The 2023 MDPI Annual Report has
been released!
 
26 pages, 10198 KiB  
Article
An Empirical Approach to Rerouting Visible Light Pathways Using an Adjustable-Angle Mirror to Sustain Communication between Vehicles on Curvy Roads
by Ahmet Deniz, Burak Aydın and Heba Yuksel
Photonics 2024, 11(5), 426; https://doi.org/10.3390/photonics11050426 (registering DOI) - 03 May 2024
Abstract
In this paper, a novel method is demonstrated to sustain vehicle-to-vehicle (V2V) communication on curvy roads via the arrangement of the lateral position of a self-angle-adjustable mirror–reflective road sign (SAAMRS) and light-direction-sensing wide-angle complementary photodiodes (CPDs). Visible light communication (VLC) between vehicles attracts [...] Read more.
In this paper, a novel method is demonstrated to sustain vehicle-to-vehicle (V2V) communication on curvy roads via the arrangement of the lateral position of a self-angle-adjustable mirror–reflective road sign (SAAMRS) and light-direction-sensing wide-angle complementary photodiodes (CPDs). Visible light communication (VLC) between vehicles attracts attention as a complementary technology to radio-frequency-based (RF-based) communication technologies due to its wide, license-free spectrum and immunity to interferences. However, V2V VLC may be interrupted on curvy roads due to the limited field of view (FOV) of the receiver or the line of sight (LOS) being interrupted. To solve this problem, an experiment was developed using an SAAMRS along with wide-angle light-direction-sensing CPDs that used a precise peak detection (PPD) method to sustain communication between vehicles in dynamic environments by rerouting the incident light with the highest signal intensity level to the receiver vehicle on curvy roads. We also used real images of curvy roads simulated as polynomials to calculate the necessary rotation angles for the SAAMRS and regions where communication exist. Our experimental results overlapped almost completely with our simulations, with small errors of approximately 4.8% and 4.4% for the SAAMRS angle and communication region, respectively. Full article
(This article belongs to the Special Issue Visible Light Communications)
Show Figures

Figure 1

18 pages, 2079 KiB  
Article
Validating a Non-Invasive Method for Assessing Cortisol Concentrations in Scraped Epidermal Skin from Common Bottlenose Dolphins and Belugas
by Clara Agustí, Xavier Manteca, Daniel García-Párraga and Oriol Tallo-Parra
Animals 2024, 14(9), 1377; https://doi.org/10.3390/ani14091377 (registering DOI) - 03 May 2024
Abstract
Society is showing a growing concern about the welfare of cetaceans in captivity as well as cetaceans in the wild threatened by anthropogenic disturbances. The study of the physiological stress response is increasingly being used to address cetacean conservation and welfare issues. Within [...] Read more.
Society is showing a growing concern about the welfare of cetaceans in captivity as well as cetaceans in the wild threatened by anthropogenic disturbances. The study of the physiological stress response is increasingly being used to address cetacean conservation and welfare issues. Within it, a newly described technique of extracting cortisol from epidermal desquamation may serve as a non-invasive, more integrated measure of a cetacean’s stress response and welfare. However, confounding factors are common when measuring glucocorticoid hormones. In this study, we validated a steroid hormone extraction protocol and the use of a commercial enzyme immunoassay (EIA) test to measure cortisol concentrations in common bottlenose dolphin (Tursiops truncatus) and beluga (Delphinapterus leucas) epidermal samples. Moreover, we examined the effect of sample mass and body location on cortisol concentrations. Validation tests (i.e., assay specificity, accuracy, precision, and sensitivity) suggested that the method was suitable for the quantification of cortisol concentrations. Cortisol was extracted from small samples (0.01 g), but the amount of cortisol detected and the variability between duplicate extractions increased as the sample mass decreased. In common bottlenose dolphins, epidermal skin cortisol concentrations did not vary significantly across body locations while there was a significant effect of the individual. Overall, we present a contribution towards advancing and standardizing epidermis hormone assessments in cetaceans. Full article
Show Figures

Graphical abstract

17 pages, 3146 KiB  
Article
Mechanism of Anti-Trypanosoma cruzi Action of Gold(I) Compounds: A Theoretical and Experimental Approach
by Javiera Órdenes-Rojas, Paola Risco, José Ortega-Campos, Germán Barriga-González, Ana Liempi, Ulrike Kemmerling, Dinorah Gambino, Lucía Otero, Claudio Olea Azar and Esteban Rodríguez-Arce
Inorganics 2024, 12(5), 133; https://doi.org/10.3390/inorganics12050133 (registering DOI) - 03 May 2024
Abstract
In the search for a more effective chemotherapy for the treatment of Chagas’ disease, caused by Trypanosoma cruzi parasite, the use of gold compounds may be a promising approach. In this work, four gold(I) compounds [AuCl(HL)], (HL = bioactive 5-nitrofuryl containing thiosemicarbazones) were [...] Read more.
In the search for a more effective chemotherapy for the treatment of Chagas’ disease, caused by Trypanosoma cruzi parasite, the use of gold compounds may be a promising approach. In this work, four gold(I) compounds [AuCl(HL)], (HL = bioactive 5-nitrofuryl containing thiosemicarbazones) were studied. The compounds were theoretically characterized, showing identical chemical structures with the metal ion located in a linear coordination environment and the thiosemicarbazones acting as monodentate ligands. Cyclic voltammetry and Electron Spin Resonance (ESR) studies demonstrated that the complexes could generate the nitro anion radical (NO2) by reduction of the nitro moiety. The compounds were evaluated in vitro on the trypomastigote form of T. cruzi and human cells of endothelial morphology. The gold compounds studied showed activity in the micromolar range against T. cruzi. The most active compounds (IC50 of around 10 μM) showed an enhancement of the antiparasitic activity compared with their respective bioactive ligands and moderate selectivity. To get insight into the anti-chagasic mechanism of action, the intracellular free radical production capacity of the gold compounds was assessed by ESR and fluorescence measurements. DMPO (5,5-dimethyl-1-pirroline-N-oxide) spin adducts related to the bioreduction of the complexes and redox cycling processes were characterized. The potential oxidative stress mechanism against T. cruzi was confirmed. Full article
(This article belongs to the Special Issue Noble Metals in Medicinal Inorganic Chemistry)
Show Figures

Figure 1

15 pages, 4131 KiB  
Article
Eco-Friendly Poly (Butylene Adipate-co-Terephthalate) Coated Bi-Layered Films: An Approach to Enhance Mechanical and Barrier Properties
by Raja Venkatesan, Krishnapandi Alagumalai, Alexandre A. Vetcher, Bandar Ali Al-Asbahi and Seong-Cheol Kim
Polymers 2024, 16(9), 1283; https://doi.org/10.3390/polym16091283 (registering DOI) - 03 May 2024
Abstract
In this research work, a coated paper was prepared with poly (butylene adipate-co-terephthalate) (PBAT) film to explore its use in eco-friendly food packaging. The paper was coated with PBAT film for packaging using hot pressing, a production method currently employed in the packaging [...] Read more.
In this research work, a coated paper was prepared with poly (butylene adipate-co-terephthalate) (PBAT) film to explore its use in eco-friendly food packaging. The paper was coated with PBAT film for packaging using hot pressing, a production method currently employed in the packaging industry. The coated papers were evaluated for their structural, mechanical, thermal, and barrier properties. The structural morphology and chemical analysis of the coated paper confirmed the consistent formation of PBAT bi-layered on paper surfaces. Surface coating with PBAT film increased the water resistance of the paper samples, as demonstrated by tests of barrier characteristics, including the water vapor transmission rate (WVTR), oxygen transmission rate (OTR), and water contact angle (WCA) of water drops. The transmission rate of the clean paper was 2010.40 cc m−2 per 24 h for OTR and 110.24 g m−2 per 24 h for WVTR. If the PBAT-film was coated, the value decreased to 91.79 g m−2 per 24 h and 992.86 cc m−2 per 24 h. The hydrophobic nature of PBAT, confirmed by WCA measurements, contributed to the enhanced water resistance of PBAT-coated paper. This result presents an improved PBAT-coated paper material, eliminating the need for adhesives and allowing for the fabrication of bi-layered packaging. Full article
Show Figures

Figure 1

19 pages, 4091 KiB  
Article
Stability, Digestion, and Cellular Transport of Soy Isoflavones Nanoparticles Stabilized by Polymerized Goat Milk Whey Protein
by Mu Tian, Jianjun Cheng and Mingruo Guo
Antioxidants 2024, 13(5), 567; https://doi.org/10.3390/antiox13050567 (registering DOI) - 03 May 2024
Abstract
Soy isoflavones (SIF) are bioactive compounds with low bioavailability due to their poor water solubility. In this study, we utilized polymerized goat milk whey protein (PGWP) as a carrier to encapsulate SIF with encapsulation efficiency of 89%, particle size of 135.53 nm, and [...] Read more.
Soy isoflavones (SIF) are bioactive compounds with low bioavailability due to their poor water solubility. In this study, we utilized polymerized goat milk whey protein (PGWP) as a carrier to encapsulate SIF with encapsulation efficiency of 89%, particle size of 135.53 nm, and zeta potential of −35.16 mV. The PGWP-SIF nanoparticles were evaluated for their stability and in vitro digestion properties, and their ability to transport SIF was assessed using a Caco-2 cell monolayer model. The nanoparticles were resistant to aggregation when subjected to pH changes (pH 2.0 to 8.0), sodium chloride addition (0–200 mM), temperature fluctuations (4 °C, 25 °C, and 37 °C), and long-term storage (4 °C, 25 °C, and 37 °C for 30 days), which was mainly attributed to the repulsion generated by steric hindrance effects. During gastric digestion, only 5.93% of encapsulated SIF was released, highlighting the nanoparticles’ resistance to enzymatic digestion in the stomach. However, a significant increase in SIF release to 56.61% was observed during intestinal digestion, indicating the efficient transport of SIF into the small intestine for absorption. Cytotoxicity assessments via the MTT assay showed no adverse effects on Caco-2 cell lines after encapsulation. The PGWP-stabilized SIF nanoparticles improved the apparent permeability coefficient (Papp) of Caco-2 cells for SIF by 11.8-fold. The results indicated that using PGWP to encapsulate SIF was an effective approach for delivering SIF, while enhancing its bioavailability and transcellular transport. Full article
Show Figures

Figure 1

19 pages, 5889 KiB  
Article
Technical Feasibility of Extraction of Freshwater from Produced Water with Combined Forward Osmosis and Nanofiltration
by Madina Mohamed, Marco Tagliabue and Alberto Tiraferri
Membranes 2024, 14(5), 107; https://doi.org/10.3390/membranes14050107 (registering DOI) - 03 May 2024
Abstract
This study assesses the technical feasibility of a forward-osmosis-based system for concentrating produced water and extracting freshwater. Forward osmosis was combined with nanofiltration, the latter system used to restore the initial osmotic pressure of the diluted draw solutions while concurrently obtaining the final [...] Read more.
This study assesses the technical feasibility of a forward-osmosis-based system for concentrating produced water and extracting freshwater. Forward osmosis was combined with nanofiltration, the latter system used to restore the initial osmotic pressure of the diluted draw solutions while concurrently obtaining the final freshwater product. Three draw solutions, namely, MgCl2, NaCl, and C3H5NaO2, were initially tested against a synthetic water mimicking a pretreated produced water effluent having an osmotic pressure equal to 16.3 bar. MgCl2 was thus selected for high-recovery experiments. Different combinations of draw solution osmotic pressure (30, 40, 60, 80, and 120) and draw-to-feed initial volume ratios (1, 1.6, and 2.2) were tested at the laboratory scale, achieving recovery rates between roughly 35% and 70% and water fluxes between 4 and 8 L m−2h−1. One-dimensional, system-wide simulations deploying the analytical FO water flux equation were utilized to validate the experiments, investigate co-current and counter-current configurations, and understand the system potential. The diluted draw solutions were then transferred to nanofiltration to regenerate their original osmotic pressure. There, the highest observed rejection was 96.6% with an average flux of 21 L m−2h−1, when running the system to achieve 100% relative recovery. Full article
(This article belongs to the Topic Membrane Separation Technology Research)
18 pages, 718 KiB  
Article
Mixture Differential Cryptanalysis on Round-Reduced SIMON32/64 Using Machine Learning
by Zehan Wu, Kexin Qiao, Zhaoyang Wang , Junjie Cheng  and Liehuang Zhu 
Mathematics 2024, 12(9), 1401; https://doi.org/10.3390/math12091401 (registering DOI) - 03 May 2024
Abstract
With the development of artificial intelligence (AI), deep learning is widely used in various industries. At CRYPTO 2019, researchers used deep learning to analyze the block cipher for the first time and constructed a differential neural network distinguisher to meet a certain accuracy. [...] Read more.
With the development of artificial intelligence (AI), deep learning is widely used in various industries. At CRYPTO 2019, researchers used deep learning to analyze the block cipher for the first time and constructed a differential neural network distinguisher to meet a certain accuracy. In this paper, a mixture differential neural network distinguisher using ResNet is proposed to further improve the accuracy by exploring the mixture differential properties. Experiments are conducted on SIMON32/64, and the accuracy of the 8-round mixture differential neural network distinguisher is improved from 74.7% to 92.3%, compared with that of the previous differential neural network distinguisher. The prediction accuracy of the differential neural network distinguisher is susceptible to the choice of the specified input differentials, whereas the mixture differential neural network distinguisher is less affected by the input difference and has greater robustness. Furthermore, by combining the probabilistic expansion of rounds and the neutral bit, the obtained mixture differential neural network distinguisher is extended to 11 rounds, which can realize the 12-round actual key recovery attack on SIMON32/64. With an appropriate increase in the time complexity and data complexity, the key recovery accuracy of the mixture differential neural network distinguisher can be improved to 55% as compared to 52% of the differential neural network distinguisher. The mixture differential neural network distinguisher proposed in this paper can also be applied to other lightweight block ciphers. Full article
19 pages, 24649 KiB  
Article
Personalized Path-Tracking Approach Based on Reference Vector Field for Four-Wheel Driving and Steering Wire-Controlled Chassis
by Changhua Dai, Changfu Zong, Dong Zhang, Hongyu Zheng, Chuyo Kaku, Dingheng Wang and Kai Zhao
World Electr. Veh. J. 2024, 15(5), 198; https://doi.org/10.3390/wevj15050198 (registering DOI) - 03 May 2024
Abstract
It is essential and forward-thinking to investigate the personalized use of four-wheel driving and steering wire-controlled unmanned chassis. This paper introduces a personalized path-tracking approach designed to adapt the vehicle’s control system to human-like characteristics, enhancing the fit and maximizing the potential of [...] Read more.
It is essential and forward-thinking to investigate the personalized use of four-wheel driving and steering wire-controlled unmanned chassis. This paper introduces a personalized path-tracking approach designed to adapt the vehicle’s control system to human-like characteristics, enhancing the fit and maximizing the potential of the chassis’ multi-directional driving and steering capabilities. By modifying the classic vehicle motion controller design, this approach aligns with individual driving habits, significantly improving upon traditional path-tracking control methods that rely solely on reference vector fields. First, the classic reference vector field’s logic was expanded upon, and it is shown that a personalized upgrade is feasible. Then, driving behavior data from multiple drivers were collected using a driving simulator. The fuzzy c-means clustering method was used to categorize drivers based on typical states that match vehicle path-tracking performance. Additionally, the random forest algorithm was used as the method for recognizing driving style. Subsequently, a personalized path-tracking control strategy based on the reference vector field was developed and a distributed execution architecture for four-wheel driving and steering wire-controlled unmanned chassis was established. Finally, the proposed personalized path-tracking approach was validated using a driving simulator. The results of the experimental tests demonstrated that the personalized path-tracking control approach not only fits well with various driving styles but also delivers high accuracy in driving style identification, making it highly suitable for application in four-wheel driving and steering wire-controlled chassis. Full article
Show Figures

Figure 1

14 pages, 1596 KiB  
Article
An Analysis of the Main Nutrient Components of the Fruits of Different Macadamia (Macadamia intergrifolia) Cultivars in Rocky Desertification Areas and a Comprehensive Evaluation of the Mineral Element Contents
by Zhuanmiao Kang, Guangzheng Guo, Fengping He, Hui Zeng, Xinghao Tu and Wenlin Wang
Horticulturae 2024, 10(5), 468; https://doi.org/10.3390/horticulturae10050468 (registering DOI) - 03 May 2024
Abstract
This study aims to understand the main nutrient composition and comprehensively evaluate the differences in the mineral element contents of fruits of different macadamia cultivars, as well as screen good cultivars that are suitable for use in rocky desert mountains. Nine macadamia nut [...] Read more.
This study aims to understand the main nutrient composition and comprehensively evaluate the differences in the mineral element contents of fruits of different macadamia cultivars, as well as screen good cultivars that are suitable for use in rocky desert mountains. Nine macadamia nut cultivars were selected as test materials in rocky desert mountain orchards. The contents of crude fat, crude protein, and total soluble sugar in kernels and N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, and B in peels and kernels were determined, respectively. Then, the kernels’ mineral element contents were comprehensively evaluated based on principal component analysis. The results showed that the kernels were rich in crude fat, protein, and soluble sugar, with the crude fat content reaching 75% or greater, and the variation among cultivars was small. However, the variation in soluble sugar content was extensive. The content of mineral elements varied in different cultivars and parts of the fruit, with the average macronutrient content being K > N > Ca > P > Mg in the pericarp and N > K > P > Mg > Ca in the kernel, and the content of micronutrients in the pericarp and the kernel being Mn > Fe > Zn > Cu > B. By principal component analysis, the 10 mineral nutrient indexes were calculated as four principal components, with a cumulative contribution rate of 88.051%. Using the affiliation function value method and the calculation of the comprehensive evaluation value, the nine cultivars could be classified into three categories. The cultivar with the highest comprehensive evaluation value of the mineral element content was O.C. The one with the lowest value was H2, which indicated that O.C is a suitable variety for popularization in rocky desert mountainous areas. Stepwise regression analysis concluded that P, K, Fe, Mn, and Cu were the indicators significantly influencing the mineral element content of macadamia nuts and fruits in rocky desert mountains. Full article
(This article belongs to the Special Issue Fertilizer Usage and Nutrient Management in Horticultural Crops)
Show Figures

Figure 1

20 pages, 2500 KiB  
Article
Explainable Artificial Intelligence to Support Work Safety in Forestry: Insights from Two Large Datasets, Open Challenges, and Future Work
by Ferdinand Hoenigsberger, Anna Saranti, Anahid Jalali, Karl Stampfer and Andreas Holzinger
Appl. Sci. 2024, 14(9), 3911; https://doi.org/10.3390/app14093911 (registering DOI) - 03 May 2024
Abstract
Forestry work, which is considered one of the most demanding and dangerous professions in the world, is claiming more and more lives. In a country as small as Austria, more than 50 forestry workers are killed in accidents every year, and the number [...] Read more.
Forestry work, which is considered one of the most demanding and dangerous professions in the world, is claiming more and more lives. In a country as small as Austria, more than 50 forestry workers are killed in accidents every year, and the number is increasing rapidly. This serves as a catalyst for us to implement more stringent measures for workplace safety in order to achieve the sustainability objective of SDG 3, which focuses on health and well-being. This study contributes to the analysis of occupational accidents and focuses on two large real-world datasets from both the Austrian Federal Forests (ÖBf) and the Austrian Workers’ Compensation Board (AUVA). Decision trees, random forests, and fully connected neural networks are used for the analysis. By exploring different interpretation methods, this study sheds light on the decision-making processes ranging from basic association to causal inference and emphasizes the importance of causal inference in providing actionable insights for accident prevention. This paper contributes to the topic of explainable AI, specifically in its application to occupational safety in forestry. As a result, it introduces novel aspects to decision support systems in this application domain. Full article
(This article belongs to the Section Ecology Science and Engineering)
12 pages, 302 KiB  
Article
Evaluation of a Pilot Wellness Elective for Master of Public Health Students during the COVID-19 Pandemic
by Blaise Y. O’Malley, Edgard Etoundi-Ngono, Jianjun Hua, Joseph P. Nano and Catherine F. Pipas
Int. J. Environ. Res. Public Health 2024, 21(5), 590; https://doi.org/10.3390/ijerph21050590 (registering DOI) - 03 May 2024
Abstract
Background: Graduate student wellbeing is a public health issue in the United States. The COVID-19 outbreak exacerbated the mental health burden on graduate students worldwide. Culture of Wellness (PH 104) is a 2-week wellbeing elective course that teaches evidence-based wellbeing strategies for graduate [...] Read more.
Background: Graduate student wellbeing is a public health issue in the United States. The COVID-19 outbreak exacerbated the mental health burden on graduate students worldwide. Culture of Wellness (PH 104) is a 2-week wellbeing elective course that teaches evidence-based wellbeing strategies for graduate students at a university in the United States. Our study aimed to evaluate the impact of this pilot wellbeing elective on Master of Public Health students’ mental health and wellness during the COVID-19 pandemic. Methods: Participants included 22 Master of Public Health students from the class of 2021 at a university in the United States. We provided a pre-course survey to students that assessed their perception of their own personal wellbeing, their knowledge about various wellbeing strategies, and their confidence in applying 13 wellbeing strategies before taking the course. Post-course students completed the same survey following course completion, as well as a matching evaluation and a five-month follow up survey. Results: Of the 13 strategies taught, students reported significant improvements in their ability to apply 10 strategies. There was a significant increase in self-reported emotional and physical wellbeing, as well as a significant decrease in burnout. Five months post-course, more than three quarters of respondents used strategies taught in the course on a weekly basis or more. Limitations: This pilot study is limited by its small sample size, which may restrict the generalizability of the findings. Conclusions: The PH 104 Culture of Wellness course was effective in improving graduate students’ wellbeing and confidence in applying wellbeing strategies Full article
26 pages, 5291 KiB  
Article
Deep Residual Network with a CBAM Mechanism for the Recognition of Symmetric and Asymmetric Human Activity Using Wearable Sensors
by Sakorn Mekruksavanich and Anuchit Jitpattanakul
Symmetry 2024, 16(5), 554; https://doi.org/10.3390/sym16050554 (registering DOI) - 03 May 2024
Abstract
Wearable devices are paramount in health monitoring applications since they provide contextual information to identify and recognize human activities. Although sensor-based human activity recognition (HAR) has been thoroughly examined, prior studies have yet to definitively differentiate between symmetric and asymmetric motions. Determining these [...] Read more.
Wearable devices are paramount in health monitoring applications since they provide contextual information to identify and recognize human activities. Although sensor-based human activity recognition (HAR) has been thoroughly examined, prior studies have yet to definitively differentiate between symmetric and asymmetric motions. Determining these movement patterns might provide a more profound understanding of assessing physical activity. The main objective of this research is to investigate the use of wearable motion sensors and deep convolutional neural networks in the analysis of symmetric and asymmetric activities. This study provides a new approach for classifying symmetric and asymmetric motions using a deep residual network incorporating channel and spatial convolutional block attention modules (CBAMs). Two publicly accessible benchmark HAR datasets, which consist of inertial measurements obtained from wrist-worn sensors, are used to assess the model’s efficacy. The model we have presented is subjected to thorough examination and demonstrates exceptional accuracy on both datasets. The ablation experiment examination also demonstrates noteworthy contributions from the residual mappings and CBAMs. The significance of recognizing basic movement symmetries in increasing sensor-based activity identification utilizing wearable devices is shown by the enhanced accuracy and F1-score, especially in asymmetric activities. The technique under consideration can provide activity monitoring with enhanced accuracy and detail, offering prospective advantages in diverse domains like customized healthcare, fitness tracking, and rehabilitation progress evaluation. Full article
16 pages, 10153 KiB  
Article
Effect of Temperature and NaClO on the Corrosion Behavior of Copper in Synthetic Tap Water
by Fei Sun, Na Zhang, Shen Chen and Moucheng Li
Metals 2024, 14(5), 543; https://doi.org/10.3390/met14050543 (registering DOI) - 03 May 2024
Abstract
The corrosion behavior of copper was investigated in synthetic tap water with and without sodium hypochlorite (NaClO) at different temperatures during immersion for 70 d by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurement techniques. The weight loss corrosion rate [...] Read more.
The corrosion behavior of copper was investigated in synthetic tap water with and without sodium hypochlorite (NaClO) at different temperatures during immersion for 70 d by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurement techniques. The weight loss corrosion rate and pit depth of copper first increase and then decrease with the change in solution temperature from 25 to 80 °C. This is mainly related to the corrosion products formed on the copper surface. The main corrosion products change from Cu2O and Cu2(OH)2CO3 to CuO with the increase in solution temperature. The presence of 3 ppm NaClO slightly increases the weight loss corrosion rate and pit depth of copper under all temperatures except for 50 °C and reduces the temperature of the maximum corrosion rate from 50 to 40 °C. Free chlorine reduction accelerates the cathodic reaction of the corrosion process. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

9 pages, 230 KiB  
Article
Characterization of Nonlinear Mixed Bi-Skew Lie Triple Derivations on ∗-Algebras
by Turki Alsuraiheed, Junaid Nisar and Nadeem ur Rehman
Mathematics 2024, 12(9), 1403; https://doi.org/10.3390/math12091403 (registering DOI) - 03 May 2024
Abstract
This paper concentrates on examining the characterization of nonlinear mixed bi-skew Lie triple *- derivations within an *-algebra denoted by A which contains a nontrivial projection with a unit I. Additionally, we expand this investigation to applications by describing these derivations within [...] Read more.
This paper concentrates on examining the characterization of nonlinear mixed bi-skew Lie triple *- derivations within an *-algebra denoted by A which contains a nontrivial projection with a unit I. Additionally, we expand this investigation to applications by describing these derivations within prime *-algebras, von Neumann algebras, and standard operator algebras. Full article
(This article belongs to the Special Issue Algebraic Analysis and Its Applications)
16 pages, 2485 KiB  
Article
Poor Decision Making and Sociability Impairment Following Central Serotonin Reduction in Inducible TPH2-Knockdown Rats
by Lucille Alonso, Polina Peeva, Tania Fernández-del Valle Alquicira, Narda Erdelyi, Ángel Gil Nolskog, Michael Bader, York Winter, Natalia Alenina and Marion Rivalan
Int. J. Mol. Sci. 2024, 25(9), 5003; https://doi.org/10.3390/ijms25095003 (registering DOI) - 03 May 2024
Abstract
Serotonin is an essential neuromodulator for mental health and animals’ socio-cognitive abilities. However, we previously found that a constitutive depletion of central serotonin did not impair rat cognitive abilities in stand-alone tests. Here, we investigated how a mild and acute decrease in brain [...] Read more.
Serotonin is an essential neuromodulator for mental health and animals’ socio-cognitive abilities. However, we previously found that a constitutive depletion of central serotonin did not impair rat cognitive abilities in stand-alone tests. Here, we investigated how a mild and acute decrease in brain serotonin would affect rats’ cognitive abilities. Using a novel rat model of inducible serotonin depletion via the genetic knockdown of tryptophan hydroxylase 2 (TPH2), we achieved a 20% decrease in serotonin levels in the hypothalamus after three weeks of non-invasive oral doxycycline administration. Decision making, cognitive flexibility, and social recognition memory were tested in low-serotonin (Tph2-kd) and control rats. Our results showed that the Tph2-kd rats were more prone to choose disadvantageously in the long term (poor decision making) in the Rat Gambling Task and that only the low-serotonin poor decision makers were more sensitive to probabilistic discounting and had poorer social recognition memory than other low-serotonin and control individuals. Flexibility was unaffected by the acute brain serotonin reduction. Poor social recognition memory was the most central characteristic of the behavioral network of low-serotonin poor decision makers, suggesting a key role of social recognition in the expression of their profile. The acute decrease in brain serotonin appeared to specifically amplify the cognitive impairments of the subgroup of individuals also identified as poor decision makers in the population. This study highlights the great opportunity the Tph2-kd rat model offers to study inter-individual susceptibilities to develop cognitive impairment following mild variations of brain serotonin in otherwise healthy individuals. These transgenic and differential approaches together could be critical for the identification of translational markers and vulnerabilities in the development of mental disorders. Full article
(This article belongs to the Special Issue Neuromodulatory Effects of Serotonin)
Show Figures

Figure 1

14 pages, 4035 KiB  
Article
Combinatorial Quantification of Multi-Features of Coda Waves in Temperature-Affected Concrete Beams
by Gang Zheng, Linzheng Song, Wenqi Xue, Zhiyu Zhang and Benniu Zhang
Materials 2024, 17(9), 2147; https://doi.org/10.3390/ma17092147 (registering DOI) - 03 May 2024
Abstract
Coda waves are highly sensitive to changes in medium properties and can serve as a tool for structural health monitoring (SHM). However, high sensitivity also makes them susceptible to noise, leading to excessive dispersion of monitoring results. In this paper, a coda wave [...] Read more.
Coda waves are highly sensitive to changes in medium properties and can serve as a tool for structural health monitoring (SHM). However, high sensitivity also makes them susceptible to noise, leading to excessive dispersion of monitoring results. In this paper, a coda wave multi-feature extraction method is proposed, in which three parameters, the time shift, the time stretch, and the amplitude variation of the wave trains within the time window, are totally derived. These three parameters are each mapped to the temperature variation of concrete beams, and then combined together with their optimal weight coefficients to give a best-fitted temperature–multi-parameter relationship that has the smallest errors. Coda wave signals were collected from an ultrasonic experiment on concrete beams within an environmental temperature range of 14 °C~21 °C to verify the effectiveness of the proposed method. The results indicate that the combination of multi-features derived from coda wave signals to quantify the medium temperature is feasible. Compared to the relationship established by a single parameter, the goodness-of-fit is improved. During identification, the method effectively reduces the dispersion of identification errors and mitigates the impact of noise interference on structural state assessment. Both the identification accuracy and stability are improved by more than 50%, and the order of magnitude of the identification accuracy is improved from 1 °C to 0.1 °C. Full article
Show Figures

Figure 1

17 pages, 701 KiB  
Article
High-Performance Liquid Chromatography–Fluorescence Detection Method for Ochratoxin A Quantification in Small Mice Sample Volumes: Versatile Application across Diverse Matrices Relevant for Neurodegeneration Research
by Elba Beraza, Maria Serrano-Civantos, Maria Izco, Lydia Alvarez-Erviti, Elena Gonzalez-Peñas and Ariane Vettorazzi
Toxins 2024, 16(5), 213; https://doi.org/10.3390/toxins16050213 (registering DOI) - 03 May 2024
Abstract
Ochratoxin A (OTA) is a mycotoxin commonly found in various food products, which poses potential health risks to humans and animals. Recently, more attention has been directed towards its potential neurodegenerative effects. However, there are currently no fully validated HPLC analytical methods established [...] Read more.
Ochratoxin A (OTA) is a mycotoxin commonly found in various food products, which poses potential health risks to humans and animals. Recently, more attention has been directed towards its potential neurodegenerative effects. However, there are currently no fully validated HPLC analytical methods established for its quantification in mice, the primary animal model in this field, that include pivotal tissues in this area of research, such as the intestine and brain. To address this gap, we developed and validated a highly sensitive, rapid, and simple method using HPLC-FLD for OTA determination in mice tissues (kidney, liver, brain, and intestine) as well as plasma samples. The method was rigorously validated for selectivity, linearity, accuracy, precision, recovery, dilution integrity, carry-over effect, stability, and robustness, meeting the validation criteria outlined by FDA and EMA guidelines. Furthermore, the described method enables the quantification of OTA in each individual sample using minimal tissue mass while maintaining excellent recovery values. The applicability of the method was demonstrated in a repeated low-dose OTA study in Balb/c mice, which, together with the inclusion of relevant and less common tissues in the validation process, underscore its suitability for neurodegeneration-related research. Full article
Show Figures

Graphical abstract

19 pages, 3281 KiB  
Article
Effect of Pulsed Electric Fields on the Shelf Stability and Sensory Acceptability of Osmotically Dehydrated Spinach: A Mathematical Modeling Approach
by George Dimopoulos, Alexandros Katsimichas, Konstantinos Balachtsis, Efimia Dermesonlouoglou and Petros Taoukis
Foods 2024, 13(9), 1410; https://doi.org/10.3390/foods13091410 (registering DOI) - 03 May 2024
Abstract
This study focused on the osmotic dehydration (OD) of ready-to-eat spinach leaves combined with the pulsed electric field (PEF) pre-treatment. Untreated and PEF-treated (0.6 kV/cm, 0–200 pulses) spinach leaves were osmotically dehydrated at room temperature for up to 120 min. The application of [...] Read more.
This study focused on the osmotic dehydration (OD) of ready-to-eat spinach leaves combined with the pulsed electric field (PEF) pre-treatment. Untreated and PEF-treated (0.6 kV/cm, 0–200 pulses) spinach leaves were osmotically dehydrated at room temperature for up to 120 min. The application of PEF (0.6 kV/20 pulses) prior to OD (60% glycerol, 25 °C, 60 min) lowered water activity (aw = 0.891) while achieving satisfactory product acceptability (total sensory hedonic scoring of 8). During the storage of the product (at 4, 8, 12, and 20 °C for up to 30 d), a significant reduction in total microbial count evolution was observed (9.7 logCFU/g for the untreated samples vs. 5.1 logCFU/g for the PEF-OD-treated samples after 13 d of storage at 4 °C). The selection of these PEF and OD treatment conditions enabled the extension of the product shelf life by up to 33 d under chilled storage. Osmotically treated spinach could find application in ready-to-eat salad products with an extended shelf life, which is currently not possible due to the high perishability of the specific plant tissue. Full article
(This article belongs to the Special Issue Impacts of Innovative Processing Technologies on Food Quality)
Show Figures

Figure 1

13 pages, 2109 KiB  
Article
Analysis, Design and Effectuation of a Tapped Inductor Current Converter with Fractional Output for Current Source Systems
by Jie Mei, Ka Wai Eric Cheng and Teke Hua
Energies 2024, 17(9), 2204; https://doi.org/10.3390/en17092204 (registering DOI) - 03 May 2024
Abstract
This article proposes a new connection method of tapped inductors that works in the current source, which enables the current-mode power converter circuit to have a new topological relationship. Usually, in a switched-inductor circuit, a stable output multiple is obtained through the connection [...] Read more.
This article proposes a new connection method of tapped inductors that works in the current source, which enables the current-mode power converter circuit to have a new topological relationship. Usually, in a switched-inductor circuit, a stable output multiple is obtained through the connection of the inductor and the switching devices. This is because the tapped point on the inductor varies, and the magnetomotive force (mmf) of inductance is adjusted. Thereby, the output current is controlled by the states of switching devices within a certain range. This optimized circuit structure can adjust the output current according to load changes in practical applications without changing the input power supply. The proposed method has been verified for its feasibility through detailed analysis and hardware work. The principal analysis based on the flux linkage and the PSIM simulation confirms that the theoretical circuit can be implemented. Finally, a hardware circuit is built to obtain real and feasible conclusions, and it is verified that the circuit can achieve a stable output and variable current within a specific range. The proposed work presents an alternative power conversion methodology using the active switching of mmf, and it is a stable and simple power conversion technique. Full article
(This article belongs to the Section F3: Power Electronics)
13 pages, 2279 KiB  
Article
Zinc N,N-bis(2-picolyl)amine Chelates Show Substitution-Dependent Cleavage of Phosphodiesters in Models as Well as of PNAzyme-RNA Bulges
by Søren W. Svenningsen, Olivia Luige, Zeyed Abdulkarim, Roger Strömberg and Nicholas H. Williams
Molecules 2024, 29(9), 2123; https://doi.org/10.3390/molecules29092123 (registering DOI) - 03 May 2024
Abstract
PNAzymes are a group of artificial enzymes which show promising results in selective and efficient cleavage of RNA targets. In the present study, we introduce a series of metal chelating groups based on N,N-bis(2-picolyl) groups (parent, 6-methyl and 6-amino substituted) [...] Read more.
PNAzymes are a group of artificial enzymes which show promising results in selective and efficient cleavage of RNA targets. In the present study, we introduce a series of metal chelating groups based on N,N-bis(2-picolyl) groups (parent, 6-methyl and 6-amino substituted) as the active sites of novel PNAzymes. An improved synthetic route for the 6-amino analogues is described. The catalytic activity of the chelating groups for cleaving phosphodiesters were assessed with the model substrate 2-hydroxypropyl p-nitrophenyl phosphate (HPNPP), confirming that the zinc complexes have the reactivity order of parent < 2-methyl < 2-amino. The three ligands were conjugated to a PNA oligomer to form three PNAzymes which showed the same order of reactivity and some sensitivity to the size of the RNA bulge designed into the catalyst–substrate complex. This work demonstrates that the kinetic activity observed for the model substrate HPNPP could be translated onto the PNAzymes, but that more reactive Zn complexes are required for such PNAzymes to be viable therapeutic agents. Full article
Show Figures

Figure 1

13 pages, 2776 KiB  
Article
Experimental Characterization of Commercial Scroll Expander for Micro-Scale Solar ORC Application: Part 1
by Maurizio De Lucia, Giacomo Pierucci, Maria Manieri, Gianmarco Agostini, Emanuele Giusti, Michele Salvestroni, Francesco Taddei, Filippo Cottone and Federico Fagioli
Energies 2024, 17(9), 2205; https://doi.org/10.3390/en17092205 (registering DOI) - 03 May 2024
Abstract
In order to reduce greenhouse gas emissions and achieve global decarbonisation, it is essential to find sustainable and renewable alternatives for electricity production. In this context, the development of distributed generation systems, with the use of thermodynamic and photovoltaic solar energy, wind energy [...] Read more.
In order to reduce greenhouse gas emissions and achieve global decarbonisation, it is essential to find sustainable and renewable alternatives for electricity production. In this context, the development of distributed generation systems, with the use of thermodynamic and photovoltaic solar energy, wind energy and smart grids, is fundamental. ORC power plants are the most appropriate systems for low-grade thermal energy recovery and power conversion, combining solar energy with electricity production. The application of a micro-scale ORC plant, coupled with Parabolic Trough Collectors as a thermal source, can satisfy domestic user demand in terms of electrical and thermal power. In order to develop a micro-scale ORC plant, a commercial hermetic scroll compressor was tested as an expander with HFC-245fa working fluid. The tests required the construction of an experimental bench with monitoring and control sensors. The aim of this study is the description of the scroll performances to evaluate the application and develop optimization strategies. The maximum isentropic effectiveness is reached for an expansion ratio close to the volumetric expansion ratio of the scroll, and machine isentropic effectiveness presents small variations in a wide range of working conditions. The filling factor is always higher than one, due to leakage in the mechanical seals of the scroll or other inefficiencies. This study demonstrates that using a commercial scroll compressor as an expander within an ORC system represents a valid option for such applications, but it is necessary to improve the mechanical seals of the machine and utilize a dedicated control strategy to obtain the maximum isentropic effectiveness. Full article
(This article belongs to the Special Issue Advanced Solar Technologies and Thermal Energy Storage)
Show Figures

Figure 1

13 pages, 1996 KiB  
Article
A Foldable Thermoplastic Microdevice Integrating Isothermal Amplification and Schiff-Reaction-Based Colorimetric Assay for the Detection of Infectious Pathogens
by Hee Mang Kim and Nae Yoon Lee
Chemosensors 2024, 12(5), 75; https://doi.org/10.3390/chemosensors12050075 (registering DOI) - 03 May 2024
Abstract
In this study, we introduce a plastic-based foldable microdevice that integrates loop-mediated isothermal amplification (LAMP) and a colorimetric assay based on the Schiff reaction to detect the genes of infectious bacteria. The device comprises two sides: a sample zone containing amplification chambers and [...] Read more.
In this study, we introduce a plastic-based foldable microdevice that integrates loop-mediated isothermal amplification (LAMP) and a colorimetric assay based on the Schiff reaction to detect the genes of infectious bacteria. The device comprises two sides: a sample zone containing amplification chambers and a detection zone for the colorimetric assay. The detection zone contains poly(methyl methacrylate) structures for transferring the colorimetric reagent-soaked glass micro-fiber paper into the sample chambers. Specific genes of Staphylococcus aureus (S. aureus) and Streptococcus pneumoniae (S. pneumoniae), the most common bacterial infection causes, were amplified by LAMP assay. The S. aureus gene was detected up to 10 fg/μL and the S. pneumoniae gene up to 0.1 pg/μL. The amplified target genes were visually identified using a colorimetric assay with Schiff’s reagent, which showed clear color discrimination through a reaction with aldehyde groups derived from the DNA in the amplicons. The introduced method, integrating amplification and detection processes in a single device, is expected to be utilized in point-of-care testing analysis for the simple and rapid detection of infectious pathogens. Full article
(This article belongs to the Section (Bio)chemical Sensing)
14 pages, 552 KiB  
Article
The Usefulness of Vitamin K-Dependent Proteins in the Diagnosis of Colorectal Carcinoma
by Mirela-Georgiana Perné, Adela-Viviana Sitar-Tăut, Olga Hilda Orășan, Vasile Negrean, Călin Vasile Vlad, Teodora-Gabriela Alexescu, Mircea Vasile Milaciu, Lorena Ciumărnean, Răzvan Dan Togănel, Gabriel Emil Petre, Ioan Șimon and Alexandra Crăciun
Int. J. Mol. Sci. 2024, 25(9), 4997; https://doi.org/10.3390/ijms25094997 (registering DOI) - 03 May 2024
Abstract
Colorectal cancer (CRC) is one of the most common neoplasms in developed countries, with increasing incidence and mortality, even in young people. A variety of serum markers have been associated with CRC (CEA, CA 19-9), but neither should be used as a screening [...] Read more.
Colorectal cancer (CRC) is one of the most common neoplasms in developed countries, with increasing incidence and mortality, even in young people. A variety of serum markers have been associated with CRC (CEA, CA 19-9), but neither should be used as a screening tool for the diagnosis or evolution staging of CRC. The sensitivity and specificity of these markers are not as good as is required, so new ones need to be found. Matrix Gla protein and PIVKA II are involved in carcinogenesis, but few studies have evaluated their usefulness in predicting the presence and severity of CRC. Materials and Methods: Two hundred patients were divided into three groups: 80 patients were included in the control group; 80 with CRC and without hepatic metastasis were included in Group 1; 40 patients with CRC and hepatic metastasis were included in Group 2. Vitamin K-dependent proteins (VKDPs) levels in plasma were determined. Results: Patients with CRC without methastasis (Group 1) and CRC patients with methastasis (Group 2) presented significantly higher values of CEA, CA 19-9, PIVKA II (310.05 ± 38.22 vs. 430.13 ± 122.13 vs. 20.23 ± 10.90), and ucMGP (14,300.00 ± 2387.02 vs. 13,410.52 ± 2243.16 vs. 1780.31 ± 864.70) compared to control group (Group 0). Interestingly, Group 1 presented the greatest PIVKA II values. Out of all the markers, significant differences between the histological subgroups were found only for ucMGP , but only in non-metastatic CRC. Studying the discrimination capacity between the patients with CRC vs. those without, no significant differences were found between the classical tumor markers and the VKDP AUROC curves (PIVKA II and ucMGP AUROCs = 1). For the metastatic stage, the sensitivity and specificity of the VKDPs were lower in comparison with those of CA 19-9 and CEA, respectively (PIVKA II AUROC = 0.789, ucMGP AUROC = 0.608). Conclusion: The serum levels of these VKDPs are significantly altered in patients with colorectal carcinoma; it is possible to find additional value of these in the early stages of the disease. Full article
(This article belongs to the Special Issue New Diagnostic Tools and Biomarkers in Oncological Diseases 2.0)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop