The 2023 MDPI Annual Report has
been released!
 
27 pages, 12972 KiB  
Article
Characteristics and Genetic Mechanism of Granite Weathering Crust of Songnan Low Uplift, Qiongdongnan Basin, South China Sea
by Zhiyu Li, Jianhua Guo and Shiqing Wu
Minerals 2024, 14(5), 512; https://doi.org/10.3390/min14050512 (registering DOI) - 14 May 2024
Abstract
Recently, a large-scale gas reservoir was discovered in granitic buried hills of the Songnan Low Uplift in the Qiongdongnan Basin. However, the strong heterogeneity of granite reservoirs limits further exploration and evaluation. Based on observations of sixty core samples and sixty thin sections, [...] Read more.
Recently, a large-scale gas reservoir was discovered in granitic buried hills of the Songnan Low Uplift in the Qiongdongnan Basin. However, the strong heterogeneity of granite reservoirs limits further exploration and evaluation. Based on observations of sixty core samples and sixty thin sections, mineral composition, zircon dating, apatite fission tracks, physical properties, image logs, outcrop surveys and seismic interpretations, the characteristics of granite weathering crust of the Songnan Low Uplift are analyzed, and its controlling factors and evolution process are evaluated. The results show that weathered granite in the study area can be divided into several zones, from top to bottom: eluvium–slope zone, sandy zone, weathered fracture zone and horizontal undercurrent vuggy zone. The reservoirs in the eluvium–slope zone are dominated by microfissures and intergranular dissolution pores and have an average porosity of 4.68% and permeability of 2.34 md; the reservoirs in the sandy zone are composed of intergranular and intragranular dissolution pores and have an average porosity of 11.46% and permeability of 4.99 md; the reservoirs in the weathered fracture zone consist of various fractures and have an average porosity of 3.91% and permeability of 2.5 md; the reservoirs in the horizontal undercurrent vuggy zone are subhorizontal fractures and vugs and have an average porosity of 2.7% and permeability of 0.23 md. The development of granite reservoirs is jointly influenced by petrology and minerals, long-term exposure in a warm humid paleoclimate, faults, diverse topographies and shallow buried depth. Based on the above, our study establishes a development model of weathering crust and suggests that only the gentle slope and platform remain strongly weathered zones. After undergoing a complex evolution process of formation–destruction/denudation–regeneration–preservation, the current weathering crust of the Songnan Low Uplift is finally established. The results of this study have important theoretical and application value for the hydrocarbon exploration of buried hills in the Qiongdongnan Basin and provide a reference example for other granite reservoirs worldwide. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

21 pages, 4429 KiB  
Article
Water Treatment with Clean Technologies Using Moringa oleifera Seeds in Alternative Low-Cost Clarification Units
by Jéssica R. Silva and Danieli S. Oliveira
Clean Technol. 2024, 6(2), 625-645; https://doi.org/10.3390/cleantechnol6020033 (registering DOI) - 14 May 2024
Abstract
Water is an essential element for human survival, yet many individuals still lack access to treated water to meet their basic needs. To mitigate this situation, alternative water treatment technologies that are accessible and easy to handle are being explored. Among these, the [...] Read more.
Water is an essential element for human survival, yet many individuals still lack access to treated water to meet their basic needs. To mitigate this situation, alternative water treatment technologies that are accessible and easy to handle are being explored. Among these, the use of Moringa oleifera seeds as a natural coagulant and the application of a helically coiled tube as a flocculation unit have been studied. In this context, this study aimed to evaluate the turbidity removal efficiency using two different coagulants (Moringa oleifera and aluminum sulfate) in an alternative water clarification system. The system consists of a helically coiled tube flocculator (HCTF) coupled with a conventional decantation unit. It was observed that the coagulant solution from shelled seeds required a lower dosage to achieve efficiencies above 90% compared to the coagulant solution from seeds with shells. The optimal dosage was 30 mL/L of the coagulant solution from shelled seeds. This dosage resulted in high turbidity-removal efficiencies, ranging from 92% to 100%. The processing method of the seeds that yielded the highest efficiency in turbidity removal was the mortar and pestle, as opposed to a blender. The optimal configuration of the alternative water clarification system comprised using the lower HCTF in a horizontal orientation. The use of the alternative water clarification system, along with the natural coagulant, proves to be a promising alternative clean technology for water clarification in locations without access to conventional treatment, being efficient in turbidity removal. Full article
Show Figures

Figure 1

14 pages, 3676 KiB  
Article
Fluoride-Ion-Responsive Sol–Gel Transition in anL-Cysteine/AgNO3 System: Self-Assembly Peculiarities and Anticancer Activity
by Dmitry V. Vishnevetskii, Yana V. Andrianova, Elizaveta E. Polyakova, Alexandra I. Ivanova and Arif R. Mekhtiev
Gels 2024, 10(5), 332; https://doi.org/10.3390/gels10050332 (registering DOI) - 14 May 2024
Abstract
Supramolecular hydrogels based on low-molecular-weight compounds are a unique class of so-called “soft” materials, formed by weak non-covalent interactions between precursors at their millimolar concentrations. Due to the variety of structures that can be formed using different low-molecular-weight gelators, they are widely used [...] Read more.
Supramolecular hydrogels based on low-molecular-weight compounds are a unique class of so-called “soft” materials, formed by weak non-covalent interactions between precursors at their millimolar concentrations. Due to the variety of structures that can be formed using different low-molecular-weight gelators, they are widely used in various fields of technology and medicine. In this study, we report for the first time an unusual self-assembly process of mixing a hydrosol obtained from L-cysteine and silver nitrate (cysteine–silver sol—CSS) with sodium halides. Modern instrumental techniques such as viscosimetry, UV spectroscopy, dynamic light scattering, zeta potential measurements, SEM and EDS identified that adding fluoride anions to CSS is able to form stable hydrogels of a thixotropic nature, while Cl, Br and I lead to precipitation. The self-assembly process proceeds using a narrow concentration range of F. An increase in the fluoride anion content in the system leads to a change in the gel network morphology from elongated structures to spherical ones. This fact is reflected in a decrease in the gel viscosity and a number of gel–sol–gel transition cycles. The mechanism of F’s interaction with hydrosol includes the condensation of anions on the positive surface of the CSS nanoparticles, their binding via electrostatic forces and the formation of a resulting gel carcass. In vitro analysis showed that the hydrogels suppressed human squamous carcinoma cells at a micromolar sample concentration. The obtained soft gels could have potential applications against cutaneous malignancy and as carriers for fluoride anion and other bioactive substance delivery. Full article
(This article belongs to the Special Issue Synthesis and Applications of Hydrogels (2nd Edition))
Show Figures

Graphical abstract

24 pages, 6582 KiB  
Review
Human and Murine Toll-like Receptor-Driven Disease in Systemic Lupus Erythematosus
by Susannah von Hofsten, Kristin Andreassen Fenton and Hege Lynum Pedersen
Int. J. Mol. Sci. 2024, 25(10), 5351; https://doi.org/10.3390/ijms25105351 (registering DOI) - 14 May 2024
Abstract
The pathogenesis of systemic lupus erythematosus (SLE) is linked to the differential roles of toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. TLR7 overexpression or gene duplication, as seen with the Y-linked autoimmune accelerator (Yaa) locus or TLR7 agonist imiquimod, correlates [...] Read more.
The pathogenesis of systemic lupus erythematosus (SLE) is linked to the differential roles of toll-like receptors (TLRs), particularly TLR7, TLR8, and TLR9. TLR7 overexpression or gene duplication, as seen with the Y-linked autoimmune accelerator (Yaa) locus or TLR7 agonist imiquimod, correlates with increased SLE severity, and specific TLR7 polymorphisms and gain-of-function variants are associated with enhanced SLE susceptibility and severity. In addition, the X-chromosome location of TLR7 and its escape from X-chromosome inactivation provide a genetic basis for female predominance in SLE. The absence of TLR8 and TLR9 have been shown to exacerbate the detrimental effects of TLR7, leading to upregulated TLR7 activity and increased disease severity in mouse models of SLE. The regulatory functions of TLR8 and TLR9 have been proposed to involve competition for the endosomal trafficking chaperone UNC93B1. However, recent evidence implies more direct, regulatory functions of TLR9 on TLR7 activity. The association between age-associated B cells (ABCs) and autoantibody production positions these cells as potential targets for treatment in SLE, but the lack of specific markers necessitates further research for precise therapeutic intervention. Therapeutically, targeting TLRs is a promising strategy for SLE treatment, with drugs like hydroxychloroquine already in clinical use. Full article
(This article belongs to the Special Issue Immune Mechanisms and Biomarkers in Systemic Lupus Erythematosus)
Show Figures

Figure 1

31 pages, 10270 KiB  
Article
Study and Modelling of the Impact of June 2015 Geomagnetic Storms on the Brazilian Ionosphere
by Oladayo O. Afolabi, Claudia Maria Nicoli Candido, Fabio Becker-Guedes and Christine Amory-Mazaudier
Atmosphere 2024, 15(5), 597; https://doi.org/10.3390/atmos15050597 (registering DOI) - 14 May 2024
Abstract
This study investigated the impact of the June 2015 geomagnetic storms on the Brazilian equatorial and low-latitude ionosphere by analyzing various data sources, including solar wind parameters from the advanced compositional explorer satellite (ACE), global positioning satellite vertical total electron content (GPS-VTEC [...] Read more.
This study investigated the impact of the June 2015 geomagnetic storms on the Brazilian equatorial and low-latitude ionosphere by analyzing various data sources, including solar wind parameters from the advanced compositional explorer satellite (ACE), global positioning satellite vertical total electron content (GPS-VTEC), geomagnetic data, and validation of the SAMI2 model-VTEC with GPS-VTEC. The effect of geomagnetic disturbances on the Brazilian longitudinal sector was examined by applying multiresolution analysis (MRA) of the maximum overlap discrete wavelet transform (MODWT) to isolate the diurnal component of the disturbance dynamo (Ddyn), DP2 current fluctuations from the ionospheric electric current disturbance (Diono), and semblance cross-correlation wavelet analysis for local phase comparison between the Sq and Diono currents. Our findings revealed that the significant fluctuations in DP2 at the Brazilian equatorial stations (Belem, dip lat: −0.47° and Alta Floresta, dip lat: −3.75°) were influenced by IMF Bz oscillations; the equatorial electrojet also fluctuated in tandem with the DP2 currents, and dayside reconnection generated the field-aligned current that drove the DP2 current system. The short-lived positive ionospheric storm during the main phase on 22 June in the Southern Hemisphere in the Brazilian sector was caused by the interplay between the eastward prompt penetration of the magnetospheric convection electric field and the westward disturbance dynamo electric field. The negative ionospheric storms that occurred during the recovery phase from 23 to 29 June 2015, were attributed to the westward disturbance dynamo electric field, which caused the downward E × B drift of the plasma to a lower height with a high recombination rate. The comparison between the SAMI2 model-VTEC and GPS-VTEC indicates that the SAMI2 model underestimated the VTEC within magnetic latitudes of −9° to −24° in the Brazilian longitudinal sector from 6 to 17 June 2015. However, it demonstrated satisfactory agreement with the GPS-VTEC within magnetic latitudes of −9° to 10° from 8 to 15 June 2015. Conversely, the SAMI2 model overestimated the VTEC between ±10° magnetic latitudes from 16 to 28 June 2015. The most substantial root mean square error (RMSE) values, notably 10.30 and 5.48 TECU, were recorded on 22 and 23 June 2015, coinciding with periods of intense geomagnetic disturbance. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

16 pages, 4356 KiB  
Article
Sulfated Hydrogels as Primary Intervertebral Disc Cell Culture Systems
by Paola Bermudez-Lekerika, Katherine B. Crump, Karin Wuertz-Kozak, Christine L. Le Maitre and Benjamin Gantenbein
Gels 2024, 10(5), 330; https://doi.org/10.3390/gels10050330 (registering DOI) - 14 May 2024
Abstract
The negatively charged extracellular matrix plays a vital role in intervertebral disc tissues, providing specific cues for cell maintenance and tissue hydration. Unfortunately, suitable biomimetics for intervertebral disc regeneration are lacking. Here, sulfated alginate was investigated as a 3D culture material due to [...] Read more.
The negatively charged extracellular matrix plays a vital role in intervertebral disc tissues, providing specific cues for cell maintenance and tissue hydration. Unfortunately, suitable biomimetics for intervertebral disc regeneration are lacking. Here, sulfated alginate was investigated as a 3D culture material due to its similarity to the charged matrix of the intervertebral disc. Precursor solutions of standard alginate, or alginate with 0.1% or 0.2% degrees of sulfation, were mixed with primary human nucleus pulposus cells, cast, and cultured for 14 days. A 0.2% degree of sulfation resulted in significantly decreased cell density and viability after 7 days of culture. Furthermore, a sulfation-dependent decrease in DNA content and metabolic activity was evident after 14 days. Interestingly, no significant differences in cell density and viability were observed between surface and core regions for sulfated alginate, unlike in standard alginate, where the cell number was significantly higher in the core than in the surface region. Due to low cell numbers, phenotypic evaluation was not achieved in sulfated alginate biomaterial. Overall, standard alginate supported human NP cell growth and viability superior to sulfated alginate; however, future research on phenotypic properties is required to decipher the biological properties of sulfated alginate in intervertebral disc cells. Full article
Show Figures

Figure 1

15 pages, 648 KiB  
Article
Data-Driven ICS Network Simulation for Synthetic Data Generation
by Minseo Kim, Seungho Jeon, Jake Cho and Seonghyeon Gong
Electronics 2024, 13(10), 1920; https://doi.org/10.3390/electronics13101920 (registering DOI) - 14 May 2024
Abstract
Industrial control systems (ICSs) are integral to managing and optimizing processes in various industries, including manufacturing, power generation, and more. However, the scarcity of widely adopted ICS datasets hampers research efforts in areas like optimization and security. This scarcity arises due to the [...] Read more.
Industrial control systems (ICSs) are integral to managing and optimizing processes in various industries, including manufacturing, power generation, and more. However, the scarcity of widely adopted ICS datasets hampers research efforts in areas like optimization and security. This scarcity arises due to the substantial cost and technical expertise required to create physical ICS environments. In response to these challenges, this paper presents a groundbreaking approach to generating synthetic ICS data through a data-driven ICS network simulation. We circumvent the need for expensive hardware by recreating the entire ICS environment in software. Moreover, rather than manually replicating the control logic of ICS components, we leverage existing data to autonomously generate control logic. The core of our method involves the stochastic setting of setpoints, which introduces randomness into the generated data. Setpoints serve as target values for controlling the operation of the ICS process. This approach enables us to augment existing ICS datasets and cater to the data requirements of machine learning-based ICS intrusion detection systems and other data-driven applications. Our simulated ICS environment employs virtualized containers to mimic the behavior of real-world PLCs and SCADA systems, while control logic is deduced from publicly available ICS datasets. Setpoints are generated probabilistically to ensure data diversity. Experimental results validate the fidelity of our synthetic data, emphasizing their ability to closely replicate temporal and statistical characteristics of real-world ICS networks. In conclusion, this innovative data-driven ICS network simulation offers a cost-effective and scalable solution for generating synthetic ICS data. It empowers researchers in the field of ICS optimization and security with diverse, realistic datasets, furthering advancements in this critical domain. Future work may involve refining the simulation model and exploring additional applications for synthetic ICS data. Full article
(This article belongs to the Special Issue Applied AI-Based Platform Technology and Application, Volume II)
Show Figures

Figure 1

22 pages, 1740 KiB  
Article
Analyzing Dynamics: Lie Symmetry Approach to Bifurcation, Chaos, Multistability, and Solitons in Extended (3 + 1)-Dimensional Wave Equation
by Muhammad Bilal Riaz, Adil Jhangeer, Faisal Z. Duraihem and Jan Martinovic
Symmetry 2024, 16(5), 608; https://doi.org/10.3390/sym16050608 (registering DOI) - 14 May 2024
Abstract
The examination of new (3 + 1)-dimensional wave equations is undertaken in this study. Initially, the identification of the Lie symmetries of the model is carried out through the utilization of the Lie symmetry approach. The commutator and adjoint table of the symmetries [...] Read more.
The examination of new (3 + 1)-dimensional wave equations is undertaken in this study. Initially, the identification of the Lie symmetries of the model is carried out through the utilization of the Lie symmetry approach. The commutator and adjoint table of the symmetries are presented. Subsequently, the model under discussion is transformed into an ordinary differential equation using these symmetries. The construction of several bright, kink, and dark solitons for the suggested equation is then achieved through the utilization of the new auxiliary equation method. Subsequently, an analysis of the dynamical nature of the model is conducted, encompassing various angles such as bifurcation, chaos, and sensitivity. Bifurcation occurs at critical points within a dynamical system, accompanied by the application of an outward force, which unveils the emergence of chaotic phenomena. Two-dimensional plots, time plots, multistability, and Lyapunov exponents are presented to illustrate these chaotic behaviors. Furthermore, the sensitivity of the investigated model is executed utilizing the Runge–Kutta method. This analysis confirms that the stability of the solution is minimally affected by small changes in initial conditions. The attained outcomes show the effectiveness of the presented methods in evaluating solitons of multiple nonlinear models. Full article
(This article belongs to the Special Issue Symmetry in the Soliton Theory)
Show Figures

Figure 1

34 pages, 10124 KiB  
Article
Fuzzy Integrated Delphi-ISM-MICMAC Hybrid Multi-Criteria Approach to Optimize the Artificial Intelligence (AI) Factors Influencing Cost Management in Civil Engineering
by Hongxia Hu, Shouguo Jiang, Shankha Shubhra Goswami and Yafei Zhao
Information 2024, 15(5), 280; https://doi.org/10.3390/info15050280 (registering DOI) - 14 May 2024
Abstract
This research paper presents a comprehensive study on optimizing the critical artificial intelligence (AI) factors influencing cost management in civil engineering projects using a multi-criteria decision-making (MCDM) approach. The problem addressed revolves around the need to effectively manage costs in civil engineering endeavors [...] Read more.
This research paper presents a comprehensive study on optimizing the critical artificial intelligence (AI) factors influencing cost management in civil engineering projects using a multi-criteria decision-making (MCDM) approach. The problem addressed revolves around the need to effectively manage costs in civil engineering endeavors amidst the growing complexity of projects and the increasing integration of AI technologies. The methodology employed involves the utilization of three MCDM tools, specifically Delphi, interpretive structural modeling (ISM), and Cross-Impact Matrix Multiplication Applied to Classification (MICMAC). A total of 17 AI factors, categorized into eight broad groups, were identified and analyzed. Through the application of different MCDM techniques, the relative importance and interrelationships among these factors were determined. The key findings reveal the critical role of certain AI factors, such as risk mitigation and cost components, in optimizing the cost management processes. Moreover, the hierarchical structure generated through ISM and the influential factors identified via MICMAC provide insights for prioritizing strategic interventions. The implications of this study extend to informing decision-makers in the civil engineering domain about effective strategies for leveraging AI in their cost management practices. By adopting a systematic MCDM approach, stakeholders can enhance project outcomes while optimizing resource allocation and mitigating financial risks. Full article
(This article belongs to the Special Issue AI Applications in Construction and Infrastructure)
Show Figures

Figure 1

25 pages, 9771 KiB  
Article
Investigation on the Natural Convection Inside Thermal Corridors of Industrial Buildings
by Jing Pu, Aixin Zhu, Junqiu Wu, Fuzhong Xie and Fujian Jiang
Buildings 2024, 14(5), 1406; https://doi.org/10.3390/buildings14051406 (registering DOI) - 14 May 2024
Abstract
The installation of successional heating devices in industrial buildings will result in thermal corridors. To improve the thermal environment in and around these corridors, buoyancy-driven ventilation is commonly utilized to dissipate heat, which is based on the natural convection design for buildings. However, [...] Read more.
The installation of successional heating devices in industrial buildings will result in thermal corridors. To improve the thermal environment in and around these corridors, buoyancy-driven ventilation is commonly utilized to dissipate heat, which is based on the natural convection design for buildings. However, the flow and heat exchange patterns of natural convection related to thermal corridors have not been clearly clarified, and no relevant correlations have been established to quantify them. The conducted numerical study aimed to analyze the flow and heat transfer characteristics of natural convection within thermal corridors in industrial buildings. Experimental data were utilized to validate a computational fluid dynamics (CFD) model developed for this purpose. The study considered the influence of various parameters on the results obtained. In the side corridor, the prevalence of reverse flow dominates much of the channel, while in the middle corridor, reverse flow near the bottom corner is observed. The ambient air temperature significantly impacts the temperature distribution in both corridors. Increasing the ambient air temperature at the inlet from 22 to 28 °C results in a substantial temperature rise within the corridor, by approximately 6–7 °C. When the outlet size is constant and the inlet size drops by 30%, the air temperature in the corridor increases by 3 °C. Finally, correlations were established based on the simulation data to predict the surface-averaged Nu¯ of the heated wall and the induced mass flow rate, m˙, of the natural convection. The correlations have relative errors of less than 16% when compared to the simulation data. Full article
Show Figures

Figure 1

15 pages, 16353 KiB  
Article
Heat Stress and Water Irrigation Management Effects on the Fruit Color and Quality of ‘Hongro’ Apples
by Van Giap Do, Youngsuk Lee, Juhyeon Park, Nay Myo Win, Soon-Il Kwon, Sangjin Yang and Seonae Kim
Agriculture 2024, 14(5), 761; https://doi.org/10.3390/agriculture14050761 (registering DOI) - 14 May 2024
Abstract
Increasing fruit crop production sustainability under climate change, particularly increasing temperatures, is a major challenge in modern agriculture. High temperatures affect apple fruit quality and decrease its color. Herein, we constructed an experimental field under temperature simulation to evaluate climate change mitigation strategies [...] Read more.
Increasing fruit crop production sustainability under climate change, particularly increasing temperatures, is a major challenge in modern agriculture. High temperatures affect apple fruit quality and decrease its color. Herein, we constructed an experimental field under temperature simulation to evaluate climate change mitigation strategies for apples. ‘Hongro’ apples were subjected to three treatments: (1) cultivation inside a vinyl house for heat treatment (heat induction), (2) cultivation under water irrigation (heat reduction), and (3) cultivation under normal atmospheric temperature (control). At harvest, the fruits of the heat treatment group exhibited poor coloration, with a lower gene expression and pigment accumulation than those of the water irrigation and control groups. Furthermore, the fruit quality of the heat treatment group decreased, with a lower soluble solid content (SSC) and titratable acidity (TA), and smaller fruits. Additionally, a higher fruit disorder (cracking and spots) ratio was observed in the heat treatment group than in the water irrigation and control groups. However, the fruits of the water irrigation group exhibited higher quality indexes (flesh firmness, SSC, and TA) and less cracking than those of the heat treatment and control groups. Heat reduction, including water irrigation, may be used for orchard management to prevent climate change-induced increasing temperatures. Full article
Show Figures

Figure 1

21 pages, 3286 KiB  
Review
Comprehensive Analysis of Temporal–Spatial Fusion from 1991 to 2023 Using Bibliometric Tools
by Jiawei Cui, Juan Li, Xingfa Gu, Wenhao Zhang, Dong Wang, Xiuling Sun, Yulin Zhan, Jian Yang, Yan Liu and Xiufeng Yang
Atmosphere 2024, 15(5), 598; https://doi.org/10.3390/atmos15050598 (registering DOI) - 14 May 2024
Abstract
Due to budget and sensor technology constraints, a single sensor cannot simultaneously provide observational images with both a high spatial and temporal resolution. To solve the above problem, the spatiotemporal fusion (STF) method was proposed and proved to be an indispensable tool for [...] Read more.
Due to budget and sensor technology constraints, a single sensor cannot simultaneously provide observational images with both a high spatial and temporal resolution. To solve the above problem, the spatiotemporal fusion (STF) method was proposed and proved to be an indispensable tool for monitoring land surface dynamics. There are relatively few systematic reviews of the STF method. Bibliometrics is a valuable method for analyzing the scientific literature, but it has not yet been applied to the comprehensive analysis of the STF method. Therefore, in this paper, we use bibliometrics and scientific mapping to analyze the 2967 citation data from the Web of Science from 1991 to 2023 in a metrological manner, covering the themes of STF, data fusion, multi-temporal analysis, and spatial analysis. The results of the literature analysis reveal that the number of articles displays a slow to rapid increase during the study period, but decreases significantly in 2023. Research institutions in China (1059 papers) and the United States (432 papers) are the top two contributors in the field. The keywords “Sentinel”, “deep learning” (DL), and “LSTM” (Long Short-Term Memory) appeared most frequently in the past three years. In the future, remote sensing spatiotemporal fusion research can address more of the limitations of heterogeneous landscapes and climatic conditions to improve fused images’ accuracy. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

19 pages, 21891 KiB  
Article
Experimental and Numerical Simulation Investigation of Cement Sheath Integrity during Multi-Stage Fracturing in Offshore Tight Oil Reservoir
by Yangang Wang and Yongcun Feng
J. Mar. Sci. Eng. 2024, 12(5), 814; https://doi.org/10.3390/jmse12050814 (registering DOI) - 14 May 2024
Abstract
The integrity of the cement sheath is susceptible to failure during multi-stage fracturing. In this study, the failure mechanisms of cement sheath integrity during multi-stage fracturing in the A offshore tight oil reservoir wells were investigated. The cement samples were subject to triaxial [...] Read more.
The integrity of the cement sheath is susceptible to failure during multi-stage fracturing. In this study, the failure mechanisms of cement sheath integrity during multi-stage fracturing in the A offshore tight oil reservoir wells were investigated. The cement samples were subject to triaxial compression test (TCT), triaxial cyclic loading test (TCLT), and permeability test. A full-scale device was constructed for cement sheath integrity experiments. Additionally, a 3-D finite element model was developed to simulate the interface debonding and the subsequent growth of micro-annuli throughout multi-stage fracturing. The results revealed that TCLT induced cumulative plastic deformation in the cement samples, resulting in a 10.7% decrease in triaxial compressive strength, an 8.3% decrease in elastic modulus, and a 150% increase in permeability. Despite these significant variations, no serious damage was caused to the cement sheath matrix. It was observed that gas leakage occurred at the 8th, 10th, and 14th cycles under cyclic loading with upper limits of 70 MPa, 80 MPa, and 90 MPa, respectively. After 15 cycles, the experimentally measured widths of micro-annuli were 117 μm, 178 μm, and 212 μm, which were in good agreement with simulation results of 130 μm, 165 μm, and 205 μm, respectively. These findings elucidate the causes of cement sheath integrity failure, providing insights into the failure mechanisms of cement sheath integrity during multi-stage fracturing. Full article
Show Figures

Figure 1

13 pages, 1407 KiB  
Article
Development of a Low-Cost Web-Based Information System for Managing a University Department Chemical Warehouse
by Marco Gardella, Pasquale Carrieri, Paola Salvadeo, Stefano Pavone, Guido Giombi, Michele Ramigni and Claudio Rivetti
Laboratories 2024, 1(1), 59-71; https://doi.org/10.3390/laboratories1010004 (registering DOI) - 14 May 2024
Abstract
Herein, we present the implementation of a low-cost web-based information system tailored to manage a university department chemical warehouse. The system provides a centralized platform for cataloging, tracking, and managing chemical inventory data, while also facilitating purchasing and various administrative tasks associated with [...] Read more.
Herein, we present the implementation of a low-cost web-based information system tailored to manage a university department chemical warehouse. The system provides a centralized platform for cataloging, tracking, and managing chemical inventory data, while also facilitating purchasing and various administrative tasks associated with laboratory operations. The system has been developed within the Campusnet platform and has the following functionalities: (i) an efficient way for cataloging the extensive array of products available in the warehouse; (ii) an intuitive web interface with a device-responsive layout to facilitate browsing and purchasing of products by students, researchers, and technical staff; (iii) an inventory transaction recording system to simplify the attribution of costs; (iv) a simple procedure to streamline the process of joint purchases; and (v) a low deployment cost and ease of maintenance. Key design considerations, including regulatory compliance and safety, are also presented. Full article
Show Figures

Figure 1

28 pages, 27240 KiB  
Article
PARTS—A 2D Self-Reconfigurable Programmable Mechanical Structure
by Michael Gerbl, Michael Pieber, Emanuel Ulrich and Johannes Gerstmayr
Robotics 2024, 13(5), 77; https://doi.org/10.3390/robotics13050077 (registering DOI) - 14 May 2024
Abstract
Modular self-reconfigurable robots hold the promise of being capable of performing a wide variety of tasks. However, many systems fall short of either delivering this promised functionality due to constraints in system architecture or validating it on functional hardware prototypes. This paper demonstrates [...] Read more.
Modular self-reconfigurable robots hold the promise of being capable of performing a wide variety of tasks. However, many systems fall short of either delivering this promised functionality due to constraints in system architecture or validating it on functional hardware prototypes. This paper demonstrates the functional capabilities of the Planar Adaptive Robot with Triangular Structure (PARTS) and documents the versatility of this robot system using a holistic approach that combines simulations and hardware demonstrations on a prototype with nine fabricated modules. PARTS is a two-dimensional modular robot consisting of modules with a shape-shifting triangular geometry capable of forming adaptable space-covering structures. Meta-modules and mesh restructuring techniques are presented as methods for achieving topological self-reconfiguration. The feasibility of these methods is demonstrated by applying them on a simulated reconfiguration example of 62 modules. The paper showcases the versatility of PARTS on the hardware prototype using task-specific configurations, including locomotion using a meta-module and a walker configuration, module-module interaction by establishing a bridge between two separated module clusters, and interaction with the environment using a gripper and supporting structure configuration. The results validate the versatility and emphasize the potential of the system’s design concept, motivating the transfer of the hardware architecture to the third dimension. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

15 pages, 3167 KiB  
Article
Online Measurement Method and System of Excitation Impedance of Current Transformers Based on Norton’s Theorem and Differential Method to Measure Difference of Two Currents
by Mengying Gan, Hongsen You and Jiansheng Yuan
Sensors 2024, 24(10), 3115; https://doi.org/10.3390/s24103115 (registering DOI) - 14 May 2024
Abstract
An online measurement method is proposed in this paper, and a system is established for detecting the excitation impedance of current transformers (CTs) based on Norton’s theorem. The theorem is carried out by connecting a resistance and an inductance at the secondary side [...] Read more.
An online measurement method is proposed in this paper, and a system is established for detecting the excitation impedance of current transformers (CTs) based on Norton’s theorem. The theorem is carried out by connecting a resistance and an inductance at the secondary side port of the CT to get the equations for calculating the impedance. The iterative method is used to solve the equations, and the solution is revised to consider the nonlinearity of the core. The main variable in the equations is the variation of the secondary current with the resistance or inductance. To obtain the secondary current variation accurately, which is less than 1‰ of the current, a differential method is proposed, which is based on charging two capacitors and measuring the difference of their voltages instead of measuring each current separately first and then obtaining the current variation by subtraction. This is equivalent to saving two currents first and then measuring the current difference. The differential method avoids the problem of error amplification in the process of measuring two currents separately first and then subtracting them to obtain the current variation and solves the problem that two currents do not appear simultaneously. The results verify the correctness and accuracy of the proposed method and system. The acquisition of the excitation impedance is the basis for obtaining the working characteristics of CT cores, including magnetic and loss characteristics, as well as the error of CTs. Full article
(This article belongs to the Special Issue Advances in Magnetic Sensors and Their Applications)
Show Figures

Figure 1

14 pages, 8049 KiB  
Article
Discovery of Nine Dipeptidyl Peptidase-4 Inhibitors from Coptis chinensis Using Virtual Screening, Bioactivity Evaluation, and Binding Studies
by Zixi Zhao, Ruonan Ma, Yuqing Ma, Liqiang Zhao, Lele Wang, Yuzhen Fang, Yuxin Zhang, Xia Wu and Xing Wang
Molecules 2024, 29(10), 2304; https://doi.org/10.3390/molecules29102304 (registering DOI) - 14 May 2024
Abstract
The objective of this study was to identify multiple alkaloids in Coptis chinensis that demonstrate inhibitory activity against DPP-4 and systematically evaluate their activity and binding characteristics. A combined strategy that included molecular docking, a DPP-4 inhibition assay, surface plasmon resonance (SPR), and [...] Read more.
The objective of this study was to identify multiple alkaloids in Coptis chinensis that demonstrate inhibitory activity against DPP-4 and systematically evaluate their activity and binding characteristics. A combined strategy that included molecular docking, a DPP-4 inhibition assay, surface plasmon resonance (SPR), and a molecular dynamics simulation technique was employed. The results showed that nine alkaloids in Coptis chinensis directly inhibited DPP-4, with IC50 values of 3.44–53.73 μM. SPR-based binding studies revealed that these alkaloids display rapid binding and dissociation characteristics when interacting with DPP-4, with KD values ranging from 8.11 to 29.97 μM. A molecular dynamics analysis revealed that equilibrium was rapidly reached by nine DPP-4–ligand systems with minimal fluctuations, while binding free energy calculations showed that the ∆Gbind values for the nine test compounds ranged from −31.84 to −16.06 kcal/mol. The most important forces for the binding of these alkaloids with DPP-4 are electrostatic interactions and van der Waals forces. Various important amino acid residues, such as Arg125, His126, Phe357, Arg358, and Tyr547, were involved in the inhibition of DPP-4 by the compounds, revealing a mechanistic basis for the further optimization of these alkaloids as DPP-4 inhibitors. This study confirmed nine alkaloids as direct inhibitors of DPP-4 and characterized their binding features, thereby providing a basis for further research and development on novel DPP-4 inhibitors. Full article
Show Figures

Figure 1

18 pages, 3665 KiB  
Article
Transcriptome Analysis Reveals POD as an Important Indicator for Assessing Low-Temperature Tolerance in Maize Radicles during Germination
by Yifei Zhang, Jiayu Li, Weiqing Li, Xinhan Gao, Xiangru Xu, Chunyu Zhang, Song Yu, Yi Dou, Wenqi Luo and Lihe Yu
Plants 2024, 13(10), 1362; https://doi.org/10.3390/plants13101362 (registering DOI) - 14 May 2024
Abstract
Low-temperature stress (TS) limits maize (Zea mays L.) seed germination and agricultural production. Exposure to TS during germination inhibits radicle growth, triggering seedling emergence disorders. Here, we aimed to analyse the changes in gene expression in the radicles of maize seeds under [...] Read more.
Low-temperature stress (TS) limits maize (Zea mays L.) seed germination and agricultural production. Exposure to TS during germination inhibits radicle growth, triggering seedling emergence disorders. Here, we aimed to analyse the changes in gene expression in the radicles of maize seeds under TS by comparing Demeiya1 (DMY1) and Zhengdan958 (ZD958) (the main Northeast China cultivars) and exposing them to two temperatures: 15 °C (control) and 5 °C (TS). TS markedly decreased radicle growth as well as fresh and dry weights while increasing proline and malondialdehyde contents in both test varieties. Under TS treatment, the expression levels of 5301 and 4894 genes were significantly different in the radicles of DMY1 and ZD958, respectively, and 3005 differentially expressed genes coexisted in the radicles of both varieties. The phenylpropanoid biosynthesis pathway was implicated within the response to TS in maize radicles, and peroxidase may be an important indicator for assessing low-temperature tolerance during maize germination. Peroxidase-encoding genes could be important candidate genes for promoting low-temperature resistance in maize germinating radicles. We believe that this study enhances the knowledge of mechanisms of response and adaptation of the maize seed germination process to TS and provides a theoretical basis for efficiently assessing maize seed low-temperature tolerance and improving maize adversity germination performance. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

13 pages, 283 KiB  
Article
Beautiful Birds and Hun Planes: Ford Madox Ford in the Early Age of Flight
by Paul Skinner
Humanities 2024, 13(3), 76; https://doi.org/10.3390/h13030076 (registering DOI) - 14 May 2024
Abstract
Reactions to the Wright brothers’ achievement of the first sustained, controlled powered flight in December 1903 ranged from complete indifference to voluble celebration and evolved into convictions that ranged from a belief that war would be rendered impossible to confident predictions of invasion [...] Read more.
Reactions to the Wright brothers’ achievement of the first sustained, controlled powered flight in December 1903 ranged from complete indifference to voluble celebration and evolved into convictions that ranged from a belief that war would be rendered impossible to confident predictions of invasion and widespread destruction. The policies and perceptions of institutions, governments and individuals were subject to constant revision and often abrupt reversal. When war came, the aeroplane, which began as an instrument of reconnaissance, rapidly became one more hazard among many for those at the front and a further point of division between combatants and civilians, for whom airships and air raids tended to loom larger. The first dynamic phase in the story of the aeroplane overlaps with the major early modernist period. This essay seeks to map, within that wider context, the experiences and responses of Ford Madox Ford. He began, like many others, with images of beauty and the natural world in that early stage when a functioning range of descriptive or comparative terms had yet to emerge. He encountered them next in the theatre of war during his service in France. His ambivalence towards aeroplanes was both similar to and different from his earlier responses to trains, cars and telephones. Their relative rarity, as well as their both physical and metaphorical distance, and Ford’s own apparent immunity to the glamour and dynamism of aviation enabled him to view them retrospectively and employ them in anecdote, autobiography and fiction as both threat and saviour. Full article
(This article belongs to the Special Issue Ford Madox Ford's War Writing)
18 pages, 3232 KiB  
Article
Enhancing Urban Living Convenience through Plot Patterns: A Quantitative Morphological Study
by Changyu Chen, Yuhan Guo, Yuxuan Liu and Yue Zhong
Buildings 2024, 14(5), 1408; https://doi.org/10.3390/buildings14051408 (registering DOI) - 14 May 2024
Abstract
Living convenience in public service facilities has attracted significant attention as a crucial indicator of urban development and quality improvement. However, the performance of plot patterns—a fundamental unit for precise control when measuring urban quality—influencing living convenience requires in-depth exploration. This study integrates [...] Read more.
Living convenience in public service facilities has attracted significant attention as a crucial indicator of urban development and quality improvement. However, the performance of plot patterns—a fundamental unit for precise control when measuring urban quality—influencing living convenience requires in-depth exploration. This study integrates multiple urban datasets with quantitative urban morphology methods to investigate the impact of various plot pattern features on living convenience. Specifically, we investigate the Inner Ring area of Shanghai as an empirical case. The assessment considers the diverse effects of facilities at different distances, accounting for the life radiuses of both older individuals and the general population. Additionally, the analysis of plot patterns includes planar and three-dimensional aspects, controlling key variables such as road network accessibility and centrality. The results indicate that, for small-scale plots, shape has a strong impact, while, for large-scale plots, the division and construction intensity within a block has a stronger influence. Furthermore, plots of different area types have different recommended construction intensities. Notably, for large-scale blocks, it is advisable to maintain a building density of around 0.3. In short, this study contributes to human-centered planning by providing targeted recommendations to address the existing deficiencies in plot morphology regulation and control from the perspective of quantitative urban morphology. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

24 pages, 2812 KiB  
Review
Review of Detection Limits for Various Techniques for Bacterial Detection in Food Samples
by Xinyi Zhao, Abhijnan Bhat, Christine O’Connor, James Curtin, Baljit Singh and Furong Tian
Nanomaterials 2024, 14(10), 855; https://doi.org/10.3390/nano14100855 (registering DOI) - 14 May 2024
Abstract
Foodborne illnesses can be infectious and dangerous, and most of them are caused by bacteria. Some common food-related bacteria species exist widely in nature and pose a serious threat to both humans and animals; they can cause poisoning, diseases, disabilities and even death. [...] Read more.
Foodborne illnesses can be infectious and dangerous, and most of them are caused by bacteria. Some common food-related bacteria species exist widely in nature and pose a serious threat to both humans and animals; they can cause poisoning, diseases, disabilities and even death. Rapid, reliable and cost-effective methods for bacterial detection are of paramount importance in food safety and environmental monitoring. Polymerase chain reaction (PCR), lateral flow immunochromatographic assay (LFIA) and electrochemical methods have been widely used in food safety and environmental monitoring. In this paper, the recent developments (2013–2023) covering PCR, LFIA and electrochemical methods for various bacterial species (Salmonella, Listeria, Campylobacter, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)), considering different food sample types, analytical performances and the reported limit of detection (LOD), are discussed. It was found that the bacteria species and food sample type contributed significantly to the analytical performance and LOD. Detection via LFIA has a higher average LOD (24 CFU/mL) than detection via electrochemical methods (12 CFU/mL) and PCR (6 CFU/mL). Salmonella and E. coli in the Pseudomonadota domain usually have low LODs. LODs are usually lower for detection in fish and eggs. Gold and iron nanoparticles were the most studied in the reported articles for LFIA, and average LODs were 26 CFU/mL and 12 CFU/mL, respectively. The electrochemical method revealed that the average LOD was highest for cyclic voltammetry (CV) at 18 CFU/mL, followed by electrochemical impedance spectroscopy (EIS) at 12 CFU/mL and differential pulse voltammetry (DPV) at 8 CFU/mL. LOD usually decreases when the sample number increases until it remains unchanged. Exponential relations (R2 > 0.95) between LODs of Listeria in milk via LFIA and via the electrochemical method with sample numbers have been obtained. Finally, the review discusses challenges and future perspectives (including the role of nanomaterials/advanced materials) to improve analytical performance for bacterial detection. Full article
Show Figures

Figure 1

15 pages, 4756 KiB  
Article
Response of Hydrodynamic Characteristics to Tillage-Induced Microtopography of Rill Erosion Processes under Heavy Rainfalls
by Shuqin He, Jian Luo, Zicheng Zheng, Wenfeng Ding and Jigen Liu
Land 2024, 13(5), 685; https://doi.org/10.3390/land13050685 (registering DOI) - 14 May 2024
Abstract
The occurrence and development of rill erosion depends on the hydraulic characteristics of water flow and underlying soil surface features. Our experiments include one-rainfall-intensity treatments (2.0 mm min−1) and various microtopographic levels based on different tillage practices with smooth slope (CK), [...] Read more.
The occurrence and development of rill erosion depends on the hydraulic characteristics of water flow and underlying soil surface features. Our experiments include one-rainfall-intensity treatments (2.0 mm min−1) and various microtopographic levels based on different tillage practices with smooth slope (CK), artificial digging (AD), and ridge tillage (RT) on a 15° slope. The results indicate the following: (1) The soil roughness index values were in the order of CK < AD < RT, and the spatial variability of different tillage practices had strong autocorrelations during different rill erosive stages. The codomain values decreased with the increase in microtopography. (2) The multifractal dimension values of tillage practices in various erosive stages were in the order of RT > AD > CT. The microtopography of different tilled slopes showed strong multifractal characteristics, and the multifractal characteristics were stronger as the microrelief heterogeneity increased. For the CK slope, the generalized fractal dimension span (ΔD) ranged between 0.0019 and 0.0058. For the AD slope, ΔD was between 0.2901 and 0.5112. And, for the RT slope, ΔD was between 0.4235 and 0.7626. (3) With the evolution of rill erosion, the flow pattern on different tilled slopes changed from subcritical transition flow to supercritical transition flow. (4) Soil roughness index and ΔD had good correlations with hydrodynamic parameters. The stronger the erosive energy of runoff was, the higher the spatial heterogeneity of microtopography was. This study is expected to provide a theoretical basis for revealing the hydrodynamic mechanism of rill erosion in slope farmland. Full article
(This article belongs to the Section Soil-Sediment-Water Systems)
Show Figures

Figure 1

13 pages, 5493 KiB  
Article
Research on Control System of Corn Planter Based on Radar Speed Measurement
by Yunxia Wang, Wenyi Zhang, Bing Qi, Youqiang Ding and Qianqian Xia
Agronomy 2024, 14(5), 1043; https://doi.org/10.3390/agronomy14051043 (registering DOI) - 14 May 2024
Abstract
The intelligent control of precision planting can detect and regulate the operation quality of the planter in real time, which plays an important role in improving the operation quality of the planter and the yield of the corn. In this paper, the control [...] Read more.
The intelligent control of precision planting can detect and regulate the operation quality of the planter in real time, which plays an important role in improving the operation quality of the planter and the yield of the corn. In this paper, the control system of a corn precision planter is designed to realize the operating quality monitoring and electric driving of the seed-metering device. The planting quality is calculated by the time interval between the neighboring falling seeds, instead of the plant spacing, to improve the operational efficiency of the system. At the same time, the forward speed of the planter is obtained by radar, which is used to accurately match the speed of the seed-metering device with the forward speed of the planter. The velocity error of the radar is analyzed, and the relevant relationship of the radar output frequency and forward speed is established. Comparative test results of this system and the JPS-12 test bench show that the detection performance of the system is reliable, and the maximum detection error of the quality parameters is less than 2.88%. Field experiments were carried out to verify the operational performance of the control system. Two speed sensors, radar and GPS, were chosen to study the effect of speed measuring on the performance of the control system. We found that speed measuring has a significant effect on planting performance. The qualified parameters of radar were significantly higher than those of GPS, at a forward speed of 6–12 km/h. The qualification feeding index (QFI) of radar was 0.51%, 0.67%, and 2.05% higher than that of GPS at speeds of 6, 8, 10, and 12 km/h. The precision index (PREC) of radar was 17.60%, 5.44%, 16.81%, and 17.30% lower than that of GPS. Therefore, the control system based on the radar speed measurement developed in this paper can significantly improve the operating quality of the planter. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop