensor for e-Helmet to Measure Head Injury
by Manob Jyoti Saikia and Arar Salim Alkhader
Sensors 2024, 24(9), 2919; https://doi.org/10.3390/s24092919 (registering DOI) - 03 May 2024
Abstract
Concussions, a prevalent public health concern in the United States, often result from mild traumatic brain injuries (mTBI), notably in sports such as American football. There is limited exploration of smart-textile-based sensors for measuring the head impacts associated with concussions in sports and [...] Read more.
Concussions, a prevalent public health concern in the United States, often result from mild traumatic brain injuries (mTBI), notably in sports such as American football. There is limited exploration of smart-textile-based sensors for measuring the head impacts associated with concussions in sports and recreational activities. In this paper, we describe the development and construction of a smart textile impact sensor (STIS) and validate STIS functionality under high magnitude impacts. This STIS can be inserted into helmet cushioning to determine head impact force. The designed 2 × 2 STIS matrix is composed of a number of material layered structures, with a sensing surface made of semiconducting polymer composite (SPC). The SPC dimension was modified in the design iteration to increase sensor range, responsiveness, and linearity. This was to be applicable in high impact situations. A microcontroller board with a biasing circuit was used to interface the STIS and read the sensor’s response. A pendulum test setup was constructed to evaluate various STISs with impact forces. A camera and Tracker software were used to monitor the pendulum swing. The impact forces were calculated by measuring the pendulum bob’s velocity and acceleration. The performance of the various STISs was measured in terms of voltage due to impact force, with forces varying from 180 to 722 N. Through data analysis, the threshold impact forces in the linear range were determined. Through an analysis of linear regression, the sensors’ sensitivity was assessed. Also, a simplified model was developed to measure the force distribution in the 2 × 2 STIS areas from the measured voltages. The results showed that improving the SPC thickness could obtain improved sensor behavior. However, for impacts that exceeded the threshold, the suggested sensor did not respond by reflecting the actual impact forces, but it gave helpful information about the impact distribution on the sensor regardless of the accurate expected linear response. Results showed that the proposed STIS performs satisfactorily within a range and has the potential to be used in the development of an e-helmet with a large STIS matrix that could cover the whole head within the e-helmet. This work also encourages future research, especially on the structure of the sensor that could withstand impacts which in turn could improve the overall range and performance and would accurately measure the impact in concussion-causing impact ranges. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

22 pages, 3557 KiB  
Article
Enhancing Encapsulation Efficiency of Chavir Essential Oil via Enzymatic Hydrolysis and Ultrasonication of Whey Protein Concentrate–Maltodextrin
by Nasrin Beigmohammadi, Seyed Hadi Peighambardoust, Asad Mohammad Amini and Kazem Alirezalu
Foods 2024, 13(9), 1407; https://doi.org/10.3390/foods13091407 (registering DOI) - 03 May 2024
Abstract
This study focused on the characterization of emulsions and microparticles encapsulating Chavir essential oil (EO) by application of modified whey protein concentrate–maltodextrin (WPC-MD). Different physical, chemical, morphological, thermal, and antioxidant properties and release behavior of spray-dried microparticles were assessed. Antioxidant, solubility, emulsifying, and [...] Read more.
This study focused on the characterization of emulsions and microparticles encapsulating Chavir essential oil (EO) by application of modified whey protein concentrate–maltodextrin (WPC-MD). Different physical, chemical, morphological, thermal, and antioxidant properties and release behavior of spray-dried microparticles were assessed. Antioxidant, solubility, emulsifying, and foaming activities of modified WPC were increased compared to those of primary material. The results indicated that the particle size distribution varied depending on the type of carriers used, with the smallest particles formed by hydrolyzed WPC (HWPC). Binary blends of modified WPC-MD led to improved particle sizes. The spray-drying yield ranged from 64.1% to 85.0%, with higher yields observed for blends of MD with sonicated WPC (UWPC). Microparticles prepared from primary WPC showed irregular and wrinkled surfaces with indentations and pores, indicating a less uniform morphology. The UWPC as a wall material led to microparticles with increased small cracks and holes on their surface. However, HWPC negatively affected the integrity of the microparticles, resulting in broken particles with irregular shapes and surface cracks, indicating poor microcapsule formation. Encapsulating EO using WPC-MD increased the thermal stability of EO significantly, enhancing the degradation temperature of EO by 2 to 2.5-fold. The application of primary WPC (alone or in combination with MD) as wall materials produced particles with the lowest antioxidant properties because the EO cannot migrate to the surface of the particles. Enzymatic hydrolysis of WPC negatively impacted microparticle integrity, potentially increasing EO release. These findings underscore the crucial role of wall materials in shaping the physical, morphological, thermal, antioxidant, and release properties of spray-dried microparticles, offering valuable insights for microencapsulation techniques. Full article
Show Figures

Figure 1

16 pages, 3652 KiB  
Article
Exploring CDKN1A Upregulation Mechanisms: Insights into Cell Cycle Arrest Induced by NC2603 Curcumin Analog in MCF-7 Breast Cancer Cells
by Felipe Garcia Nishimura, Beatriz Borsani Sampaio, Tatiana Takahasi Komoto, Wanessa Julia da Silva, Mariana Mezencio Gregório da Costa, Gabriela Inforçatti Haddad, Kamila Chagas Peronni, Adriane Feijó Evangelista, Mohammad Hossain, Jonathan R. Dimmock, Brian Bandy, Rene Oliveira Beleboni, Mozart Marins and Ana Lucia Fachin
Int. J. Mol. Sci. 2024, 25(9), 4989; https://doi.org/10.3390/ijms25094989 (registering DOI) - 03 May 2024
Abstract
Breast cancer stands out as one of the most prevalent malignancies worldwide, necessitating a nuanced understanding of its molecular underpinnings for effective treatment. Hormone receptors in breast cancer cells substantially influence treatment strategies, dictating therapeutic approaches in clinical settings, serving as a guide [...] Read more.
Breast cancer stands out as one of the most prevalent malignancies worldwide, necessitating a nuanced understanding of its molecular underpinnings for effective treatment. Hormone receptors in breast cancer cells substantially influence treatment strategies, dictating therapeutic approaches in clinical settings, serving as a guide for drug development, and aiming to enhance treatment specificity and efficacy. Natural compounds, such as curcumin, offer a diverse array of chemical structures with promising therapeutic potential. Despite curcumin’s benefits, challenges like poor solubility and rapid metabolism have spurred the exploration of analogs. Here, we evaluated the efficacy of the curcumin analog NC2603 to induce cell cycle arrest in MCF-7 breast cancer cells and explored its molecular mechanisms. Our findings reveal potent inhibition of cell viability (IC50 = 5.6 μM) and greater specificity than doxorubicin toward MCF-7 vs. non-cancer HaCaT cells. Transcriptome analysis identified 12,055 modulated genes, most notably upregulation of GADD45A and downregulation of ESR1, implicating CDKN1A-mediated regulation of proliferation and cell cycle genes. We hypothesize that the curcumin analog by inducing GADD45A expression and repressing ESR1, triggers the expression of CDKN1A, which in turn downregulates the expression of many important genes of proliferation and the cell cycle. These insights advance our understanding of curcumin analogs’ therapeutic potential, highlighting not just their role in treatment, but also the molecular pathways involved in their activity toward breast cancer cells. Full article
(This article belongs to the Special Issue Molecular Mechanisms and New Therapies for Breast Cancer)
Show Figures

Figure 1

16 pages, 3896 KiB  
Article
Super-Suppression of Long-Wavelength Phonons in Constricted Nanoporous Geometries
by P. Alex Greaney, S. Aria Hosseini, Laura de Sousa Oliveira, Alathea Davies and Neophytos Neophytou
Nanomaterials 2024, 14(9), 795; https://doi.org/10.3390/nano14090795 (registering DOI) - 03 May 2024
Abstract
In a typical semiconductor material, the majority of the heat is carried by long-wavelength, long-mean-free-path phonons. Nanostructuring strategies to reduce thermal conductivity, a promising direction in the field of thermoelectrics, place scattering centers of size and spatial separation comparable to the mean free [...] Read more.
In a typical semiconductor material, the majority of the heat is carried by long-wavelength, long-mean-free-path phonons. Nanostructuring strategies to reduce thermal conductivity, a promising direction in the field of thermoelectrics, place scattering centers of size and spatial separation comparable to the mean free paths of the dominant phonons to selectively scatter them. The resultant thermal conductivity is in most cases well predicted using Matthiessen’s rule. In general, however, long-wavelength phonons are not as effectively scattered as the rest of the phonon spectrum. In this work, using large-scale molecular-dynamics simulations, non-equilibrium Green’s function simulations, and Monte Carlo simulations, we show that specific nanoporous geometries that create narrow constrictions in the passage of phonons lead to anticorrelated heat currents in the phonon spectrum. This effect results in super-suppression of long-wavelength phonons due to heat trapping and reductions in the thermal conductivity to values well below those predicted by Matthiessen’s rule. Full article
Show Figures

Figure 1

15 pages, 2257 KiB  
Article
Effects of Leaf Species and Conditioning State of Fresh Leaves on Colonization by Stream and Pond Macroinvertebrates
by Austin R. Hoffman and Erika V. Iyengar
Hydrobiology 2024, 3(2), 85-99; https://doi.org/10.3390/hydrobiology3020007 (registering DOI) - 03 May 2024
Abstract
Fresh, green leaves are increasing as resources in aquatic ecosystems due to more frequent severe spring and summer storms, but research on allochthonous resources typically uses senescent leaves. We examined macroinvertebrate colonization of green leaves of three native deciduous trees (red maple, red [...] Read more.
Fresh, green leaves are increasing as resources in aquatic ecosystems due to more frequent severe spring and summer storms, but research on allochthonous resources typically uses senescent leaves. We examined macroinvertebrate colonization of green leaves of three native deciduous trees (red maple, red oak, and tulip poplar) over two weeks within both a stream and fishless pond. Leaf colonization varied depending on the taxa of leaves and colonizers, submersion time, and the ecosystem examined. Within the stream, the densities of isopods (Lirceus sp.) and snails (mostly the invasive Potamopyrgus antipodarum) did not vary significantly across leaf species. In contrast, mayflies (Tricorythodes sp.) in the stream colonized tulip poplar in greater numbers than red oak leaves, while higher densities of planarians (order Tricladida) occurred within red oak leaves. The numbers of mayflies and snails decreased significantly by the second week, but the densities of isopods and planaria within stream leaf packs were consistent. In contrast, within the pond, significantly more isopods (Caecidotea communis) were collected after the first than after the second week of submersion and in tulip poplar leaves. Clams (Sphaeriidae) in the pond, on the other hand, were more prevalent in the second week but did not discriminate among leaf species. While the number of leeches (mostly Helobdella stagnalis) was consistent across weeks, significantly fewer leeches resided within tulip poplar leaves than within red oak leaves. Our results suggest that there are no consistent colonization-preference rankings of species of fresh leaves across freshwater benthic macroinvertebrate taxa. Even within a functional feeding group (e.g., the two types of isopods and snails, all detritivore-herbivores), there were differences in colonization patterns. Therefore, increased allochthonous inputs of fresh leaf litter due to severe spring- and summer-time storms are likely to promote the populations of various taxa to different extents. Full article
(This article belongs to the Special Issue Ecosystem Disturbance in Small Streams)
Show Figures

Figure 1

17 pages, 358 KiB  
Article
Sodium Chloride Tolerance during Germination and Seedling Stages of Tomato (Solanum lycopersicum L.) Lines Native to Mexico
by Ariadna Goreti López-Méndez, Juan Enrique Rodríguez-Pérez, José Oscar Mascorro-Gallardo, Jaime Sahagún-Castellanos and Ricardo Lobato-Ortiz
Horticulturae 2024, 10(5), 466; https://doi.org/10.3390/horticulturae10050466 (registering DOI) - 03 May 2024
Abstract
Tomato is considered moderately sensitive to salinity, which detracts from the quality and yield of its fruit; therefore, wild populations have been used as a genetic resource. The aim of this research was to identify lines derived from wild tomato populations with tolerance [...] Read more.
Tomato is considered moderately sensitive to salinity, which detracts from the quality and yield of its fruit; therefore, wild populations have been used as a genetic resource. The aim of this research was to identify lines derived from wild tomato populations with tolerance to salinity during the germination and seedling stages. During germination, 52 wild lines and 2 commercial hybrids (Imperial®, Reserva®) were subjected to treatment with 150 mM and 0 mM NaCl and evaluated. The test was carried out for 20 days in a germination chamber with constant darkness, a temperature of 25 ± 2 °C and relative humidity conditions of 80 ± 4%. At the seedling stage, 22 wild tomato lines with the best performance in the germination test and 2 commercial hybrids (Imperial®, Topanga®) were evaluated for 12 days in a floating raft system. Concentrations of 175 mM and 0 mM of NaCl were used. During germination, the saline condition decreased the germination percentage (65.2%), speed of germination (88.2%), steam length (72.5%), root length (46.56%), number of normal plants (59.5%), stem dry matter (68.78%), root dry matter (61.99%), and total dry matter (67.1%). At the seedling stage, this condition decreased (p < 0.05) the aerial part dry matter (46.37%), leaf area (59.35%), root length (42.43%), final plant height (40.24%), and growth rate (71.42%). Seventeen tolerant genotypes were identified in one of the two developmental stages, while one genotype showed tolerance in both stages. These results indicate that there are different response mechanisms in each developmental stage. Native tomatoes play an important role in the identification of tolerant genotypes since they can be used as genetic resources for obtaining commercial genotypes with salt tolerance. Full article
16 pages, 5372 KiB  
Article
Inhibiting AGS Cancer Cell Proliferation through the Combined Application of Aucklandiae Radix and Hyperthermia: Investigating the Roles of Heat Shock Proteins and Reactive Oxygen Species
by Chae Ryeong Ahn, In Jin Ha, Jai-Eun Kim, Kwang Seok Ahn, Jinbong Park and Seung Ho Baek
Antioxidants 2024, 13(5), 564; https://doi.org/10.3390/antiox13050564 (registering DOI) - 03 May 2024
Abstract
Cancer is a major global health concern. To address this, the combination of traditional medicine and newly appreciated therapeutic modalities has been gaining considerable attention. This study explores the combined effects of Aucklandiae Radix (AR) and 43 °C hyperthermia (HT) on human gastric [...] Read more.
Cancer is a major global health concern. To address this, the combination of traditional medicine and newly appreciated therapeutic modalities has been gaining considerable attention. This study explores the combined effects of Aucklandiae Radix (AR) and 43 °C hyperthermia (HT) on human gastric adenocarcinoma (AGS) cell proliferation and apoptosis. We investigated the synergistic effects of AR and HT on cell viability, apoptosis, cell cycle progression, and reactive oxygen species (ROS)-dependent mechanisms. Our findings suggest that the combined treatment led to a notable decrease in AGS cell viability and increased apoptosis. Furthermore, cell cycle arrest at the G2/M phase contributed to the inhibition of cancer cell proliferation. Notably, the roles of heat shock proteins (HSPs) were highlighted, particularly in the context of ROS regulation and the induction of apoptosis. Overexpression of HSPs was observed in cells subjected to HT, whereas their levels were markedly reduced following AR treatment. The suppression of HSPs and the subsequent increase in ROS levels appeared to contribute to the activation of apoptosis, suggesting a potential role for HSPs in the combined therapy’s anti-cancer mechanisms. These findings provide valuable insights into the potential of integrating AR and HT in cancer and HSPs. Full article
(This article belongs to the Special Issue Natural Antioxidants in Obesity and Related Diseases—2nd Edition)
Show Figures

Figure 1

23 pages, 1152 KiB  
Review
Disuse-Induced Muscle Fatigue: Facts and Assumptions
by Xenia V. Sergeeva, Irina D. Lvova and Kristina A. Sharlo
Int. J. Mol. Sci. 2024, 25(9), 4984; https://doi.org/10.3390/ijms25094984 (registering DOI) - 03 May 2024
Abstract
Skeletal muscle unloading occurs during a wide range of conditions, from space flight to bed rest. The unloaded muscle undergoes negative functional changes, which include increased fatigue. The mechanisms of unloading-induced fatigue are far from complete understanding and cannot be explained by muscle [...] Read more.
Skeletal muscle unloading occurs during a wide range of conditions, from space flight to bed rest. The unloaded muscle undergoes negative functional changes, which include increased fatigue. The mechanisms of unloading-induced fatigue are far from complete understanding and cannot be explained by muscle atrophy only. In this review, we summarize the data concerning unloading-induced fatigue in different muscles and different unloading models and provide several potential mechanisms of unloading-induced fatigue based on recent experimental data. The unloading-induced changes leading to increased fatigue include both neurobiological and intramuscular processes. The development of intramuscular fatigue seems to be mainly contributed by the transformation of soleus muscle fibers from a fatigue-resistant, “oxidative“ “slow” phenotype to a “fast” “glycolytic“ one. This process includes slow-to-fast fiber-type shift and mitochondrial density decline, as well as the disruption of activating signaling interconnections between slow-type myosin expression and mitochondrial biogenesis. A vast pool of relevant literature suggests that these events are triggered by the inactivation of muscle fibers in the early stages of muscle unloading, leading to the accumulation of high-energy phosphates and calcium ions in the myoplasm, as well as NO decrease. Disturbance of these secondary messengers leads to structural changes in muscles that, in turn, cause increased fatigue. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop