The 2023 MDPI Annual Report has
been released!
 
11 pages, 509 KiB  
Article
Clinical and Genomic Features of Patients with Renal Cell Carcinoma and Advanced Chronic Kidney Disease: Analysis of a Multi-Institutional Database
by Corbin J. Eule, Junxiao Hu, Dale Hedges, Alkesh Jani, Thomas Pshak, Brandon J. Manley, Alejandro Sanchez, Robert Dreicer, Zin W. Myint, Yousef Zakharia and Elaine T. Lam
Cancers 2024, 16(10), 1920; https://doi.org/10.3390/cancers16101920 (registering DOI) - 18 May 2024
Abstract
Background: Patients with advanced chronic kidney disease (ACKD) are at an increased risk of developing renal cell carcinoma (RCC), but molecular alterations in RCC specimens arising from ACKD and overall survival (OS) in affected patients are not well defined. Patients and Methods: Using [...] Read more.
Background: Patients with advanced chronic kidney disease (ACKD) are at an increased risk of developing renal cell carcinoma (RCC), but molecular alterations in RCC specimens arising from ACKD and overall survival (OS) in affected patients are not well defined. Patients and Methods: Using the Oncology Research Information Exchange Network (ORIEN) Total Cancer Care® protocol, 296 consented adult patients with RCC and somatic tumor whole exome sequencing were included. Patients with ACKD were defined as those with serum creatinine ≥1.5 mg/dL prior to RCC diagnosis. Results: Of 296 patients with RCC, 61 met the criteria for ACKD. The most common somatic mutations in the overall cohort were in VHL (126, 42.6%), PBRM1 (102, 34.5%), and SETD2 (54, 18.2%). BAP1 had a decreased mutational frequency in RCC specimens from patients without ACKD as compared to those with ACKD (10.6% versus 1.6%), but this was not statistically significant in univariable (OR 0.14, p = 0.056) or multivariable (OR 0.15, p = 0.067) analysis. Median OS was not reached in either cohort. Conclusions: Using the clinicogenomic ORIEN database, our study found lower rates of BAP1 mutations in RCC specimens from patients with ACKD, which may reflect a BAP1-independent mutational driver of RCC in patients with ACKD. Full article
(This article belongs to the Special Issue New Era of Cancer Research: From Large-Scale Cohorts to Big-Data)
Show Figures

Figure 1

11 pages, 2270 KiB  
Article
Competitive Mechanism of Alloying Elements on the Physical Properties of Al10Ti15Nix1Crx2Cox3 Alloys through Single-Element and Multi-Element Analysis Methods
by Yu Liu, Lijun Wang, Juangang Zhao, Zhipeng Wang, Ruizhi Zhang, Yuanzhi Wu, Touwen Fan and Pingying Tang
Coatings 2024, 14(5), 639; https://doi.org/10.3390/coatings14050639 (registering DOI) - 18 May 2024
Abstract
Altering the content of an alloying element in alloy materials will inevitably affect the content of other elements, while the effect is frequently disregarded, leading to subsequent negligence of the common influence on the physical properties of alloys. Therefore, the correlation between alloying [...] Read more.
Altering the content of an alloying element in alloy materials will inevitably affect the content of other elements, while the effect is frequently disregarded, leading to subsequent negligence of the common influence on the physical properties of alloys. Therefore, the correlation between alloying elements and physical properties has not been adequately addressed in the existing studies. In response to this problem, the present study focuses on the Al10Ti15Nix1Crx2Cox3 alloys and investigates the competitive interplay among Ni, Cr, and Co elements in the formation of physical properties through a single-element (SE) analysis and a multi-element (ME) analysis based on the first principles calculations and the partial least squares (PLS) regression. The values of C11 and C44 generally increase with the incorporation of Ni or Cr content in light of SE analysis, which is contrary to the inclination of ME analysis in predicting the impact of Ni and Cr elements, and the Ni element demonstrates a pronounced negative competitive ability. The overall competitive relationship among the three alloying elements suggests that increasing the content of Ni and Cr does not contribute to enhancing the elastic constants of alloys, and the phenomenon is also observed in the analysis of elastic moduli. The reason is that the SE analysis fails to account for the aforementioned common influence of multiple alloying elements on the physical properties of alloys. Therefore, the integration of SE analysis and ME analysis is more advantageous in elucidating the hidden competitive mechanism among multiple alloying elements, and offering a more robust theoretical framework for the design of alloy materials. Full article
(This article belongs to the Special Issue Microstructure, Mechanical and Tribological Properties of Alloys)
Show Figures

Figure 1

12 pages, 1361 KiB  
Article
Hypoglycemic Effects of Extracts Obtained from Endemic Betonica bulgarica Degen and Neič
by Iva Slavova, Tea Genisheva, Gabriela Angelova, Vasilyan Chalumov, Teodora Tomova and Mariana Argirova
Plants 2024, 13(10), 1406; https://doi.org/10.3390/plants13101406 (registering DOI) - 18 May 2024
Abstract
The increasing prevalence of diabetes mellitus, together with the limited access of many patients to conventional antidiabetic drugs and the side effects resulting from their use, are the reason for the ever-increasing need for new agents. One of the most important strategies used [...] Read more.
The increasing prevalence of diabetes mellitus, together with the limited access of many patients to conventional antidiabetic drugs and the side effects resulting from their use, are the reason for the ever-increasing need for new agents. One of the most important strategies used in the therapy of this disease is to reduce the postprandial blood glucose level by inhibiting the carbohydrate-degrading enzymes α-amylase and α-glucosidase. The purpose of the present study was to provide in vitro evidence for the potential hypoglycemic effect of leaf and inflorescence aqueous extracts of Bulgarian endemic species Betonica bulgarica Degen and Neič. Total phenolic and flavonoid contents and antioxidant activities were determined by spectrophotometric methods. Qualitative and quantitative determinations of principal phenolic acids and flavonoids were performed using HPLC with a dual absorbance detector. The plant extracts were able to retard the enzymatic breakdown of starch to glucose with 50% inhibiting concentrations of 1.86 mg/mL and 1.54 mg/mL respectively for leaf and flower extract. Some of the plant constituents are proven inhibitors of α-amylase and/or α-glucosidase, but their adsorption on starch seems to be one additional mechanism for the inhibition of glucose release. Combination index analysis carried out with binary mixtures of acarbose and plant extracts showed a tendency toward synergism with an increase in concentrations and level of inhibition. Full article
(This article belongs to the Special Issue Plant Extracts with Antihyperglycemic and Antidiabetic Effects)
Show Figures

Figure 1

18 pages, 4055 KiB  
Article
Unveiling Key Factors Shaping Energy Storage Strategies for Sustainable Energy Communities
by José Andrés Palacios-Ferrer, Francisco J. Rey-Martínez, Christian A. Repenning-Bzdigian and Javier M. Rey-Hernández
Buildings 2024, 14(5), 1466; https://doi.org/10.3390/buildings14051466 (registering DOI) - 18 May 2024
Abstract
This research delves into a case study of a photovoltaic (PV) energy community, leveraging empirical data to explore the integration of renewable energy sources and storage solutions. By evaluating energy generation and consumption patterns within real-world energy communities (a nominal generation capacity of [...] Read more.
This research delves into a case study of a photovoltaic (PV) energy community, leveraging empirical data to explore the integration of renewable energy sources and storage solutions. By evaluating energy generation and consumption patterns within real-world energy communities (a nominal generation capacity of 33 kWn) in Gipuzkoa, Spain, from May 2022 to May 2023, this study comprehensively examines operational dynamics and performance metrics. This study highlights the critical role of energy consumption patterns in facilitating the integration of renewable energy sources and underscores the importance of proactive strategies to manage demand fluctuations effectively. Against the backdrop of rising energy costs and environmental concerns, renewable energies and storage solutions emerge as compelling alternatives, offering financial feasibility and environmental benefits within energy communities. This study emphasizes the necessity of research and development efforts to develop efficient energy storage technologies and the importance of economic incentives and collaborative initiatives to drive investments in renewable energy infrastructure. The analyzed results provide valuable insights into operational dynamics and performance metrics, further advancing our understanding of their transformative potential in achieving a sustainable energy future. Specifically, our study suggests that storage capacity should ideally support an average annual capacity of 23%, with fluctuations observed where this capacity may double or reduce to a minimum in certain months. Given the current market conditions, our findings indicate the necessity of significant public subsidies, amounting to no less than 67%, to facilitate the installation of storage infrastructure, especially in cases where initial investments are not covered by the energy community. Full article
(This article belongs to the Topic Trends and Prospects for Energy Communities in Europe)
Show Figures

Figure 1

18 pages, 813 KiB  
Review
Long Noncoding RNA MALAT1: Salt-Sensitive Hypertension
by Mohd Mabood Khan and Annet Kirabo
Int. J. Mol. Sci. 2024, 25(10), 5507; https://doi.org/10.3390/ijms25105507 (registering DOI) - 18 May 2024
Abstract
Hypertension stands as the leading global cause of mortality, affecting one billion individuals and serving as a crucial risk indicator for cardiovascular morbidity and mortality. Elevated salt intake triggers inflammation and hypertension by activating antigen-presenting cells (APCs). We found that one of the [...] Read more.
Hypertension stands as the leading global cause of mortality, affecting one billion individuals and serving as a crucial risk indicator for cardiovascular morbidity and mortality. Elevated salt intake triggers inflammation and hypertension by activating antigen-presenting cells (APCs). We found that one of the primary reasons behind this pro-inflammatory response is the epithelial sodium channel (ENaC), responsible for transporting sodium ions into APCs and the activation of NADPH oxidase, leading to increased oxidative stress. Oxidative stress increases lipid peroxidation and the formation of pro-inflammatory isolevuglandins (IsoLG). Long noncoding RNAs (lncRNAs) play a crucial role in regulating gene expression, and MALAT1, broadly expressed across cell types, including blood vessels and inflammatory cells, is also associated with inflammation regulation. In hypertension, the decreased transcriptional activity of nuclear factor erythroid 2-related factor 2 (Nrf2 or Nfe2l2) correlates with heightened oxidative stress in APCs and impaired control of various antioxidant genes. Kelch-like ECH-associated protein 1 (Keap1), an intracellular inhibitor of Nrf2, exhibits elevated levels of hypertension. Sodium, through an increase in Sp1 transcription factor binding at its promoter, upregulates MALAT1 expression. Silencing MALAT1 inhibits sodium-induced Keap1 upregulation, facilitating the nuclear translocation of Nrf2 and subsequent antioxidant gene transcription. Thus, MALAT1, acting via the Keap1-Nrf2 pathway, modulates antioxidant defense in hypertension. This review explores the potential role of the lncRNA MALAT1 in controlling the Keap1-Nrf2-antioxidant defense pathway in salt-induced hypertension. The inhibition of MALAT1 holds therapeutic potential for the progression of salt-induced hypertension and cardiovascular disease (CVD). Full article
(This article belongs to the Special Issue Molecular Pharmacology of Cardiovascular Disease)
Show Figures

Figure 1

11 pages, 967 KiB  
Review
Analysis of Individual Viral Particles by Flow Virometry
by Caroline O. Tabler and John C. Tilton
Viruses 2024, 16(5), 802; https://doi.org/10.3390/v16050802 (registering DOI) - 18 May 2024
Abstract
This review focuses on the emerging field of flow virometry, the study and characterization of individual viral particles using flow cytometry instruments and protocols optimized for the detection of nanoscale events. Flow virometry faces considerable technical challenges including minimal light scattering by small [...] Read more.
This review focuses on the emerging field of flow virometry, the study and characterization of individual viral particles using flow cytometry instruments and protocols optimized for the detection of nanoscale events. Flow virometry faces considerable technical challenges including minimal light scattering by small viruses that complicates detection, coincidental detection of multiple small particles due to their high concentrations, and challenges with sample preparation including the inability to easily “wash” samples to remove unbound fluorescent antibodies. We will discuss how the field has overcome these challenges to reveal novel insights into viral biology. Full article
(This article belongs to the Special Issue Flow Virometry: A New Tool for Studying Viruses)
Show Figures

Figure 1

19 pages, 794 KiB  
Article
De Novo Antimicrobial Peptide Design with Feedback Generative Adversarial Networks
by Michaela Areti Zervou, Effrosyni Doutsi, Yannis Pantazis and Panagiotis Tsakalides
Int. J. Mol. Sci. 2024, 25(10), 5506; https://doi.org/10.3390/ijms25105506 (registering DOI) - 18 May 2024
Abstract
Antimicrobial peptides (AMPs) are promising candidates for new antibiotics due to their broad-spectrum activity against pathogens and reduced susceptibility to resistance development. Deep-learning techniques, such as deep generative models, offer a promising avenue to expedite the discovery and optimization of AMPs. A remarkable [...] Read more.
Antimicrobial peptides (AMPs) are promising candidates for new antibiotics due to their broad-spectrum activity against pathogens and reduced susceptibility to resistance development. Deep-learning techniques, such as deep generative models, offer a promising avenue to expedite the discovery and optimization of AMPs. A remarkable example is the Feedback Generative Adversarial Network (FBGAN), a deep generative model that incorporates a classifier during its training phase. Our study aims to explore the impact of enhanced classifiers on the generative capabilities of FBGAN. To this end, we introduce two alternative classifiers for the FBGAN framework, both surpassing the accuracy of the original classifier. The first classifier utilizes the k-mers technique, while the second applies transfer learning from the large protein language model Evolutionary Scale Modeling 2 (ESM2). Integrating these classifiers into FBGAN not only yields notable performance enhancements compared to the original FBGAN but also enables the proposed generative models to achieve comparable or even superior performance to established methods such as AMPGAN and HydrAMP. This achievement underscores the effectiveness of leveraging advanced classifiers within the FBGAN framework, enhancing its computational robustness for AMP de novo design and making it comparable to existing literature. Full article
(This article belongs to the Special Issue Molecular Advances in Bioinformatics Analysis of Protein Properties)
Show Figures

Figure 1

16 pages, 1553 KiB  
Article
Valorization of Wheat Bran by Co-Cultivation of Fungi with Integrated Hydrolysis to Provide Sugars and Animal Feed
by Fabian Mittermeier, Fabienne Fischer, Sebastian Hauke, Peter Hirschmann and Dirk Weuster-Botz
BioTech 2024, 13(2), 15; https://doi.org/10.3390/biotech13020015 (registering DOI) - 18 May 2024
Abstract
The enzymatic hydrolysis of agricultural residues like wheat bran enables the valorization of otherwise unused carbon sources for biotechnological processes. The co-culture of Aspergillus niger and Trichoderma reesei with wheat bran particles as substrate produces an enzyme set consisting of xylanases, amylases, and [...] Read more.
The enzymatic hydrolysis of agricultural residues like wheat bran enables the valorization of otherwise unused carbon sources for biotechnological processes. The co-culture of Aspergillus niger and Trichoderma reesei with wheat bran particles as substrate produces an enzyme set consisting of xylanases, amylases, and cellulases that is suitable to degrade lignocellulosic biomass to sugar monomers (D-glucose, D-xylose, and L-arabinose). An integrated one-pot process for enzyme production followed by hydrolysis in stirred tank bioreactors resulted in hydrolysates with overall sugar concentrations of 32.3 g L−1 and 24.4 g L−1 at a 25 L and a 1000 L scale, respectively, within 86 h. Furthermore, the residual solid biomass consisting of fermented wheat bran with protein-rich fungal mycelium displays improved nutritional properties for usage as animal feed due to its increased content of sugars, protein, and fat. Full article
(This article belongs to the Section Agricultural and Food Biotechnology)
Show Figures

Figure 1

13 pages, 1625 KiB  
Article
Conversion of Post-Refining Waste MONG to Gaseous Fuel in a Rotary Gasifier
by Andrzej Sitka, Piotr Szulc, Daniel Smykowski, Beata Anwajler, Tomasz Tietze and Wiesław Jodkowski
Sustainability 2024, 16(10), 4251; https://doi.org/10.3390/su16104251 (registering DOI) - 18 May 2024
Abstract
Biodiesel manufacturing frequently employs sustainable materials like soybeans, microorganisms, palm extract, jatropha plant, and recycled frying oils. The expansion of biodiesel manufacturing has escalated the volume of waste byproducts, encompassing glycerin and non-glycerin organic matter (MONG), jointly known as raw glycerin. MONG is [...] Read more.
Biodiesel manufacturing frequently employs sustainable materials like soybeans, microorganisms, palm extract, jatropha plant, and recycled frying oils. The expansion of biodiesel manufacturing has escalated the volume of waste byproducts, encompassing glycerin and non-glycerin organic matter (MONG), jointly known as raw glycerin. MONG is characterized by a low calorific value, a high autoignition temperature, and significant viscosity at room temperature. As a waste product, it negatively affects the natural environment due to the lack of viable disposal methods. Hence, there is a need for its conversion into high-calorific gaseous fuel with significantly less environmental impact. One of the methods for converting MONG into gaseous fuel is the pyrolysis process. This study describes the pyrolytic conversion of MONG conducted on a test stand consisting of a rotating chamber with a shell filled with liquid lead as a heating medium. Based on the measurements and balance calculations, the amount of heat required to preserve the autothermal process was determined. The calorific value and composition of the pyrolytic gas were measured, revealing that 70% of the gas involves compounds characterized by a high calorific value. As a result, the calorific value of dry, purified gas equals 35.07 MJ/kg. A life cycle assessment has been conducted, in order to determine if the produced gaseous fuel matches sustainable development criteria. MONG-based gas is a sustainable replacement of, e.g., natural gas, lignite, or hard coal; however, it allows us to avoid 233–416 kg/h CO2 emissions per 1 MWt of heat. Full article
(This article belongs to the Special Issue Biomass Conversion and Green Technology)
Show Figures

Figure 1

25 pages, 1080 KiB  
Review
Influence of Amino Acids and Exercise on Muscle Protein Turnover, Particularly in Cancer Cachexia
by Rashmita Pradhan, Walburga Dieterich, Anirudh Natarajan, Raphaela Schwappacher, Dejan Reljic, Hans J. Herrmann, Markus F. Neurath and Yurdagül Zopf
Cancers 2024, 16(10), 1921; https://doi.org/10.3390/cancers16101921 (registering DOI) - 18 May 2024
Abstract
Cancer cachexia is a multifaceted syndrome that impacts individuals with advanced cancer. It causes numerous pathological changes in cancer patients, such as inflammation and metabolic dysfunction, which further diminish their quality of life. Unfortunately, cancer cachexia also increases the risk of mortality in [...] Read more.
Cancer cachexia is a multifaceted syndrome that impacts individuals with advanced cancer. It causes numerous pathological changes in cancer patients, such as inflammation and metabolic dysfunction, which further diminish their quality of life. Unfortunately, cancer cachexia also increases the risk of mortality in affected individuals, making it an important area of focus for cancer research and treatment. Several potential nutritional therapies are being tested in preclinical and clinical models for their efficacy in improving muscle metabolism in cancer patients. Despite promising results, no special nutritional therapies have yet been validated in clinical practice. Multiple studies provide evidence of the benefits of increasing muscle protein synthesis through an increased intake of amino acids or protein. There is also increasing evidence that exercise can reduce muscle atrophy by modulating protein synthesis. Therefore, the combination of protein intake and exercise may be more effective in improving cancer cachexia. This review provides an overview of the preclinical and clinical approaches for the use of amino acids with and without exercise therapy to improve muscle metabolism in cachexia. Full article
Show Figures

Figure 1

17 pages, 2591 KiB  
Article
Decoding the Effects of High Hydrostatic Pressure and High-Temperature Short-Time Sterilization on the Volatile Aroma Profile of Red Raspberry Juice
by Wentao Zhang, Xuejie Li, Xuzeng Wang, He Li, Xiaojun Liao, Fei Lao, Jihong Wu and Jian Li
Foods 2024, 13(10), 1574; https://doi.org/10.3390/foods13101574 (registering DOI) - 18 May 2024
Abstract
The loss of distinctive aromas due to sterilization significantly hinders efforts to enhance the sensory quality of fruit and vegetable juices. This study aimed to elucidate the impacts of high-hydrostatic pressure (HHP) and high-temperature short-time (HTST) sterilization methods on the loss of C6 [...] Read more.
The loss of distinctive aromas due to sterilization significantly hinders efforts to enhance the sensory quality of fruit and vegetable juices. This study aimed to elucidate the impacts of high-hydrostatic pressure (HHP) and high-temperature short-time (HTST) sterilization methods on the loss of C6 aldehyde aroma-active compounds in red raspberry juice. External standard quantification and quantitative descriptive analysis (QDA) revealed a notable decline in the levels of hexanal and (Z)-3-hexenal following the HHP and HTST treatments (p < 0.05), resulting in a marked attenuation of the grassy aroma characteristic of red raspberry juice. Furthermore, a comprehensive examination of the precursors, pivotal enzymes, intermediates, and downstream aromas within the fatty acid metabolism pathway in different raspberry juice samples indicated that the C6 aldehydes loss induced by HHP and HTST sterilizations was primarily ascribed to the competitive inhibition of β-oxidation and the hindered enzymatic oxidation of fatty acids. These insights suggest that modifying sterilization protocols and enhancing enzymatic stability may help preserve the aroma integrity of raspberry juice. Our findings offer practical guidance for optimizing juice processing techniques to maintain flavor. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

15 pages, 5877 KiB  
Article
A Case Study of the Integration of Ground-Based and Drone-Based Ground-Penetrating Radar (GPR) for an Archaeological Survey in Hulata (Israel): Advancements, Challenges, and Applications
by Michael Frid and Vladimir Frid
Appl. Sci. 2024, 14(10), 4280; https://doi.org/10.3390/app14104280 (registering DOI) - 18 May 2024
Abstract
This study delves into the fusion of ground-based and drone-based ground-penetrating radar (GPR) technologies in archaeological exploration. Set against the backdrop of the Hulata solar panel construction site in Israel, the research confronts daunting obstacles such as clayey soil, accurate detection of small [...] Read more.
This study delves into the fusion of ground-based and drone-based ground-penetrating radar (GPR) technologies in archaeological exploration. Set against the backdrop of the Hulata solar panel construction site in Israel, the research confronts daunting obstacles such as clayey soil, accurate detection of small objects, and the imperative of timely reporting crucial for construction management. The drone-based GPR, a testament to technological innovation, showcases remarkable adaptability to challenging terrains, dispelling doubts about electromagnetic wave decay in clayey soil. Methodologically, the study employs detailed orthophoto mapping and grid-type surveys. The correlation of the results significantly bolsters the reliability of archaeological discoveries, uncovering scattered artifacts buried approximately 1–1.5 m below the surface. Meticulous excavations validate the geophysical surveys, affirming the presence of structures constructed from boulders. The application at the Hulata site validates the adaptability of drone-based GPR in challenging terrains. It provides a swift, cost-effective, and minimally invasive alternative to traditional excavation techniques, thereby transforming the field of archaeology. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

9 pages, 2501 KiB  
Article
Phenotypic Variability in Novel Doublecortin Gene Variants Associated with Subcortical Band Heterotopia
by Radha Procopio, Francesco Fortunato, Monica Gagliardi, Mariagrazia Talarico, Ilaria Sammarra, Maria Chiara Sarubbi, Donatella Malanga, Grazia Annesi and Antonio Gambardella
Int. J. Mol. Sci. 2024, 25(10), 5505; https://doi.org/10.3390/ijms25105505 (registering DOI) - 18 May 2024
Abstract
Doublecortin, encoded by the DCX gene, plays a crucial role in the neuronal migration process during brain development. Pathogenic variants of the DCX gene are the major causes of the “lissencephaly (LIS) spectrum”, which comprehends a milder phenotype like Subcortical Band Heterotopia (SBH) [...] Read more.
Doublecortin, encoded by the DCX gene, plays a crucial role in the neuronal migration process during brain development. Pathogenic variants of the DCX gene are the major causes of the “lissencephaly (LIS) spectrum”, which comprehends a milder phenotype like Subcortical Band Heterotopia (SBH) in heterozygous female subjects. We performed targeted sequencing in three unrelated female cases with SBH. We identified three DCX-related variants: a novel missense (c.601A>G: p.Lys201Glu), a novel nonsense (c.210C>G: p.Tyr70*), and a previously identified nonsense (c.907C>T: p.Arg303*) variant. The novel c.601A>G: p.Lys201Glu variant shows a mother–daughter transmission pattern across four generations. The proband exhibits focal epilepsy and achieved seizure freedom with a combination of oxcarbazepine and levetiracetam. All other affected members have no history of epileptic seizures. Brain MRIs of the affected members shows predominant fronto-central SBH with mixed pachygyria on the overlying cortex. The two nonsense variants were identified in two unrelated probands with SBH, severe drug-resistant epilepsy and intellectual disability. These novel DCX variants further expand the genotypic–phenotypic correlations of lissencephaly spectrum disorders. Our documented phenotypic descriptions of three unrelated families provide valuable insights and stimulate further discussions on DCX-SBH cases. Full article
(This article belongs to the Special Issue Genetic Variants in Neurological and Psychiatric Diseases)
Show Figures

Figure 1

11 pages, 810 KiB  
Article
Vaccine Acceptance in Patients with Inflammatory Bowel Disease: Lessons Learned from the COVID-19 Pandemic
by Giada Mastrangeli, Filippo Vernia, Stefano Necozione, Mario Muselli, Sara Frassino, Nicola Cesaro, Giovanni Latella and Leila Fabiani
Vaccines 2024, 12(5), 551; https://doi.org/10.3390/vaccines12050551 (registering DOI) - 18 May 2024
Abstract
Background: Immunomodulating therapies, which are commonly used in patients with Crohn’s disease (CD) and ulcerative colitis (UC), have been linked to an increased risk of contracting opportunistic infectious diseases, the majority of which are preventable through vaccination. Nonetheless, vaccination rates in these patients [...] Read more.
Background: Immunomodulating therapies, which are commonly used in patients with Crohn’s disease (CD) and ulcerative colitis (UC), have been linked to an increased risk of contracting opportunistic infectious diseases, the majority of which are preventable through vaccination. Nonetheless, vaccination rates in these patients are suboptimal, and frequently lower than in the general population. The COVID-19 immunization schedule provided a new scenario for investigating vaccine acceptance in patients with inflammatory bowel disease (IBD), with uncertainty and concerns emerging and the number of subjects receiving the third and fourth doses of the vaccine gradually decreasing. This study investigated IBD patients’ attitudes towards previous COVID-19 vaccine programs and identified the factors that influence their adherence. It considered demographic and disease-related factors as well as the role of gastroenterologists and primary care physicians (PCPs). Methods: Data were collected through a self-completed questionnaire administered to all adult IBD patients (age > 18) who visited the Gastroenterology, Hepatology, and Nutrition division at the University of L’Aquila (Italy) for a regular follow-up between November 2021 and December 2022. Non-IBD gastroenterological outpatients who visited during the same period were included as a control group. Results: A total of 178 patients were included in the analysis. The IBD group consisted of 77 patients, 48.1% with CD and 51.9% with UC; the mean age was 49.5 years and 51.9% were female. Overall, 94.8% of IBD patients had undergone at least one vaccine dose and 79.2% had received two doses, versus 8% of the control group (p < 0.0001). A total of 84.4% of IBD patients reported their propensity towards COVID-19 vaccination, with an average agreement score significantly higher than the controls (p = 0.0044). The trust of IBD patients in the effectiveness of the COVID-19 vaccine (p < 0.0001) and its role in hastening pandemic resolution (p < 0.0001) is strongly related to motivation and propensity. Concerns about the safety of the COVID-19 vaccine in IBD (p = 0.0202) and fear of vaccine-induced flare-ups (p = 0.0192) were reported as the main barriers. No correlation was found between COVID-19 vaccine propensity and clinical features like the type of IBD, years of disease, activity, and ongoing treatment. Regarding the recommendations received from physicians to get vaccinated against COVID-19, IBD patients relied heavily on their gastroenterologists for advice, while the control group relied mainly on their PCPs. Conclusions: The overall positive attitude towards vaccinations reported in our study was better than that observed for other vaccines. The relationship of trust with the gastroenterologist should be used to boost vaccination against other preventable diseases in IBD patients. Our findings add information on the factors influencing vaccine propensity, which can be used to improve current vaccination strategies. Full article
Show Figures

Figure 1

11 pages, 568 KiB  
Article
Outcomes of Budesonide as a Treatment Option for Immune Checkpoint Inhibitor-Related Colitis in Patients with Cancer
by Antonio Pizuorno Machado, Abdullah Salim Shaikh, Alice Saji, Malek Shatila, Isabella Glitza Oliva, Yinghong Wang and Anusha Shirwaikar Thomas
Cancers 2024, 16(10), 1919; https://doi.org/10.3390/cancers16101919 (registering DOI) - 18 May 2024
Abstract
Background: Current treatment guidelines for moderate to severe colitis (IMC) secondary to immune checkpoint inhibitors (ICI) recommend systemic corticosteroids as the primary therapy in conjunction with biologics, namely infliximab and/or vedolizumab. We aimed to explore the efficacy and safety of oral budesonide in [...] Read more.
Background: Current treatment guidelines for moderate to severe colitis (IMC) secondary to immune checkpoint inhibitors (ICI) recommend systemic corticosteroids as the primary therapy in conjunction with biologics, namely infliximab and/or vedolizumab. We aimed to explore the efficacy and safety of oral budesonide in the treatment of IMC. Methods: We performed a retrospective analysis at MD Anderson Cancer Center of adult cancer patients with a confirmed (based on clinical, radiographic and laboratory assessment) diagnosis of IMC between 1 January 2015 and 31 November 2022, treated with budesonide. Data collection included demographics, oncologic history, IMC-related information and outcomes up to 6 months after the last dose of ICI. Results: Our sample (n = 69) comprised primarily of Caucasian (76.8%) females (55.1%). The majority of patients received combination therapy with anti-PD-1/L1 and anti-CTLA-4 (49.3%), and the most common malignancy treated was melanoma (37.6%). The median grade of diarrhea was 3 and of colitis was 2. Of the 50 patients who underwent endoscopic evaluation, a majority had non-ulcerative inflammation (64%) and active colitis on histology (78%). Budesonide was used as primary treatment at onset of IMC in 56.5% patients, as well as a bridging therapy from systemic corticosteroids in 33.3%. Less than half of the patients (44.9%) required additional therapies such as biologics or fecal microbiota transplant. Additionally, 75.3% of patients achieved full remission of IMC and 24.6% had a recurrence of IMC. ICI was resumed in 31.9% of patients and 17.4% received other forms of cancer therapies. Conclusions: Budesonide may be an effective strategy to treat and prevent the recurrence of IMC. The remission rates observed in our analysis with budesonide alone are comparable to systemic corticosteroids. Patients that require an extended duration of steroid exposure and those with moderate to severe colitis may benefit from budesonide given its lower risk of infection and complications. Furthermore, we observe that budesonide may serve as a successful bridge from systemic corticosteroids with subsequent biologic treatment. Larger prospective studies are necessary to determine the role of budesonide as well as its safety profile. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

13 pages, 5057 KiB  
Article
Utilization of Charcoal Obtained from Woody Biomass in Metallurgical Processes Based on Solid–Gas Reactions
by Christian Dornig, Gustav Hanke and Jürgen Antrekowitsch
Metals 2024, 14(5), 592; https://doi.org/10.3390/met14050592 (registering DOI) - 18 May 2024
Abstract
The high demand for carbon-based products within pyrometallurgy is placing the industry in an increasingly challenging position to meet stringent requirements. To transition away from fossil carbon carriers, biochar emerges as a sustainable and CO2-neutral alternative, presenting a viable solution without [...] Read more.
The high demand for carbon-based products within pyrometallurgy is placing the industry in an increasingly challenging position to meet stringent requirements. To transition away from fossil carbon carriers, biochar emerges as a sustainable and CO2-neutral alternative, presenting a viable solution without necessitating fundamental adjustments to plant technology, unlike hydrogen as an alternative reducing agent. Prior investigations have underscored the potential of woody biomass pyrolysis products for CO2-neutral metallurgy. Nonetheless, it is imperative to recognize that biochar must meet distinct requirements across various metallurgical processes. This paper conducts a comparative analysis between biochar and petroleum coke using thermogravimetric analyses, surface measurements, reactivity assessments, and scanning electron microscopy. Furthermore, the performance in a furnace for simulating the Waelz process, specifically regarding ZnO reduction, is scrutinized. The results illustrate the optical differences between petroleum coke and biochar and the significantly higher reactivity and specific surface area of biochar. When used in solid–gas reactors, it is observed that due to its high reactivity, biochar reacts more vigorously and carbon is completely consumed. However, during the reduction of ZnO, only minor differences were monitored, making biochar comparable to petroleum coke. Therefore, under certain constraints, biochar can be considered a potential substitute for metallurgical solid–gas reactions. Full article
Show Figures

Figure 1

15 pages, 4539 KiB  
Article
Exploring a New Physical Scenario of Virtual Water Molecules in the Application of Measuring Virtual Trees Using Computational Virtual Measurement
by Zhichao Wang, Xiaoning Zhang, Xiaoyuan Zhang, Xinli Pan, Tiantian Ma, Zhongke Feng and Christiane Schmullius
Forests 2024, 15(5), 880; https://doi.org/10.3390/f15050880 (registering DOI) - 18 May 2024
Abstract
Our previous studies discussed the potential of measuring virtual trees using computational virtual measurement (CVM). CVM is a general methodology that employs observational techniques in lieu of mathematical processing. The advantage of CVM lies in its ability to circumvent mathematical assumptions of tree [...] Read more.
Our previous studies discussed the potential of measuring virtual trees using computational virtual measurement (CVM). CVM is a general methodology that employs observational techniques in lieu of mathematical processing. The advantage of CVM lies in its ability to circumvent mathematical assumptions of tree shapes at the algorithmic level. However, due to the current computational limitations of desktop computers, the previously developed CVM application, namely, virtual water displacement (VWD), could only act as a primary theoretical testimonial using an idealized point cloud of a tree. The key problem was that simulating a massive number of virtual water molecules (VMMs) consumed most of the computational resources. As a consequence, an unexpected empirical formula for volume calibration had to be applied to the output measurement results. Aiming to create a more realistic simulation of what occurs when water displacement is used to measure tree volume in the real world, in this study, we developed a new physical scenario for VWMs. This new scenario, namely, a flood area mechanism (FAM), employed footprints of VWMs instead of quantifying VWM counts. Under a FAM, the number of VMMs was reduced to a few from several thousands, making the empirical mathematical process (of the previously developed physical scenario of VWMs) unnecessary. For the same ideal point clouds as those used in our previous studies, the average volume overestimations were found to be 6.29% and 2.26% for three regular objects and two artificial stems, respectively. Consequently, we contend that FAM represents a closer approximation to actual water displacement methods for measuring tree volume in nature. Therefore, we anticipate that the VWD method will eventually utilize the complete tree point cloud with future advancements in computing power. It is necessary to develop methods such as VWD and more CVM applications for future applications starting now. Full article
(This article belongs to the Special Issue Integrated Measurements for Precision Forestry)
Show Figures

Figure 1

4 pages, 186 KiB  
Editorial
Editorial for the Special Issue Titled “Design of Polymeric Hydrogels Biomaterials”
by Ana Paula Serro, Maria Vivero-Lopez and Diana C. Silva
Gels 2024, 10(5), 344; https://doi.org/10.3390/gels10050344 (registering DOI) - 18 May 2024
Abstract
Hydrogels have attracted great interest in the biomedical applications field in recent years [...] Full article
(This article belongs to the Special Issue Design of Polymeric Hydrogels Biomaterials)
21 pages, 480 KiB  
Article
Reliability and Exploratory Factor Analysis of a Measure of the Psychological Distance from Climate Change
by Alan E. Stewart
Climate 2024, 12(5), 76; https://doi.org/10.3390/cli12050076 (registering DOI) - 18 May 2024
Abstract
Psychological distance from climate change has emerged as an important construct in understanding sustainable behavior and attempts to mitigate and/or adapt to climate change. Yet, few measures exist to assess this construct and little is known about the properties of the existing measures. [...] Read more.
Psychological distance from climate change has emerged as an important construct in understanding sustainable behavior and attempts to mitigate and/or adapt to climate change. Yet, few measures exist to assess this construct and little is known about the properties of the existing measures. In this article, the author conducted two studies of a psychological distance measure developed by Wang and her colleagues. In Study 1, the author assessed the test–retest reliability of the measure over a two-week interval and found the scores to be acceptably stable over time. In Study 2, the author conducted two exploratory factor analyses, using different approaches to the correlation and factor extraction. Similar results were observed for each factor analysis: one factor was related to items that specified greater psychological distance from climate change; a second factor involved items that specified closeness to climate change; and a third involved the geographic/spatial distance from climate change. The author discussed the results and provided recommendations on ways that the measure may be used to research the construct of psychological distance from climate change. Full article
(This article belongs to the Special Issue Anthropogenic Climate Change: Social Science Perspectives - Volume II)
Show Figures

Figure 1

18 pages, 4546 KiB  
Article
Facial Skin Microbiome Composition and Functional Shift with Aging
by Allison Garlet, Valerie Andre-Frei, Nicolas Del Bene, Hunter James Cameron, Anita Samuga, Vimal Rawat, Philipp Ternes and Sabrina Leoty-Okombi
Microorganisms 2024, 12(5), 1021; https://doi.org/10.3390/microorganisms12051021 (registering DOI) - 18 May 2024
Abstract
The change in the skin microbiome as individuals age is only partially known. To provide a better understanding of the impact of aging, whole-genome sequencing analysis was performed on facial skin swabs of 100 healthy female Caucasian volunteers grouped by age and wrinkle [...] Read more.
The change in the skin microbiome as individuals age is only partially known. To provide a better understanding of the impact of aging, whole-genome sequencing analysis was performed on facial skin swabs of 100 healthy female Caucasian volunteers grouped by age and wrinkle grade. Volunteers’ metadata were collected through questionnaires and non-invasive biophysical measurements. A simple model and a biological statistical model were used to show the difference in skin microbiota composition between the two age groups. Taxonomic and non-metric multidimensional scaling analysis showed that the skin microbiome was more diverse in the older group (≥55 yo). There was also a significant decrease in Actinobacteria, namely in Cutibacterium acnes, and an increase in Corynebacterium kroppenstedtii. Some Streptococcus and Staphylococcus species belonging to the Firmicutes phylum and species belonging to the Proteobacteria phylum increased. In the 18–35 yo younger group, the microbiome was characterized by a significantly higher proportion of Cutibacterium acnes and Lactobacillus, most strikingly, Lactobacillus crispatus. The functional analysis using GO terms revealed that the young group has a higher significant expression of genes involved in biological and metabolic processes and in innate skin microbiome protection. The better comprehension of age-related impacts observed will later support the investigation of skin microbiome implications in antiaging protection. Full article
(This article belongs to the Special Issue Microbiota in Human Health and Disease)
Show Figures

Figure 1

11 pages, 4425 KiB  
Article
Boosting the Anti-Infection Ability of Titanium Implants by Coating Polydopamine–Curcumin
by Manlong Chen, Wenyi Yu, Qi Shi, Han Wen, Guojing Li, Yunliang Wang, Tao Wang, Shibin Liu and Tingting Yang
Coatings 2024, 14(5), 640; https://doi.org/10.3390/coatings14050640 (registering DOI) - 18 May 2024
Abstract
To reduce the risk of infection, improving the anti-infection ability of Ti-based implantation has become a very meaningful task. In this work, by employing polydopamine (PDA) as a carrier and curcumin (CUR) as an anti-biotic/inflammatory, a series of Ti-PDA@CURx (x = 0.5, 1.0, [...] Read more.
To reduce the risk of infection, improving the anti-infection ability of Ti-based implantation has become a very meaningful task. In this work, by employing polydopamine (PDA) as a carrier and curcumin (CUR) as an anti-biotic/inflammatory, a series of Ti-PDA@CURx (x = 0.5, 1.0, 1.5, 2.0, 2.5) was successfully fabricated and characterized by scanning electron microscopy, Fourier transform infrared spectrometry, X-ray diffraction, X-ray photoelectron spectroscopy, and the water contact angle, where Ti plates were firmly coated by PDA@CUR. The test result of CUR content shows that the maximum loading of CUR in PDA can reach 0.6506%, where the CUR concentration is 1.5 mg/mL. The antibacterial test results demonstrate that Ti-PDA@CUR-x (x = 0.5, 1.0, 1.5, 2.0, 2.5) exhibit significant antibacterial activities against Escherichia coli and S. aureu, where [email protected] has the highest antibacterial rate of 62.7% against Escherichia coli and 52.6% against S. aureus. The cytotoxicity test shows that Ti-PDA, Ti-PDA@CUR-x (x = 0.5, 1.0, 1.5, 2.0, 2.5) has almost no toxicity. Full article
(This article belongs to the Section Bioactive Coatings and Biointerfaces)
Show Figures

Figure 1

13 pages, 4966 KiB  
Systematic Review
H3K27-Altered Diffuse Glioma of the Spinal Cord in Adult Patients: A Qualitative Systematic Review and Peculiarity of Radiological Findings
by Anna Maria Auricchio, Giovanni Pennisi, Grazia Menna, Alessandro Olivi, Marco Gessi, Gerrit H. Gielen, Simona Gaudino, Nicola Montano and Fabio Papacci
J. Clin. Med. 2024, 13(10), 2972; https://doi.org/10.3390/jcm13102972 (registering DOI) - 18 May 2024
Abstract
Background: Primary spinal cord diffuse gliomas (SpDG) are rare tumors that may harbor, like diffuse intrinsic pontine gliomas (DIPG), H3K27M mutations. According to the WHO (2021), SpDGs are included in diffuse midline H3K27-altered gliomas, which occur more frequently in adults and show [...] Read more.
Background: Primary spinal cord diffuse gliomas (SpDG) are rare tumors that may harbor, like diffuse intrinsic pontine gliomas (DIPG), H3K27M mutations. According to the WHO (2021), SpDGs are included in diffuse midline H3K27-altered gliomas, which occur more frequently in adults and show unusual clinical presentation, neuroradiological features, and clinical behavior, which differ from H3 G34-mutant diffuse hemispheric glioma. Currently, homogeneous adult-only case series of SpDG, with complete data and adequate follow-up, are still lacking. Methods: We conducted a qualitative systematic review, focusing exclusively on adult and young adult patients, encompassing all studies reporting cases of primitive, non-metastatic SpDG with H3K27 mutation. We analyzed the type of treatment administered, survival, follow-up duration, and outcomes. Results: We identified 30 eligible articles published between 1990 and 2023, which collectively reported on 62 adult and young adult patients with primitive SpDG. Postoperative outcomes were assessed based on the duration of follow-up, with outcomes categorized as either survival or mortality. Patients who underwent surgery were followed up for a mean duration of 17.37 months, while those who underwent biopsy had a mean follow-up period of 14.65 months. Among patients who were still alive, the mean follow-up duration was 18.77 months. The radiological presentation of SpDG varies widely, indicating its lack of uniformity. Conclusion: Therefore, we presented a descriptive scenario where SpDG was initially suspected to be a meningioma, but was later revealed to be a malignant SpDG with H3K27M mutation. Full article
(This article belongs to the Special Issue Targeted Diagnosis and Treatment in Lumbar and Spine Surgeries)
Show Figures

Figure 1

15 pages, 669 KiB  
Review
Genetics of Hypertension: From Monogenic Analysis to GETomics
by Martina Zappa, Michele Golino, Paolo Verdecchia and Fabio Angeli
J. Cardiovasc. Dev. Dis. 2024, 11(5), 154; https://doi.org/10.3390/jcdd11050154 (registering DOI) - 18 May 2024
Abstract
Arterial hypertension is the most frequent cardiovascular risk factor all over the world, and it is one of the leading drivers of the risk of cardiovascular events and death. It is a complex trait influenced by heritable and environmental factors. To date, the [...] Read more.
Arterial hypertension is the most frequent cardiovascular risk factor all over the world, and it is one of the leading drivers of the risk of cardiovascular events and death. It is a complex trait influenced by heritable and environmental factors. To date, the World Health Organization estimates that 1.28 billion adults aged 30–79 years worldwide have arterial hypertension (defined by European guidelines as office systolic blood pressure ≥ 140 mmHg or office diastolic blood pressure ≥ 90 mmHg), and 7.1 million die from this disease. The molecular genetic basis of primary arterial hypertension is the subject of intense research and has recently yielded remarkable progress. In this review, we will discuss the genetics of arterial hypertension. Recent studies have identified over 900 independent loci associated with blood pressure regulation across the genome. Comprehending these mechanisms not only could shed light on the pathogenesis of the disease but also hold the potential for assessing the risk of developing arterial hypertension in the future. In addition, these findings may pave the way for novel drug development and personalized therapeutic strategies. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop