The 2023 MDPI Annual Report has
been released!
 
25 pages, 2202 KiB  
Article
Developing Small-Cargo Flows in Cities Using Unmanned Aerial Vehicles
by Aldona Jarašūnienė, Margarita Išoraitė and Artūras Petraška
Future Transp. 2024, 4(2), 450-474; https://doi.org/10.3390/futuretransp4020022 (registering DOI) - 01 May 2024
Abstract
Modern technology allows for the simplification of a number of functions in industry and business. Many companies have achieved a high level of robotisation and automation in the use of services, including companies operating in the transport sector, where smart systems help to [...] Read more.
Modern technology allows for the simplification of a number of functions in industry and business. Many companies have achieved a high level of robotisation and automation in the use of services, including companies operating in the transport sector, where smart systems help to control load planning, the issuing of documents, the tracking and transportation of shipments, etc. Drones can be exploited as smart assistants in delivering cargo in cities. Since it is a new technology capable of working autonomously, it presents various legal, psychological, and physical challenges. This article presents an analysis of the scientific literature on the development of small-cargo flows using drones and a research methodology on the development of the use of drones, presenting a model which helps to address the issue of cargo delivery in cities. Full article
Show Figures

Figure 1

12 pages, 3967 KiB  
Article
Utilization of Multi-Ionic Interaction of Yumoto Hot Springs for Enhancing the Moisturizing Properties of Hyaluronic Acid Sodium Salt
by Keita Nakajima, Tu Minh Tran Vo and Nur Adlin
Polysaccharides 2024, 5(2), 100-111; https://doi.org/10.3390/polysaccharides5020008 (registering DOI) - 01 May 2024
Abstract
Hot spring (HS) waters manifest diverse positive effects on the skin due to their unique chemical compositions. Sodium hyaluronate acid (HA) comprises N-acetylglucosamine and D-glucuronic acid, and distinguishes itself with superior qualities in skin regeneration, providing moisturizing and anti-aging benefits. The combination of [...] Read more.
Hot spring (HS) waters manifest diverse positive effects on the skin due to their unique chemical compositions. Sodium hyaluronate acid (HA) comprises N-acetylglucosamine and D-glucuronic acid, and distinguishes itself with superior qualities in skin regeneration, providing moisturizing and anti-aging benefits. The combination of HA with HS water is widely applied across ophthalmology, pneumology, nutrition, and cosmetics. This study delved into the application of HA in cosmetology, with a focus on its interaction with HS water and its effects on moisture retention and promoting wound healing. In particular, with the alkaline pH levels of the Yumoto HS, HA molecules may undergo dissociation to be ionized resulting in a negatively charged polymer and interacting with positively charged ions in the HS water through electrostatic interactions. The shifted peaks in the FTIR result and zeta potential shifts to a less negative region in the case of HA-HS compared to HA-DI indicate an ionic interaction between HS water and HA. Moisture tests confirmed the sustained hydration when HA is dissolved in HS water, underscoring its potential to improve skin hydration at certain concentrations, specifically at 0.5% and 1%. Additionally, MTT assay results demonstrated that HS water stimulates the growth of fibroblast cells compared to distilled water, implying its potential beneficial effect in wound healing. These findings suggested the multifaceted benefits of HAHS in skincare, highlighting its role in enhancing skin hydration and potentially accelerating wound healing processes, thus presenting avenues for the development of advanced cosmeceutical formulations. Full article
Show Figures

Figure 1

12 pages, 1486 KiB  
Article
A Novel Radar Cross-Section Calculation Method Based on the Combination of the Spectral Element Method and the Integral Method
by Hongyu Zhao, Jingying Chen, Mingwei Zhuang, Xiaofan Yang and Jianliang Zhuo
Symmetry 2024, 16(5), 542; https://doi.org/10.3390/sym16050542 (registering DOI) - 01 May 2024
Abstract
This article proposes a novel method for calculating radar cross-sections (RCSs) that combines the spectral element method and the integral method, allowing for RCS calculations at any position in a free space or a half-space. This approach replaces the field source with an [...] Read more.
This article proposes a novel method for calculating radar cross-sections (RCSs) that combines the spectral element method and the integral method, allowing for RCS calculations at any position in a free space or a half-space. This approach replaces the field source with an incident field using the scattered field equation of the spectral element method, enabling the arbitrary placement of the field source without being limited by the computational domain. By applying the superposition theorem and the volume equivalence principle, the scattered field of the objects at any position is obtained through integral equations, eliminating limitations on the computation points imposed by the computational domain. Based on Green’s function’s important role throughout the calculation process and its symmetry properties, the RCS calculation of symmetric models will be more advantageous. Finally, several examples, including symmetry models, are provided to validate both the feasibility and accuracy of this proposed method. Full article
13 pages, 934 KiB  
Article
Evaluating the Water Quality of the Keddara Dam (Algeria) Using Water Quality Indices
by Tosin Sarah Fashagba, Madani Bessedik, Nadia Badr ElSayed, Chérifa Abdelbaki and Navneet Kumar
Water 2024, 16(9), 1291; https://doi.org/10.3390/w16091291 (registering DOI) - 01 May 2024
Abstract
Dams are regarded as crucial pieces of structure that store water for irrigation and municipal uses. Given their vital role, the dam’s water quality assessment is considered to be an important criterion and requires constant monitoring. In this research, we attempted to use [...] Read more.
Dams are regarded as crucial pieces of structure that store water for irrigation and municipal uses. Given their vital role, the dam’s water quality assessment is considered to be an important criterion and requires constant monitoring. In this research, we attempted to use two water quality indices (WQIs) methods to assess the water quality of the Keddara Dam, which is located on the Boudouaou River, Algeria, using eleven water quality parameters (temperature, pH, conductivity, turbidity, total suspended solids (TSS), full alkalimetric title (TAC), hydrometric title (TH), nitrite ions (NO2−), nitrate ions (NO3−), ammonium ions (NH4+), and phosphate ions (PO43−)) for data recorded from 29 December 2018 to 3 June 2021. Application of The Canadian Council of Ministers of the Environment (CCME) WQIs and the Weighted Arithmetic Method (WAM) indicated that the Keddara Dam’s water quality parameters were within the WHO’s permissible level, except for the conductivity and turbidity values. The results of the CCME WQI ranged from acceptable (81.92) to excellent (95.08) quality, whereas the WAM WQI ranged from 9.52 to 17.77, indicating excellent quality. This demonstrates that the Keddara Dam is appropriate for agriculture and municipal use. The water quality indices (WQIs) methods are recommended as valuable tools that allow both the public and decision-makers to comprehend and manage the water quality of any aquatic environment by providing flexibility in choosing variables. Full article
(This article belongs to the Special Issue Water Quality Assessment of River Basins)
Show Figures

Figure 1

31 pages, 846 KiB  
Review
A Review of Bioactive Compound Effects from Primary Legume Protein Sources in Human and Animal Health
by Zachary Shea, Matheus Ogando do Granja, Elizabeth B. Fletcher, Yaojie Zheng, Patrick Bewick, Zhibo Wang, William M. Singer and Bo Zhang
Curr. Issues Mol. Biol. 2024, 46(5), 4203-4233; https://doi.org/10.3390/cimb46050257 (registering DOI) - 01 May 2024
Abstract
The global demand for sustainable and nutritious food sources has catalyzed interest in legumes, known for their rich repertoire of health-promoting compounds. This review delves into the diverse array of bioactive peptides, protein subunits, isoflavones, antinutritional factors, and saponins found in the primary [...] Read more.
The global demand for sustainable and nutritious food sources has catalyzed interest in legumes, known for their rich repertoire of health-promoting compounds. This review delves into the diverse array of bioactive peptides, protein subunits, isoflavones, antinutritional factors, and saponins found in the primary legume protein sources—soybeans, peas, chickpeas, and mung beans. The current state of research on these compounds is critically evaluated, with an emphasis on the potential health benefits, ranging from antioxidant and anticancer properties to the management of chronic diseases such as diabetes and hypertension. The extensively studied soybean is highlighted and the relatively unexplored potential of other legumes is also included, pointing to a significant, underutilized resource for developing health-enhancing foods. The review advocates for future interdisciplinary research to further unravel the mechanisms of action of these bioactive compounds and to explore their synergistic effects. The ultimate goal is to leverage the full spectrum of benefits offered by legumes, not only to advance human health but also to contribute to the sustainability of food systems. By providing a comprehensive overview of the nutraceutical potential of legumes, this manuscript sets a foundation for future investigations aimed at optimizing the use of legumes in the global pursuit of health and nutritional security. Full article
12 pages, 715 KiB  
Article
Impact of the Universal Implementation of Adolescent Hepatitis B Vaccination in Spain
by Angela Domínguez, Ana Avellón, Victoria Hernando, Núria Soldevila, Eva Borràs, Ana Martínez, Conchita Izquierdo, Núria Torner, Carles Pericas, Cristina Rius and Pere Godoy
Vaccines 2024, 12(5), 488; https://doi.org/10.3390/vaccines12050488 (registering DOI) - 01 May 2024
Abstract
The aim of this study was to analyse the impact of the introduction of universal adolescent HBV vaccination on the incidence of acute hepatitis B virus (HBV) infections. Acute HBV cases reported to the Spanish National Epidemiological Surveillance Network between 2005 and 2021 [...] Read more.
The aim of this study was to analyse the impact of the introduction of universal adolescent HBV vaccination on the incidence of acute hepatitis B virus (HBV) infections. Acute HBV cases reported to the Spanish National Epidemiological Surveillance Network between 2005 and 2021 were included. For regions starting adolescent vaccination in 1991–1993 and in 1994–1996, HBV incidence rates were compared by calculating the incidence rate ratio (IRR) and 95% confidence interval (CI). We also analysed the 2017 Spanish national seroprevalence survey data. The overall acute HBV incidence per 100,000 persons was 1.54 in 2005 and 0.64 in 2021 (p < 0.001). The incidence in 2014–2021 was lower for regions that started adolescent vaccination in 1991–1993 rather than in 1994–1996 (IRR 0.76; 95% CI 0.72–0.83; p < 0.001). In the 20–29 age group, incidence in regions that started adolescent vaccination in 1991–1993 was also lower (IRR 0.87; 95% CI 0.77–0.98; p = 0.02 in 2005–2013 and IRR 0.71; 95% CI 0.56–0·90; p < 0.001 in 2014–2021). Anti-HBc prevalence in the 35–39 age group was lower in the regions that started vaccination earlier, although the difference was not statistically significant (p = 0.09). Acute HBV incidence decreased more in the young adult population in regions that began adolescent vaccination earlier. Maintaining high universal vaccination coverage in the first year of life and in at-risk groups is necessary to achieve HBV elimination by 2030. Full article
(This article belongs to the Special Issue Feature Papers of Hepatitis A, B, C and E Vaccines)
Show Figures

Figure 1

16 pages, 9544 KiB  
Article
Personalized Federated Learning Incorporating Adaptive Model Pruning at the Edge
by Yueying Zhou, Gaoxiang Duan, Tianchen Qiu, Lin Zhang, Li Tian, Xiaoying Zheng and Yongxin Zhu
Electronics 2024, 13(9), 1738; https://doi.org/10.3390/electronics13091738 (registering DOI) - 01 May 2024
Abstract
Edge devices employing federated learning encounter several obstacles, including (1) the non-independent and identically distributed (Non-IID) nature of client data, (2) limitations due to communication bottlenecks, and (3) constraints on computational resources. To surmount the Non-IID data challenge, personalized federated learning has been [...] Read more.
Edge devices employing federated learning encounter several obstacles, including (1) the non-independent and identically distributed (Non-IID) nature of client data, (2) limitations due to communication bottlenecks, and (3) constraints on computational resources. To surmount the Non-IID data challenge, personalized federated learning has been introduced, which involves training tailored networks at the edge; nevertheless, these methods often exhibit inconsistency in performance. In response to these concerns, a novel framework for personalized federated learning that incorporates adaptive pruning of edge-side data is proposed in this paper. This approach, through a two-staged pruning process, creates customized models while ensuring strong generalization capabilities. Concurrently, by utilizing sparse models, it significantly condenses the model parameters, markedly diminishing both the computational burden and communication overhead on edge nodes. This method achieves a remarkable compression ratio of 3.7% on the Non-IID dataset FEMNIST, with the training accuracy remaining nearly unaffected. Furthermore, the total training duration is reduced by 46.4% when compared with the standard baseline method. Full article
(This article belongs to the Special Issue AI for Edge Computing)
Show Figures

Figure 1

9 pages, 2039 KiB  
Brief Report
Malian Children’s Core Gut Mycobiome
by Abdourahim Abdillah, Aly Kodio and Stéphane Ranque
Microorganisms 2024, 12(5), 926; https://doi.org/10.3390/microorganisms12050926 (registering DOI) - 01 May 2024
Abstract
Because data on the fungal gut community structure of African children are scarce, we aimed to describe it by reanalysing rRNA ITS1 and ITS2 metabarcoding data from a study designed to assess the influence of microbiota in malaria susceptibility in Malian children from [...] Read more.
Because data on the fungal gut community structure of African children are scarce, we aimed to describe it by reanalysing rRNA ITS1 and ITS2 metabarcoding data from a study designed to assess the influence of microbiota in malaria susceptibility in Malian children from the Dogon country. More specifically, we aimed to establish the core gut mycobiome and compare the gut fungal community structure of breastfed children, aged 0–2 years, with other age groups. Briefly, DNA was extracted from 296 children’s stool samples. Both rRNA ITS1 and ITS2 genomic barcodes were amplified and subjected to Illumina MiSeq sequencing. The ITS2 barcode generated 1,975,320 reads and 532 operational taxonomic units (OTUs), while the ITS1 barcode generated 647,816 reads and 532 OTUs. The alpha diversity was significantly higher by using the ITS1 compared to the ITS2 barcode (p < 0.05); but, regardless of the ITS barcode, we found no significant difference between breastfed children, aged 0–2 years, compared to the other age groups. The core gut mycobiome of the Malian children included Saccharomyces cerevisiae, Candida albicans, Pichia kudriavzevii, Malassezia restricta, Candida tropicalis and Aspergillus section Aspergillus, which were present in at least 50% of the 296 children. Further studies in other African countries are warranted to reach a global view of African children’s core gut mycobiome. Full article
(This article belongs to the Special Issue Gut Microbiome and Children’s Health)
Show Figures

Figure 1

24 pages, 8738 KiB  
Article
Characterization of Quaternary-Ammonium-Based Ionogel Membranes for Application in Proton Exchange Membrane Fuel Cells
by Eduardo Iniesta-López, Adrián Hernández-Fernández, Ángel Martínez-López, Yolanda Garrido, Antonia Pérez de los Ríos and Francisco José Hernández-Fernández
Gels 2024, 10(5), 308; https://doi.org/10.3390/gels10050308 (registering DOI) - 01 May 2024
Abstract
In recent years, the quest to advance fuel cell technologies has intensified, driven by the imperative to reduce reliance on hydrocarbon-derived fuels and mitigate pollutant emissions. Proton exchange membranes are a critical material of fuel cell technologies. The potential of ionic liquid-based polymer [...] Read more.
In recent years, the quest to advance fuel cell technologies has intensified, driven by the imperative to reduce reliance on hydrocarbon-derived fuels and mitigate pollutant emissions. Proton exchange membranes are a critical material of fuel cell technologies. The potential of ionic liquid-based polymer inclusion membranes or ionogels for proton exchange membrane fuel cells (PEMFCs) has recently appeared. Thermal stability, SEM-EDX characterization, NMR and IR characterization, thermogravimetric analysis, ion exchange capacity, and water uptake are key properties of these membranes which need to be investigated. In this work, ionogel based on quaternary ammonium salts, such as [N8,8,8,1+][Cl], [N8,8,8,1+][Br], and [N8-10,8-10,8-10,1+][Cl] in various compositions with poly(vinyl chloride) are extensively studied and characterized based on those key properties. The best properties were obtained when a quaternary ammonium cation was combined with a bromide anion. Finally, ionogels are tested in microbial fuel cells. Microbial fuel cells based on the ionogel reach a maximum of 147 mW/m2, which represents 55% of the reference membrane (Nafion 212). These results indicate that we still have the possibility of improvement through the appropriate selection of the cation and anion of the ionic liquid. Overall, the promise of ionogel membranes as a viable alternative in fuel cell applications has been demonstrated. Full article
(This article belongs to the Special Issue Synthetic, Natural and Hybrid Gels Intended for Various Applications)
Show Figures

Figure 1

13 pages, 1237 KiB  
Article
Long-Term Follow-Up after Laser-Assisted Pulmonary Metastasectomy Shows Complete Lung Function Recovery
by Daniel Baum, Axel Rolle, Dirk Koschel, Lysann Rostock, Rahel Decker, Monika Sombati, Florian Öhme and Till Plönes
Cancers 2024, 16(9), 1762; https://doi.org/10.3390/cancers16091762 (registering DOI) - 01 May 2024
Abstract
Preserving maximum lung function is a fundamental goal of parenchymal-sparing pulmonary laser surgery. Long-term studies for follow-up of lung function after pulmonary laser metastasectomy are lacking. However, a sufficient postoperative lung function is essential for quality of life and reduces potential postoperative complications. [...] Read more.
Preserving maximum lung function is a fundamental goal of parenchymal-sparing pulmonary laser surgery. Long-term studies for follow-up of lung function after pulmonary laser metastasectomy are lacking. However, a sufficient postoperative lung function is essential for quality of life and reduces potential postoperative complications. In this study, we investigate the extent of loss in lung function following pulmonary laser resection after three, six, and twelve months. We conducted a retrospective analysis using a prospective database of 4595 patients, focusing on 126 patients who underwent unilateral pulmonary laser resection for lung metastases from 1996 to 2022 using a 1318 nm Nd:YAG laser or a high-power pure diode laser. Results show that from these patients, a median of three pulmonary nodules were removed, with 75% presenting central lung lesions and 25% peripheral lesions. The median preoperative FEV1 was 98% of the predicted value, decreasing to 71% postoperatively but improving to 90% after three months, 93% after six months, and 96% after twelve months. Statistical analysis using the Friedman test indicated no significant difference in FEV1 between preoperative levels and those at six and twelve months post-surgery. The findings confirm that pulmonary laser surgery effectively preserves lung function over time, with patients generally regaining their preoperative lung function within a year, regardless of the metastases’ location. Full article
Show Figures

Figure 1

16 pages, 472 KiB  
Article
Resilient Integrated Control for AIOT Systems under DoS Attacks and Packet Loss
by Xiaoya Cao, Wenting Wang, Zhenya Chen, Xin Wang and Ming Yang
Electronics 2024, 13(9), 1737; https://doi.org/10.3390/electronics13091737 (registering DOI) - 01 May 2024
Abstract
This paper addresses bandwidth limitations resulting from Denial-of-Service (DoS) attacks on Artificial Intelligence of Things (AIOT) systems, with a specific focus on adverse network conditions. First, to mitigate the impact of DoS attacks on system bandwidth, a novel model predictive control combined with [...] Read more.
This paper addresses bandwidth limitations resulting from Denial-of-Service (DoS) attacks on Artificial Intelligence of Things (AIOT) systems, with a specific focus on adverse network conditions. First, to mitigate the impact of DoS attacks on system bandwidth, a novel model predictive control combined with a dynamic time-varying quantization interval adjustment technique is designed for the encoder–decoder architecture of AIOT systems. Second, the network state is modeled to represent a Markov chain under suboptimal network conditions. Furthermore, to guarantee the stability of AIOT systems under random packet loss, a Kalman filter algorithm is applied to precisely estimate the system state. By leveraging the Lyapunov stability theory, the maximum tolerable probability of random packet loss is determined, thereby enhancing the system’s resilient operation. Simulation results validate the effectiveness of the proposed method in dealing with DoS attacks and adverse network conditions. Full article
Show Figures

Figure 1

11 pages, 8746 KiB  
Article
Group Control of Photo-Responsive Colloidal Motors with a Structured Light Field
by Dianyang Li, Huan Wei, Hui Fang and Yongxiang Gao
Photonics 2024, 11(5), 421; https://doi.org/10.3390/photonics11050421 (registering DOI) - 01 May 2024
Abstract
Using structured light to drive colloidal motors, due to its advantages of remote manipulation, energy tunability, programmability, and the controllability of spatiotemporal distribution, has been attracting much attention in the fields of targeted drug delivery, environmental control, chemical agent detection, and smart device [...] Read more.
Using structured light to drive colloidal motors, due to its advantages of remote manipulation, energy tunability, programmability, and the controllability of spatiotemporal distribution, has been attracting much attention in the fields of targeted drug delivery, environmental control, chemical agent detection, and smart device design. Here, we focus on studying the group control of colloidal motors made from a photo-responsive organic polymer molecule NO-COP (N,O-Covalent organic polymer). These colloidal motors mainly respond to light intensity patterns. Considering its merits of fast refreshing speed, good programmability, and high-power threshold, we chose a digital micromirror device (DMD) to modulate the structured light field shining on the sample. It was found that under ultraviolet or green light modulation, such colloidal motors exhibit various group behaviors including group spreading, group patterning, and group migration. A qualitative interpretation is also provided for these observations. Full article
(This article belongs to the Special Issue Emerging Topics in Structured Light)
Show Figures

Figure 1

22 pages, 16578 KiB  
Article
YOLOv8-RMDA: Lightweight YOLOv8 Network for Early Detection of Small Target Diseases in Tea
by Rong Ye, Guoqi Shao, Yun He, Quan Gao and Tong Li
Sensors 2024, 24(9), 2896; https://doi.org/10.3390/s24092896 (registering DOI) - 01 May 2024
Abstract
In order to efficiently identify early tea diseases, an improved YOLOv8 lesion detection method is proposed to address the challenges posed by the complex background of tea diseases, difficulty in detecting small lesions, and low recognition rate of similar phenotypic symptoms. This method [...] Read more.
In order to efficiently identify early tea diseases, an improved YOLOv8 lesion detection method is proposed to address the challenges posed by the complex background of tea diseases, difficulty in detecting small lesions, and low recognition rate of similar phenotypic symptoms. This method focuses on detecting tea leaf blight, tea white spot, tea sooty leaf disease, and tea ring spot as the research objects. This paper presents an enhancement to the YOLOv8 network framework by introducing the Receptive Field Concentration-Based Attention Module (RFCBAM) into the backbone network to replace C2f, thereby improving feature extraction capabilities. Additionally, a mixed pooling module (Mixed Pooling SPPF, MixSPPF) is proposed to enhance information blending between features at different levels. In the neck network, the RepGFPN module replaces the C2f module to further enhance feature extraction. The Dynamic Head module is embedded in the detection head part, applying multiple attention mechanisms to improve multi-scale spatial location and multi-task perception capabilities. The inner-IoU loss function is used to replace the original CIoU, improving learning ability for small lesion samples. Furthermore, the AKConv block replaces the traditional convolution Conv block to allow for the arbitrary sampling of targets of various sizes, reducing model parameters and enhancing disease detection. the experimental results using a self-built dataset demonstrate that the enhanced YOLOv8-RMDA exhibits superior detection capabilities in detecting small target disease areas, achieving an average accuracy of 93.04% in identifying early tea lesions. When compared to Faster R-CNN, MobileNetV2, and SSD, the average precision rates of YOLOv5, YOLOv7, and YOLOv8 have shown improvements of 20.41%, 17.92%, 12.18%, 12.18%, 10.85%, 7.32%, and 5.97%, respectively. Additionally, the recall rate (R) has increased by 15.25% compared to the lowest-performing Faster R-CNN model and by 8.15% compared to the top-performing YOLOv8 model. With an FPS of 132, YOLOv8-RMDA meets the requirements for real-time detection, enabling the swift and accurate identification of early tea diseases. This advancement presents a valuable approach for enhancing the ecological tea industry in Yunnan, ensuring its healthy development. Full article
Show Figures

Figure 1

19 pages, 1333 KiB  
Article
Water Deficit Severity during the Preceding Year Determines Plant Tolerance to Subsequent Year Drought Stress Challenges: A Case Study in Damask Rose
by Fatemeh Aalam, Abdolhossein Rezaei Nejad, Sadegh Mousavi-Fard, Mohammadreza Raji, Nikolaos Nikoloudakis, Eleni Goumenaki and Dimitrios Fanourakis
Horticulturae 2024, 10(5), 462; https://doi.org/10.3390/horticulturae10050462 (registering DOI) - 01 May 2024
Abstract
Damask rose is an important essential oil crop. In the present study, plants were subjected to three different water deficit levels (70, 40, and 10% available water content) for two periods (June–October). Plant phenology, growth, essential oil yield, gas exchange features, membrane stability [...] Read more.
Damask rose is an important essential oil crop. In the present study, plants were subjected to three different water deficit levels (70, 40, and 10% available water content) for two periods (June–October). Plant phenology, growth, essential oil yield, gas exchange features, membrane stability and major antioxidant defense elements were monitored across two years. Soil water deficit was related to quicker completion of the growth cycle (up to 7.4 d), and smaller plants (up to 49.7%). Under these conditions, biomass accumulation was jointly constrained by decreased leaf area, chlorophyll content, CO2 intake, and photosynthetic efficiency (up to 82.8, 56.9, 27.3 and 68.2%, respectively). The decrease in CO2 intake was driven by a reduction in stomatal conductance (up to 41.2%), while the decrease in leaf area was mediated by reductions in both number of leaves, and individual leaf area (up to 54.3, and 64.0%, respectively). Although the reactive oxygen species scavenging system was activated (i.e., proline accumulation, and enhanced activity of three antioxidant enzymes) by water deficit, oxidative stress symptoms were still apparent. These effects were amplified, as soil water deficit became more intense. Notably, the adverse effects of water deficit were generally less pronounced when plants had been exposed to water severity during the preceding year. Therefore, exposure to water deficit elicited plant tolerance to future exposure. This phenotypic response was further dependent on the water deficit level. At more intense soil water deficit across the preceding year, plants were less vulnerable to water deficit during the subsequent one. Therefore, our results reveal a direct link between water deficit severity and plant tolerance to future water stress challenges, providing for the first time evidence for stress memory in damask rose. Full article
Show Figures

Figure 1

15 pages, 1488 KiB  
Article
Effects of Electron Beam Radiation on the Phenolic Composition and Bioactive Properties of Olive Pomace Extracts
by Joana Madureira, Inês Gonçalves, Jéssica Cardoso, Maria Inês Dias, Pedro M. P. Santos, Fernanda M. A. Margaça, Celestino Santos-Buelga, Lillian Barros and Sandra Cabo Verde
Antioxidants 2024, 13(5), 558; https://doi.org/10.3390/antiox13050558 (registering DOI) - 01 May 2024
Abstract
Olive pomace is an agro-industrial waste product generated from the olive oil industry and constituted by bioactive compounds with potential applications in several industrial sectors. The purpose of this work was to evaluate the effects of electron beam (e-beam) radiation on olive pomace, [...] Read more.
Olive pomace is an agro-industrial waste product generated from the olive oil industry and constituted by bioactive compounds with potential applications in several industrial sectors. The purpose of this work was to evaluate the effects of electron beam (e-beam) radiation on olive pomace, specifically on phenolic compounds (by HPLC–DAD–ESI/MS) and the bioactive properties (antioxidant, antiproliferative, and antimicrobial activities) of crude olive pomace (COP) and extracted olive pomace (EOP) extracts. The amount of total flavonoid content and the reducing power of COP extracts were higher than those obtained for EOP extracts. The results suggested that e-beam radiation at 6 kGy increased both total phenolic and total flavonoid contents as well as the reducing power of COP extracts, due to the higher extractability (>2.5-fold) of phenolic compounds from these samples, while decreasing the scavenging activity of extracts. The extracts of both olive pomaces showed antibacterial potential, and COP extracts at 400 µg/mL also presented antiproliferative activity against A549, Caco-2, 293T, and RAW264.7 cell lines, with both properties preserved with the e-beam treatment. All in all, e-beam radiation at 6 kGy appears to be a promising technology to valorize the pollutant wastes of the olive oil industry through enhancing phenolic extractability and bioactive properties, and, furthermore, to contribute to the environmental and economical sustainability of the olive oil industry. Full article
(This article belongs to the Section Extraction and Industrial Applications of Antioxidants)
Show Figures

Graphical abstract

11 pages, 240 KiB  
Article
Difficult-to-Engage Patients with Severe Mental Illness in Rural Community Settings: Results of the Greek Hybrid Assertive Community Treatment Model of Mental Healthcare
by Fotini Tsoli, Ioanna Athina Botsari, Agnes Tsianeli, Nefeli Menti, Panagiota Kontoudi and Vaios Peritogiannis
J. Clin. Med. 2024, 13(9), 2660; https://doi.org/10.3390/jcm13092660 (registering DOI) - 01 May 2024
Abstract
Background: Modified Assertive Community Treatment (ACT) in rural settings may be effective in the care of patients with severe mental illness (SMI) that are difficult to engage in community care. The objective of the present study was to explore the impact of [...] Read more.
Background: Modified Assertive Community Treatment (ACT) in rural settings may be effective in the care of patients with severe mental illness (SMI) that are difficult to engage in community care. The objective of the present study was to explore the impact of the care by a hybrid ACT team on SMI patients’ hospitalizations, length of hospital stay, symptomatology and functioning in a rural community treatment setting in Greece. Methods: The hybrid ACT team is an expansion of the services of the well-established generic Mobile Mental Health Unit in a rural area of Northwest Greece, and delivers home-based care for patients with SMI. This was a 3-year prospective, mirror image, pre-post observational study. Patients’ symptomatology, functioning and general outcome were measured with the use of the Brief Psychiatric Rating Scale (BPRS), the Global Assessment of Functioning Scale (GAF), and the Health of the Nation Outcome Scale (HοNOS). Results: The mean age of the 23 enrolled patients was 52.4 years and the mean age of disease onset was 23.5 years, with a mean number of hospitalizations 10.74. Over the 16-month follow-up patients’ hospitalizations, both voluntary and involuntary, had been significantly reduced by almost 80%. Length of hospital stay had been significantly reduced by 87%, whereas patients’ functioning and symptomatology had been significantly improved, by 17% and 14.5%, respectively. Conclusions: The model of hybrid ACT in rural areas in Greece may be effective in the treatment of difficult-to-engage patients with SMI and may improve patients’ outcomes. Full article
(This article belongs to the Section Mental Health)
29 pages, 5448 KiB  
Article
Hybrid Anomaly Detection in Time Series by Combining Kalman Filters and Machine Learning Models
by Andreas Puder, Moritz Zink, Luca Seidel and Eric Sax
Sensors 2024, 24(9), 2895; https://doi.org/10.3390/s24092895 (registering DOI) - 01 May 2024
Abstract
Due to connectivity and automation trends, the medical device industry is experiencing increased demand for safety and security mechanisms. Anomaly detection has proven to be a valuable approach for ensuring safety and security in other industries, such as automotive or IT. Medical devices [...] Read more.
Due to connectivity and automation trends, the medical device industry is experiencing increased demand for safety and security mechanisms. Anomaly detection has proven to be a valuable approach for ensuring safety and security in other industries, such as automotive or IT. Medical devices must operate across a wide range of values due to variations in patient anthropometric data, making anomaly detection based on a simple threshold for signal deviations impractical. For example, surgical robots directly contacting the patient’s tissue require precise sensor data. However, since the deformation of the patient’s body during interaction or movement is highly dependent on body mass, it is impossible to define a single threshold for implausible sensor data that applies to all patients. This also involves statistical methods, such as Z-score, that consider standard deviation. Even pure machine learning algorithms cannot be expected to provide the required accuracy simply due to the lack of available training data. This paper proposes using hybrid filters by combining dynamic system models based on expert knowledge and data-based models for anomaly detection in an operating room scenario. This approach can improve detection performance and explainability while reducing the computing resources needed on embedded devices, enabling a distributed approach to anomaly detection. Full article
(This article belongs to the Special Issue Time Series Analysis in Sensor Fusion)
Show Figures

Figure 1

17 pages, 3346 KiB  
Article
Baseline Skin Microbiota of the Leatherback Sea Turtle
by Samantha G. Kuschke, Jeanette Wyneken and Debra Miller
Microorganisms 2024, 12(5), 925; https://doi.org/10.3390/microorganisms12050925 (registering DOI) - 01 May 2024
Abstract
The integumentary system of the leatherback sea turtle (Dermochelys coriacea) is the most visible and defining difference of the species, with its smooth and waxy carapace and finely scaled skin, distinguishing it from the other six sea turtle species. The skin [...] Read more.
The integumentary system of the leatherback sea turtle (Dermochelys coriacea) is the most visible and defining difference of the species, with its smooth and waxy carapace and finely scaled skin, distinguishing it from the other six sea turtle species. The skin is the body’s largest organ and serves as a primary defense against the outside world and is thus essential to health. To date, we have begun to understand that the microorganisms located on the skin aid in these functions. However, many host–microbial interactions are not yet fully defined or understood. Prior to uncovering these crucial host–microbial interactions, we must first understand the communities of microorganisms present and how they differ through life-stage classes and across the body. Here, we present a comprehensive bacterial microbial profile on the skin of leatherbacks. Using next-generation sequencing (NGS), we identified the major groups of bacteria on the skin of neonates at emergence, neonates at 3–4 weeks of age (i.e., post-hatchlings), and nesting females. These data show that the predominant bacteria on the skin of the leatherback are different at each life-stage class sampled. This suggests that there is a shift in the microbial communities of the skin associated with life-stage class or even possibly age. We also found that different sample locations on the nesting female (i.e., carapace and front appendages = flipper) have significantly different communities of bacteria present. This is likely due to differences in the microhabitats of these anatomic locations and future studies should explore if this variation also holds true for neonates. These data define baseline skin microbiota on the leatherback and can serve as a foundation for additional work to broaden our understanding of the leatherbacks’ host–microbial interactions, the impacts of environmental changes or stressors over time, and even the pathogenicity of disease processes. Full article
Show Figures

Figure 1

12 pages, 248 KiB  
Article
Risk Factors for Lymph Node Metastasis in a Western Series of Patients with Distal Early Gastric Cancer
by Maria Michela Chiarello, Serafino Vanella, Pietro Fransvea, Valentina Bianchi, Valeria Fico, Anna Crocco, Giuseppe Tropeano and Giuseppe Brisinda
J. Clin. Med. 2024, 13(9), 2659; https://doi.org/10.3390/jcm13092659 (registering DOI) - 01 May 2024
Abstract
Background: Assessment of potential lymph node metastasis is mandatory in the appropriate treatment of early gastric cancers. This study analysed factors associated with lymph node metastasis to identify differences between node-negative and node-positive patients and between T1a and T1b cancers. Methods: The clinicopathological [...] Read more.
Background: Assessment of potential lymph node metastasis is mandatory in the appropriate treatment of early gastric cancers. This study analysed factors associated with lymph node metastasis to identify differences between node-negative and node-positive patients and between T1a and T1b cancers. Methods: The clinicopathological features of 129 early gastric cancer patients who had undergone radical gastrectomy were analysed to identify predictive factors for lymph node metastasis. Results: Lymph node metastasis was detected in 76 (59.0%) patients. Node-positive patients were younger (58.1 ± 11.3 years) than those without metastasis (61.9 ± 9.6 years, p = 0.02). Greater tumour sizes were observed in patients with lymph node metastasis (3.6 ± 1.0 cm) compared to node-negative patients (1.9 ± 0.5 cm, p = 0.00001). Depressed form, ulceration, diffuse histological type, and undifferentiated lesions were more frequent in node-positive patients than in the node-negative group. Tumour size > 3.0 cm showed a correlation with lymph node metastasis in both T1a (p = 0.0001) and T1b (p = 0.006) cancer. The male sex (p = 0.006) had a significant correlation with lymph node metastasis in T1a cancer. Depressed appearance (p = 0.02), ulceration (p = 0.03), differentiation (p = 0.0001), diffuse type (p = 0.0002), and lower third location (p = 0.005) were associated with lymph node metastasis in T1b cancer. Conclusions: Tumour size > 3 cm, undifferentiated lesions, ulceration, diffuse type, lower third location, and submucosal invasion are risk factors for lymph node metastasis in early gastric cancer. Full article
(This article belongs to the Section Oncology)
13 pages, 3814 KiB  
Article
Graphene Oxide-Based Nanocomposites for Stereolithography (SLA) 3D Printing: Comprehensive Mechanical Characterization under Combined Loading Modes
by Guilherme Elias Saltarelli Garcia, Rogerio Ramos de Sousa Junior, Julia Rocha Gouveia and Demetrio Jackson dos Santos
Polymers 2024, 16(9), 1261; https://doi.org/10.3390/polym16091261 (registering DOI) - 01 May 2024
Abstract
Additive manufacturing, particularly Stereolithography (SLA), has gained widespread attention thanks to its ability to produce intricate parts with high precision and customization capacity. Nevertheless, the inherent low mechanical properties of SLA-printed parts limit their use in high-value applications. One approach to enhance these [...] Read more.
Additive manufacturing, particularly Stereolithography (SLA), has gained widespread attention thanks to its ability to produce intricate parts with high precision and customization capacity. Nevertheless, the inherent low mechanical properties of SLA-printed parts limit their use in high-value applications. One approach to enhance these properties involves the incorporation of nanomaterials, with graphene oxide (GO) being a widely studied option. However, the characterization of SLA-printed GO nanocomposites under various stress loadings remains underexplored in the literature, despite being essential for evaluating their mechanical performance in applications. This study aimed to address this gap by synthesizing GO and incorporating it into a commercial SLA resin at different concentrations (0.2, 0.5, and 1 wt.%). Printed specimens were subjected to pure tension, combined stresses, and pure shear stress modes for comprehensive mechanical characterization. Additionally, failure criteria were provided using the Drucker-–Prager model. Full article
Show Figures

Figure 1

21 pages, 5501 KiB  
Article
Optimizing Infragravity Wave Attenuation to Improve Coral Reef Restoration Design for Coastal Defense
by Benjamin K. Norris, Curt D. Storlazzi, Andrew W. M. Pomeroy and Borja G. Reguero
J. Mar. Sci. Eng. 2024, 12(5), 768; https://doi.org/10.3390/jmse12050768 (registering DOI) - 01 May 2024
Abstract
Coral reefs are effective natural flood barriers that protect adjacent coastal communities. As the need to adapt to rising sea levels, storms, and environmental changes increases, reef restoration may be one of the best tools available to mitigate coastal flooding along tropical coastlines, [...] Read more.
Coral reefs are effective natural flood barriers that protect adjacent coastal communities. As the need to adapt to rising sea levels, storms, and environmental changes increases, reef restoration may be one of the best tools available to mitigate coastal flooding along tropical coastlines, now and in the future. Reefs act as a barrier to incoming short-wave energy but can amplify low-frequency infragravity waves that, in turn, drive coastal flooding along low-lying tropical coastlines. Here, we investigate whether the spacing of reef restoration elements can be optimized to maximize infragravity wave energy dissipation while minimizing the number of elements—a key factor in the cost of a restoration project. With this goal, we model the hydrodynamics of infragravity wave dissipation over a coral restoration or artificial reef, represented by a canopy of idealized hemispherical roughness elements, using a three-dimensional Navier–Stokes equations solver (OpenFOAM). The results demonstrate that denser canopies of restoration elements produce greater wave dissipation under larger waves with longer periods. Wave dissipation is also frequency-dependent: dense canopies remove wave energy at the predominant wave frequency, whereas sparse canopies remove energy at higher frequencies, and hence are less efficient. We also identify an inflection point in the canopy density–energy dissipation curve that balances optimal energy losses with a minimum number of canopy elements. Through this work, we show that there are an ideal number of restoration elements per across-shore meter of coral reef flat that can be installed to dissipate infragravity wave energy for given incident heights and periods. These results have implications for designing coral reef restoration projects on reef flats that are effective both from a coastal defense and costing standpoint. Full article
(This article belongs to the Special Issue Coastal Engineering: Sustainability and New Technologies, 2nd Edition)
Show Figures

Figure 1

18 pages, 6698 KiB  
Article
Investigating Training Datasets of Real and Synthetic Images for Outdoor Swimmer Localisation with YOLO
by Mohsen Khan Mohammadi, Toni Schneidereit, Ashkan Mansouri Yarahmadi and Michael Breuß
AI 2024, 5(2), 576-593; https://doi.org/10.3390/ai5020030 (registering DOI) - 01 May 2024
Abstract
In this study, we developed and explored a methodical image augmentation technique for swimmer localisation in northern German outdoor lake environments. When it comes to enhancing swimmer safety, a main issue we have to deal with is the lack of real-world training data [...] Read more.
In this study, we developed and explored a methodical image augmentation technique for swimmer localisation in northern German outdoor lake environments. When it comes to enhancing swimmer safety, a main issue we have to deal with is the lack of real-world training data of such outdoor environments. Natural lighting changes, dynamic water textures, and barely visible swimming persons are key issues to address. We account for these difficulties by adopting an effective background removal technique with available training data. This allows us to edit swimmers into natural environment backgrounds for use in subsequent image augmentation. We created 17 training datasets with real images, synthetic images, and a mixture of both to investigate different aspects and characteristics of the proposed approach. The datasets were used to train YOLO architectures for possible future applications in real-time detection. The trained frameworks were then tested and evaluated on outdoor environment imagery acquired using a safety drone to investigate and confirm their usefulness for outdoor swimmer localisation. Full article
Show Figures

Figure 1

16 pages, 6831 KiB  
Article
Experimental Investigations on the Cavitation Bubble Dynamics near the Boundary of a Narrow Gap
by Zhifeng Wang, Yihao Yang, Zitong Guo, Qingyi Hu, Xiaoyu Wang, Yuning Zhang, Jingtao Li and Yuning Zhang
Symmetry 2024, 16(5), 541; https://doi.org/10.3390/sym16050541 (registering DOI) - 01 May 2024
Abstract
Cavitation bubbles near narrow gaps widely exist within microfluidic control devices. In the present paper, a laser-induced cavitation bubble is arranged in a narrow gap composed of two parallel plates. The inception position of the bubble is set to be at the same [...] Read more.
Cavitation bubbles near narrow gaps widely exist within microfluidic control devices. In the present paper, a laser-induced cavitation bubble is arranged in a narrow gap composed of two parallel plates. The inception position of the bubble is set to be at the same distance from the two plates so that the dynamic behaviors of the bubble are symmetrical. The collapse and rebound dynamics of the bubble near the boundary of a narrow gap are investigated through high-speed photography. The bubble behaviors (e.g., shape deformation, translational movement, and jet characteristics) are analyzed while considering the influence of the dimensionless distance between the bubble and the boundary and the dimensionless gap width. The principal findings include the following: (1) When the dimensionless distance is small, a violent jet towards the gap is generated during the bubble collapse stage, along with a weak counter-jet towards the boundary appearing during the rebound stage. (2) As the dimensionless distance increases, the translational distance of the bubble during the collapse stage initially decreases, then increases, and finally decreases to zero. (3) Within the parameter range considered in this paper, the dimensionless width mainly affects the expansion degree and movement direction of the bubble cloud during its rebound and subsequent stages. The above research findings can provide experimental support for bubble-driven flow control, pumping, and liquid mixing in microfluidic channels. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop