The 2023 MDPI Annual Report has
been released!
 
23 pages, 2695 KiB  
Article
Levels of Small Extracellular Vesicles Containing hERG-1 and Hsp47 as Potential Biomarkers for Cardiovascular Diseases
by Luis A. Osorio, Mauricio Lozano, Paola Soto, Viviana Moreno-Hidalgo, Angely Arévalo-Gil, Angie Ramírez-Balaguera, Daniel Hevia, Jorge Cifuentes, Yessia Hidalgo, Francisca Alcayaga-Miranda, Consuelo Pasten, Danna Morales, Diego Varela, Cinthya Urquidi, Andrés Iturriaga, Alejandra Rivera-Palma, Ricardo Larrea-Gómez and Carlos E. Irarrázabal
Int. J. Mol. Sci. 2024, 25(9), 4913; https://doi.org/10.3390/ijms25094913 (registering DOI) - 30 Apr 2024
Abstract
The diagnosis of cardiovascular disease (CVD) is still limited. Therefore, this study demonstrates the presence of human ether-a-go-go-related gene 1 (hERG1) and heat shock protein 47 (Hsp47) on the surface of small extracellular vesicles (sEVs) in human peripheral blood and their association with [...] Read more.
The diagnosis of cardiovascular disease (CVD) is still limited. Therefore, this study demonstrates the presence of human ether-a-go-go-related gene 1 (hERG1) and heat shock protein 47 (Hsp47) on the surface of small extracellular vesicles (sEVs) in human peripheral blood and their association with CVD. In this research, 20 individuals with heart failure and 26 participants subjected to cardiac stress tests were enrolled. The associations between hERG1 and/or Hsp47 in sEVs and CVD were established using Western blot, flow cytometry, electron microscopy, ELISA, and nanoparticle tracking analysis. The results show that hERG1 and Hsp47 were present in sEV membranes, extravesicularly exposing the sequences 430AFLLKETEEGPPATE445 for hERG1 and 169ALQSINEWAAQTT- DGKLPEVTKDVERTD196 for Hsp47. In addition, upon exposure to hypoxia, rat primary cardiomyocytes released sEVs into the media, and human cardiomyocytes in culture also released sEVs containing hERG1 (EV-hERG1) and/or Hsp47 (EV-Hsp47). Moreover, the levels of sEVs increased in the blood when cardiac ischemia was induced during the stress test, as well as the concentrations of EV-hERG1 and EV-Hsp47. Additionally, the plasma levels of EV-hERG1 and EV-Hsp47 decreased in patients with decompensated heart failure (DHF). Our data provide the first evidence that hERG1 and Hsp47 are present in the membranes of sEVs derived from the human cardiomyocyte cell line, and also in those isolated from human peripheral blood. Total sEVs, EV-hERG1, and EV-Hsp47 may be explored as biomarkers for heart diseases such as heart failure and cardiac ischemia. Full article
(This article belongs to the Special Issue Roles and Function of Extracellular Vesicles in Diseases 2.0)
Article
Piping Stabilization of Clay Soil Using Lime
by Rawan Aqel, Mousa Attom, Magdi El-Emam and Mohammad Yamin
Geosciences 2024, 14(5), 122; https://doi.org/10.3390/geosciences14050122 (registering DOI) - 30 Apr 2024
Abstract
Construction of earth fill dams offers a cost-effective solution for various purposes. However, their susceptibility to internal soil erosion, known as piping, poses a significant risk of structural failure and resultant loss of life and property. Soil stabilization emerges as a practical technique [...] Read more.
Construction of earth fill dams offers a cost-effective solution for various purposes. However, their susceptibility to internal soil erosion, known as piping, poses a significant risk of structural failure and resultant loss of life and property. Soil stabilization emerges as a practical technique to fortify these dams against such threats. This study investigated the impact of lime on the internal erosion properties of clay soils, focusing on CH and ML soil types. Specimens of different lime content were prepared and remolded at 95% relative compaction and optimum moisture content. Hole Erosion tests at varying lime concentrations and curing durations were adapted to conduct the investigation. This investigation aims to optimize lime content and curing time for cohesive soil stabilization against internal erosion. Findings revealed that 2% and 5% of quicklime, by dry weight of the soil, effectively stabilized CH and ML soils, respectively, against internal erosion, with a two-day curing period proving optimal. Furthermore, the addition of lime significantly enhanced erosion rate index and critical shear strength in clay soil, underscoring its efficacy in soil stabilization efforts. Full article
(This article belongs to the Topic Environmental Geology and Engineering)
23 pages, 2167 KiB  
Article
Integration of UAV Digital Surface Model and HEC-HMS Hydrological Model System in iRIC Hydrological Simulation—A Case Study of Wu River
by Yen-Po Huang, Hui-Ping Tsai and Li-Chi Chiang
Drones 2024, 8(5), 178; https://doi.org/10.3390/drones8050178 - 30 Apr 2024
Abstract
This research investigates flood susceptibility in the mid- and downstream areas of Taiwan’s Wu River, historically prone to flooding in central Taiwan. The study integrates the Hydrologic Engineering Center—Hydrologic Modeling System (HEC-HMS) for flow simulations with unmanned aerial vehicle (UAV)-derived digital surface models [...] Read more.
This research investigates flood susceptibility in the mid- and downstream areas of Taiwan’s Wu River, historically prone to flooding in central Taiwan. The study integrates the Hydrologic Engineering Center—Hydrologic Modeling System (HEC-HMS) for flow simulations with unmanned aerial vehicle (UAV)-derived digital surface models (DSMs) at varying resolutions. Flood simulations, executed through the International River Interface Cooperative (iRIC), assess flood depths using diverse DSM resolutions. Notably, HEC-HMS simulations exhibit commendable Nash–Sutcliffe efficiency (NSE) exceeding 0.88 and a peak flow percentage error (PEPF) below 5%, indicating excellent suitability. In iRIC flood simulations, optimal results emerge with a 2 m resolution UAV-DSM. Furthermore, the study incorporates rainfall data at different recurrence intervals in iRIC flood simulations, presenting an alternative flood modeling approach. This research underscores the efficacy of integrating UAV-DSM into iRIC flood simulations, enabling precise flood depth assessment and risk analysis for flood control management. Full article
(This article belongs to the Special Issue Applications of UAVs in Civil Infrastructure)
19 pages, 4235 KiB  
Article
Assessing the Severity of Verticillium Wilt in Cotton Fields and Constructing Pesticide Application Prescription Maps Using Unmanned Aerial Vehicle (UAV) Multispectral Images
by Xiaojuan Li, Zhi Liang, Guang Yang, Tao Lin and Bo Liu
Drones 2024, 8(5), 176; https://doi.org/10.3390/drones8050176 - 30 Apr 2024
Abstract
Cotton Verticillium wilt is a common fungal disease during the growth of cotton, leading to the yellowing of leaves, stem dryness, and root rot, severely affecting the yield and quality of cotton. Current monitoring methods for Verticillium wilt mainly rely on manual inspection [...] Read more.
Cotton Verticillium wilt is a common fungal disease during the growth of cotton, leading to the yellowing of leaves, stem dryness, and root rot, severely affecting the yield and quality of cotton. Current monitoring methods for Verticillium wilt mainly rely on manual inspection and field investigation, which are inefficient and costly, and the methods of applying pesticides in cotton fields are singular, with issues of low pesticide efficiency and uneven application. This study aims to combine UAV remote sensing monitoring of cotton Verticillium wilt with the precision spraying characteristics of agricultural drones, to provide a methodological reference for monitoring and precision application of pesticides for cotton diseases. Taking the cotton fields of Shihezi City, Xinjiang as the research subject, high-resolution multispectral images were collected using drones. Simultaneously, 150 sets of field samples with varying degrees of Verticillium wilt were collected through ground data collection, utilizing data analysis methods such as partial least squares regression (PLSR) and neural network models; additionally, a cotton Verticillium wilt monitoring model based on drone remote sensing images was constructed. The results showed that the estimation accuracy of the PLSR and BP neural network models based on EVI, RENDVI, SAVI, MSAVI, and RDVI vegetation indices were 0.778 and 0.817, respectively, with of 0.126 and 0.117, respectively. Based on this, an analysis of the condition of the areas to be treated was performed, combining the operational parameters of agricultural drones, resulting in a prescription map for spraying against cotton Verticillium wilt. Full article
(This article belongs to the Section Drones in Agriculture and Forestry)
13 pages, 1250 KiB  
Article
Water-Based Bi2S3 Nano-Inks Obtained with Surfactant-Assisted Liquid Phase Exfoliation and Their Direct Processing into Thin Films
by Micaela Pozzati, Felix Boll, Matteo Crisci, Sara Domenici, Francesco Scotognella, Bernd Smarsly, Teresa Gatti and Mengjiao Wang
Colloids Interfaces 2024, 8(3), 28; https://doi.org/10.3390/colloids8030028 - 30 Apr 2024
Abstract
Bi2S3 has gained considerable attention as a semiconductor for its versatile functional properties, finding application across various fields, and liquid phase exfoliation (LPE) serves as a straightforward method to produce it in nano-form. Till now, the commonly used solvent for [...] Read more.
Bi2S3 has gained considerable attention as a semiconductor for its versatile functional properties, finding application across various fields, and liquid phase exfoliation (LPE) serves as a straightforward method to produce it in nano-form. Till now, the commonly used solvent for LPE has been N-Methyl-2-pyrrolidone, which is expensive, toxic and has a high boiling point. These limitations drive the search for more sustainable alternatives, with water being a promising option. Nonetheless, surfactants are necessary for LPE in water due to the hydrophobic nature of Bi2S3, and organic molecules with amphoteric characteristics are identified as suitable surfactants. However, systematic studies on the use of ionic surfactants in the LPE of Bi2S3 have remained scarce until now. In this work, we used sodium dodecyl sulfate (SDS), sodium dodecylbenzene sulfonate (SDBS) and sodium hexadecyl sulfonate (SHS) as representative species and we present a comprehensive investigation into their effects on the LPE of Bi2S3. Through characterizations of the resulting products, we find that all surfactants effectively exfoliate Bi2S3 into few-layer species. Notably, SDBS demonstrates superior stabilization of the 2D layers compared to the other surfactants, while SHS becomes the most promising surfactant for obtaining products with high yield. Moreover, the resulting nano-inks are used for fabricating films using spray-coating, reaching a fine tuning of band gap by controlling the number of cycles, and paving the way for the utilization of 2D Bi2S3 in optoelectronic devices. Full article
24 pages, 517 KiB  
Article
Analysis of Hydrogen Value Chain Events: Implications for Hydrogen Refueling Stations’ Safety
by Eulàlia Badia, Joaquín Navajas, Roser Sala, Nicola Paltrinieri and Hitomi Sato
Safety 2024, 10(2), 44; https://doi.org/10.3390/safety10020044 - 30 Apr 2024
Abstract
Renewable hydrogen is emerging as the key to a sustainable energy transition with multiple applications and uses. In the field of transport, in addition to fuel cell vehicles, it is necessary to develop an extensive network of hydrogen refueling stations (hereafter HRSs). The [...] Read more.
Renewable hydrogen is emerging as the key to a sustainable energy transition with multiple applications and uses. In the field of transport, in addition to fuel cell vehicles, it is necessary to develop an extensive network of hydrogen refueling stations (hereafter HRSs). The characteristics and properties of hydrogen make ensuring the safe operation of these facilities a crucial element for their successful deployment and implementation. This paper shows the outcomes of an analysis of hydrogen incidents and accidents considering their potential application to HRSs. For this purpose, the HIAD 2.0 was reviewed and a total of 224 events that could be repeated in any of the major industrial processes related to hydrogen refueling stations were analyzed. This analysis was carried out using a mixed methodology of quantitative and qualitative techniques, considering the following hydrogen value chain: production, storage, delivery and industrial use. The results provide general information segmented by event frequency, damage classes and failure typology. The analysis shows the main processes of the value chain allow the identification of key aspects for the safety management of refueling facilities. Full article
(This article belongs to the Special Issue Worldwide Accidents: Trends, Investigation and Prevention)
13 pages, 1576 KiB  
Article
Assessment of Fire Safety Management for Special Needs Schools in South Africa
by Tlou D. Raphela and Ndivhuwo Ndaba
Safety 2024, 10(2), 43; https://doi.org/10.3390/safety10020043 - 30 Apr 2024
Abstract
The safety and well-being of learners with special educational needs in South Africa remain a paramount concern, significantly impacting their constitutional rights and dignity. Despite legislative commitments aimed at fostering inclusive education, a pervasive absence of adequate fire safety measures in special needs [...] Read more.
The safety and well-being of learners with special educational needs in South Africa remain a paramount concern, significantly impacting their constitutional rights and dignity. Despite legislative commitments aimed at fostering inclusive education, a pervasive absence of adequate fire safety measures in special needs schools (SNSs) in South Africa has persisted, leading to the vulnerability of these learners. Tragic incidents, such as fatal fires in these schools, as reported in the literature, underscore the urgent need for immediate intervention to ensure the safety and security of these learners, especially with regards to fire hazards. This study, conducted within the Northwest Province of South Africa, assessed the state of fire safety management in SNSs by applying a series of chi-squared (χ2) tests of independence for categorical variables, descriptive statistics, and regression analysis using the Statistical Package for Social Scientists (SPSS), Version 20 and found that limited access to power is the potential root cause of fires in these schools; also, the limited amount of fire safety initiatives was a problem. In addition, the ordinal regression showed a statistically significant relationship when the question of to what extent the learners in the sampled schools are involved in fire safety programs was regressed with the questions of whether management and stakeholders were involved in fire safety programs and also on taking part in the physical fire safety programs (χ2 = 47.412; df = 2; p < 0.001; R2 = 70.5%). Furthermore, fire safety management was not sufficiently implemented in the sampled schools and the safety legislations of the country were not implemented accordingly when it came to fire safety. This study identified root causes of fire risks, gauged stakeholders’ awareness and involvement in fire safety management, and advocated for more stringent safety policies and practices within the SNS based on the above findings. Full article
Show Figures

Figure 1

16 pages, 4948 KiB  
Article
Functionalization of Cathode–Electrolyte Interface with Ionic Liquids for High-Performance Quasi-Solid-State Lithium–Sulfur Batteries: A Low-Sulfur Loading Study
by Milinda Kalutara Koralalage, Varun Shreyas, William R. Arnold, Sharmin Akter, Arjun Thapa, Badri Narayanan, Hui Wang, Gamini U. Sumanasekera and Jacek B. Jasinski
Batteries 2024, 10(5), 155; https://doi.org/10.3390/batteries10050155 - 30 Apr 2024
Abstract
We introduce a quasi-solid-state electrolyte lithium-sulfur (Li–S) battery (QSSEB) based on a novel Li-argyrodite solid-state electrolyte (SSE), Super P–Sulfur cathode, and Li-anode. The cathode was prepared using a water-based carboxymethyl cellulose (CMC) solution and styrene butadiene rubber (SBR) as the binder while Li [...] Read more.
We introduce a quasi-solid-state electrolyte lithium-sulfur (Li–S) battery (QSSEB) based on a novel Li-argyrodite solid-state electrolyte (SSE), Super P–Sulfur cathode, and Li-anode. The cathode was prepared using a water-based carboxymethyl cellulose (CMC) solution and styrene butadiene rubber (SBR) as the binder while Li6PS5F0.5Cl0.5 SSE was synthesized using a solvent-based process, via the introduction of LiF into the argyrodite crystal structure, which enhances both the ionic conductivity and interface-stabilizing properties of the SSE. Ionic liquids (IL) were prepared using lithium bis(trifluoromethyl sulfonyl)imide (LiTFSI) as the salt, with pre-mixed pyrrolidinium bis(trifluoromethyl sulfonyl)imide (PYR) as solvent and 1,3-dioxolane (DOL) as diluent, and they were used to wet the SSE–electrode interfaces. The effect of IL dilution, the co-solvent amount, the LiTFSI concentration, the C rate at which the batteries are tested and the effect of the introduction of SSE in the cathode, were systematically studied and optimized to develop a QSSEB with higher capacity retention and cyclability. Interfacial reactions occurring at the cathode–SSE interface during cycling were also investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and X-ray photoelectron spectroscopy supported by ab initio molecular dynamics simulations. This work offers a new insight into the intimate interfacial contacts between the SSE and carbon–sulfur cathodes, which are critical for improving the electrochemical performance of quasi-solid-state lithium–sulfur batteries. Full article
19 pages, 2511 KiB  
Review
A Review of Emerging Technologies for the Extraction of Bioactive Compounds from Berries (Phalsa Berries)
by Rafeeya Shams, Simrat Kaur, Kshirod Kumar Dash, Nikolett Czipa, Béla Kovács and Ayaz Mukarram Shaikh
Horticulturae 2024, 10(5), 455; https://doi.org/10.3390/horticulturae10050455 - 30 Apr 2024
Abstract
Berries have been gaining in popularity among consumers and producers due to their natural bioactive compounds that have beneficial effects on human health. This review aimed to identify effective techniques for the extraction of bioactive compounds from berries, consolidate the findings of recent [...] Read more.
Berries have been gaining in popularity among consumers and producers due to their natural bioactive compounds that have beneficial effects on human health. This review aimed to identify effective techniques for the extraction of bioactive compounds from berries, consolidate the findings of recent studies using various extraction technologies, and provide a global perspective on the research trends in this field. These extraction techniques include pulsed electric field, ultrasound-assisted extraction, pressurized liquid extraction, microwave-assisted extraction, and supercritical CO2 extraction. The solid waste generated during the industrial berry juice production process is assumed to be a less expensive source of raw materials for the natural extraction of bioactive compounds. The main aim of modern techniques is to produce more of the desired compound and find a method to extract bioactive compounds from berries without the use of hazardous solvents. These include flavonoids, phenols, anthocyanins, and antioxidants. Regarding the characterization of the bioactive compounds that are isolated from berries, aspects such as scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and nuclear magnetic resonance were reviewed. Full article
(This article belongs to the Section Processed Horticultural Products)
Show Figures

Figure 1

16 pages, 8224 KiB  
Article
Saffron In Vitro Propagation: An Innovative Method by Temporary Immersion System (TIS), Integrated with Machine Learning Analysis
by Waed Tarraf, Tolga İzgü, Özhan Şimşek, Nunzia Cicco and Carla Benelli
Horticulturae 2024, 10(5), 454; https://doi.org/10.3390/horticulturae10050454 - 30 Apr 2024
Abstract
The propagation of Crocus sativus L. relies exclusively on corm multiplication. As underground storage organs, corms are susceptible to a wide range of pathogens, environmental stresses, and diseases, making traditional propagation methods often ineffective with the loss of valuable material. In vitro propagation [...] Read more.
The propagation of Crocus sativus L. relies exclusively on corm multiplication. As underground storage organs, corms are susceptible to a wide range of pathogens, environmental stresses, and diseases, making traditional propagation methods often ineffective with the loss of valuable material. In vitro propagation offers an alternative for the saffron culture under controlled conditions. In particular, the innovative application of the Temporary Immersion System (TIS) represents a technological advancement for enhancing biomass production with a reduction in operational costs. The current study utilized the Plantform™ bioreactor to propagate in vitro saffron corms from the ‘Abruzzo’ region (Italy), integrating machine learning models to assess its performance. The evaluation of saffron explants after 30, 60, and 90 days of culture showed a marked improvement in growth and microcorm production compared to conventional in vitro culture on semisolid medium, supported by the machine learning analysis. Indeed, the Random Forest algorithm revealed a predictive accuracy with an R2 value of 0.81 for microcorm number, showcasing the capability of machine learning models to forecast propagation outcomes effectively. These results confirm that applying TIS in saffron culture could lead to economically viable, large biomass production within a controlled environment, irrespective of seasonality. This study represents the first endeavor to use TIS technology to enhance the in vitro propagation of saffron in conjunction with machine learning, suggesting an innovative approach for cultivating high-value crops like saffron. Full article
(This article belongs to the Special Issue Innovative Micropropagation of Horticultural and Medicinal Plants)
Show Figures

Figure 1

15 pages, 5161 KiB  
Article
The Transcription Factors AcuK and AcuM Influence Siderophore Biosynthesis of Aspergillus fumigatus
by Patricia Caballero, Annie Yap, Michael J. Bromley and Hubertus Haas
J. Fungi 2024, 10(5), 327; https://doi.org/10.3390/jof10050327 - 30 Apr 2024
Abstract
The mold Aspergillus fumigatus employs two high-affinity uptake systems, reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA), for the acquisition of the essential trace element iron. SIA has previously been shown to be crucial for virulence in mammalian hosts. Here, we show [...] Read more.
The mold Aspergillus fumigatus employs two high-affinity uptake systems, reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA), for the acquisition of the essential trace element iron. SIA has previously been shown to be crucial for virulence in mammalian hosts. Here, we show that a lack of AcuK or AcuM, transcription factors required for the activation of gluconeogenesis, decreases the production of both extra- and intracellular siderophores in A. fumigatus. The lack of AcuM or AcuK did not affect the expression of genes involved in RIA and SIA, suggesting that these regulators do not directly regulate iron homeostasis genes, but indirectly affect siderophore production through their influence on metabolism. Consistent with this, acetate supplementation reversed the intracellular siderophore production defect of ΔacuM and ΔacuK. Moreover, ΔacuM and ΔacuK displayed a similar growth defect under iron limitation and iron sufficiency, which suggests they have a general role in carbon metabolism apart from gluconeogenesis. In agreement with a potential role of the glyoxylate cycle in adaptation to iron starvation, transcript levels of the malate synthase-encoding acuE were found to be upregulated by iron limitation that is partially dependent on AcuK and AcuM. Together, these data demonstrate the influence of iron availability on carbon metabolism. Full article
(This article belongs to the Special Issue Fungal Metabolism in Filamentous Fungi: 2nd Edition)
10 pages, 7216 KiB  
Article
Comparison of De-Torque and Failure Load Evaluation of Selective-Laser-Sintered CoCr, CAD-CAM ZrO, and Machined Implant Abutment/Restoration
by Fahim Vohra, Rawan Alsaif, Rawaiz Khan and Ishfaq A. Bukhari
Bioengineering 2024, 11(5), 448; https://doi.org/10.3390/bioengineering11050448 - 30 Apr 2024
Abstract
Aim: This study aimed to compare the torque loss, fracture load, compressive strength, and failure types of selective-laser-sintered cobalt chromium (SLM-Co-Cr), computer-aided design and computer-aided manufacturing zirconium oxide (CAD-CAM-ZrO), and machined titanium (Ti) implant abutments. Methods: Thirty endosseous dental implants were vertically embedded [...] Read more.
Aim: This study aimed to compare the torque loss, fracture load, compressive strength, and failure types of selective-laser-sintered cobalt chromium (SLM-Co-Cr), computer-aided design and computer-aided manufacturing zirconium oxide (CAD-CAM-ZrO), and machined titanium (Ti) implant abutments. Methods: Thirty endosseous dental implants were vertically embedded with machined Ti (control group), CAD-CAM-ZrO, and SLM-Co-Cr abutments. Abutment fabrication involved CAD-CAM milling and SLM technology. The de-torque assessment included preload reverse torque values (RTVs), cyclic loading, and post-RTVs using a customized protocol. Fracture load assessment employed ISO-14801 standards, and statistical analysis was conducted using ANOVA and Tukey Post hoc tests (p < 0.05). Results: In pre-load RTVs, SLM-Co-Cr showed the lowest mean torque loss (24.30 ± 2.13), followed by machined Ti (27.33 ± 2.74) and CAD-CAM-ZrO (22.07 ± 2.20). Post-load RTVs decreased for all groups. Fracture load and compressive strength were highest for SLM-Co-Cr, with significant differences among groups (p < 0.001). Fracture types included abutment failures in SLM-Co-Cr and machined Ti, while CAD-CAM-ZrO exhibited crown separation with deformation. Conclusion: SLM-Co-Cr-fabricated implant abutments exhibited superior stability and resistance to rotational forces, higher fracture loads, and greater compressive strength compared to CAD-CAM-ZrO and machined Ti. Full article
(This article belongs to the Special Issue Recent Progress in Dental Biomaterials)
Show Figures

Figure 1

18 pages, 3394 KiB  
Article
AGSAM: Agent-Guided Segment Anything Model for Automatic Segmentation in Few-Shot Scenarios
by Hao Zhou, Yao He, Xiaoxiao Cui and Zhi Xie
Bioengineering 2024, 11(5), 447; https://doi.org/10.3390/bioengineering11050447 - 30 Apr 2024
Abstract
Precise medical image segmentation of regions of interest (ROIs) is crucial for accurate disease diagnosis and progression assessment. However, acquiring high-quality annotated data at the pixel level poses a significant challenge due to the resource-intensive nature of this process. This scarcity of high-quality [...] Read more.
Precise medical image segmentation of regions of interest (ROIs) is crucial for accurate disease diagnosis and progression assessment. However, acquiring high-quality annotated data at the pixel level poses a significant challenge due to the resource-intensive nature of this process. This scarcity of high-quality annotated data results in few-shot scenarios, which are highly prevalent in clinical applications. To address this obstacle, this paper introduces Agent-Guided SAM (AGSAM), an innovative approach that transforms the Segment Anything Model (SAM) into a fully automated segmentation method by automating prompt generation. Capitalizing on the pre-trained feature extraction and decoding capabilities of SAM-Med2D, AGSAM circumvents the need for manual prompt engineering, ensuring adaptability across diverse segmentation methods. Furthermore, the proposed feature augmentation convolution module (FACM) enhances model accuracy by promoting stable feature representations. Experimental evaluations demonstrate AGSAM’s consistent superiority over other methods across various metrics. These findings highlight AGSAM’s efficacy in tackling the challenges associated with limited annotated data while achieving high-quality medical image segmentation. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

25 pages, 8632 KiB  
Systematic Review
Wound Modulations in Glaucoma Surgery: A Systematic Review
by Bhoomi Dave, Monica Patel, Sruthi Suresh, Mahija Ginjupalli, Arvind Surya, Mohannad Albdour and Karanjit S. Kooner
Bioengineering 2024, 11(5), 446; https://doi.org/10.3390/bioengineering11050446 - 30 Apr 2024
Abstract
Excessive fibrosis and resultant poor control of intraocular pressure (IOP) reduce the efficacy of glaucoma surgeries. Historically, corticosteroids and anti-fibrotic agents, such as mitomycin C (MMC) and 5-fluorouracil (5-FU), have been used to mitigate post-surgical fibrosis, but these have unpredictable outcomes. Therefore, there [...] Read more.
Excessive fibrosis and resultant poor control of intraocular pressure (IOP) reduce the efficacy of glaucoma surgeries. Historically, corticosteroids and anti-fibrotic agents, such as mitomycin C (MMC) and 5-fluorouracil (5-FU), have been used to mitigate post-surgical fibrosis, but these have unpredictable outcomes. Therefore, there is a need to develop novel treatments which provide increased effectiveness and specificity. This review aims to provide insight into the pathophysiology behind wound healing in glaucoma surgery, as well as the current and promising future wound healing agents that are less toxic and may provide better IOP control. Full article
(This article belongs to the Special Issue Meeting Challenges in the Diagnosis and Treatment of Glaucoma)
Show Figures

Graphical abstract

13 pages, 2034 KiB  
Article
An Automated Video Analysis System for Retrospective Assessment and Real-Time Monitoring of Endoscopic Procedures (with Video)
by Yan Zhu, Ling Du, Pei-Yao Fu, Zi-Han Geng, Dan-Feng Zhang, Wei-Feng Chen, Quan-Lin Li and Ping-Hong Zhou
Bioengineering 2024, 11(5), 445; https://doi.org/10.3390/bioengineering11050445 - 30 Apr 2024
Abstract
Background and Aims: Accurate recognition of endoscopic instruments facilitates quantitative evaluation and quality control of endoscopic procedures. However, no relevant research has been reported. In this study, we aimed to develop a computer-assisted system, EndoAdd, for automated endoscopic surgical video analysis based on [...] Read more.
Background and Aims: Accurate recognition of endoscopic instruments facilitates quantitative evaluation and quality control of endoscopic procedures. However, no relevant research has been reported. In this study, we aimed to develop a computer-assisted system, EndoAdd, for automated endoscopic surgical video analysis based on our dataset of endoscopic instrument images. Methods: Large training and validation datasets containing 45,143 images of 10 different endoscopic instruments and a test dataset of 18,375 images collected from several medical centers were used in this research. Annotated image frames were used to train the state-of-the-art object detection model, YOLO-v5, to identify the instruments. Based on the frame-level prediction results, we further developed a hidden Markov model to perform video analysis and generate heatmaps to summarize the videos. Results: EndoAdd achieved high accuracy (>97%) on the test dataset for all 10 endoscopic instrument types. The mean average accuracy, precision, recall, and F1-score were 99.1%, 92.0%, 88.8%, and 89.3%, respectively. The area under the curve values exceeded 0.94 for all instrument types. Heatmaps of endoscopic procedures were generated for both retrospective and real-time analyses. Conclusions: We successfully developed an automated endoscopic video analysis system, EndoAdd, which supports retrospective assessment and real-time monitoring. It can be used for data analysis and quality control of endoscopic procedures in clinical practice. Full article
Show Figures

Figure 1

14 pages, 1056 KiB  
Review
Innovations in Peripheral Nerve Regeneration
by Ting Chak Lam and Yiu Yan Leung
Bioengineering 2024, 11(5), 444; https://doi.org/10.3390/bioengineering11050444 - 30 Apr 2024
Abstract
The field of peripheral nerve regeneration is a dynamic and rapidly evolving area of research that continues to captivate the attention of neuroscientists worldwide. The quest for effective treatments and therapies to enhance the healing of peripheral nerves has gained significant momentum in [...] Read more.
The field of peripheral nerve regeneration is a dynamic and rapidly evolving area of research that continues to captivate the attention of neuroscientists worldwide. The quest for effective treatments and therapies to enhance the healing of peripheral nerves has gained significant momentum in recent years, as evidenced by the substantial increase in publications dedicated to this field. This surge in interest reflects the growing recognition of the importance of peripheral nerve recovery and the urgent need to develop innovative strategies to address nerve injuries. In this context, this article aims to contribute to the existing knowledge by providing a comprehensive review that encompasses both biomaterial and clinical perspectives. By exploring the utilization of nerve guidance conduits and pharmacotherapy, this article seeks to shed light on the remarkable advancements made in the field of peripheral nerve regeneration. Nerve guidance conduits, which act as artificial channels to guide regenerating nerves, have shown promising results in facilitating nerve regrowth and functional recovery. Additionally, pharmacotherapy approaches have emerged as potential avenues for promoting nerve regeneration, with various therapeutic agents being investigated for their neuroprotective and regenerative properties. The pursuit of advancing the field of peripheral nerve regeneration necessitates persistent investment in research and development. Continued exploration of innovative treatments, coupled with a deeper understanding of the intricate processes involved in nerve regeneration, holds the promise of unlocking the complete potential of these groundbreaking interventions. By fostering collaboration among scientists, clinicians, and industry partners, we can accelerate progress in this field, bringing us closer to the realization of transformative therapies that restore function and quality of life for individuals affected by peripheral nerve injuries. Full article
(This article belongs to the Special Issue Innovations in Nerve Regeneration)
Show Figures

Figure 1

18 pages, 1528 KiB  
Article
Deep Learning-Based Detection of Glottis Segmentation Failures
by Armin A. Dadras and Philipp Aichinger
Bioengineering 2024, 11(5), 443; https://doi.org/10.3390/bioengineering11050443 - 30 Apr 2024
Abstract
Medical image segmentation is crucial for clinical applications, but challenges persist due to noise and variability. In particular, accurate glottis segmentation from high-speed videos is vital for voice research and diagnostics. Manual searching for failed segmentations is labor-intensive, prompting interest in automated methods. [...] Read more.
Medical image segmentation is crucial for clinical applications, but challenges persist due to noise and variability. In particular, accurate glottis segmentation from high-speed videos is vital for voice research and diagnostics. Manual searching for failed segmentations is labor-intensive, prompting interest in automated methods. This paper proposes the first deep learning approach for detecting faulty glottis segmentations. For this purpose, faulty segmentations are generated by applying both a poorly performing neural network and perturbation procedures to three public datasets. Heavy data augmentations are added to the input until the neural network’s performance decreases to the desired mean intersection over union (IoU). Likewise, the perturbation procedure involves a series of image transformations to the original ground truth segmentations in a randomized manner. These data are then used to train a ResNet18 neural network with custom loss functions to predict the IoU scores of faulty segmentations. This value is then thresholded with a fixed IoU of 0.6 for classification, thereby achieving 88.27% classification accuracy with 91.54% specificity. Experimental results demonstrate the effectiveness of the presented approach. Contributions include: (i) a knowledge-driven perturbation procedure, (ii) a deep learning framework for scoring and detecting faulty glottis segmentations, and (iii) an evaluation of custom loss functions. Full article
(This article belongs to the Special Issue Models and Analysis of Vocal Emissions for Biomedical Applications)
Show Figures

Graphical abstract

17 pages, 7426 KiB  
Article
PA12 Surface Treatment and Its Effect on Compatibility with Nutritional Culture Medium to Maintain Cell Vitality and Proliferation
by Norbert Ferencik, Maria Danko, Zuzana Nadova, Petra Kolembusova and William Steingartner
Bioengineering 2024, 11(5), 442; https://doi.org/10.3390/bioengineering11050442 - 30 Apr 2024
Abstract
This research investigates the suitability of printed polyamide 12 (PA12) and its dyed version to support cells in bioengineering applications. For this purpose, human gingival fibroblasts (hGF06) were cultured on PA-12 scaffolds that were 3D-printed by Multi Jet Fusion (MJF). The study examined [...] Read more.
This research investigates the suitability of printed polyamide 12 (PA12) and its dyed version to support cells in bioengineering applications. For this purpose, human gingival fibroblasts (hGF06) were cultured on PA-12 scaffolds that were 3D-printed by Multi Jet Fusion (MJF). The study examined the direct cultivation of cells on MJF-printed cell culture scaffolds and the effect of leachate of PA-12 printed by MJF on the cultured cells. The article presents research on the surface treatment of PA12 material used in 3D printing and the effect of automatic staining on cell vitality and proliferation in vitro. The study presents a unique device designed exclusively for staining prints made of the biocompatible material PA12 and demonstrates the compatibility of 3D-printed polyamide 12 parts stained in the novel device with a nutrient culture medium and cells. This novel PA12 surface treatment for biomedical purposes does not affect the compatibility with the culture medium, which is essential for cell viability and proliferation. Fluorescence microscopy revealed that mitochondrial fitness and cell survival were not affected by prolonged incubation with clear or dyed PA12 3D-printed parts. Full article
Show Figures

Figure 1

32 pages, 2080 KiB  
Review
Climate Change and Mycotoxins Trends in Serbia and Croatia: A 15-Year Review
by Jovana Kos, Bojana Radić, Tina Lešić, Mislav Anić, Pavle Jovanov, Bojana Šarić and Jelka Pleadin
Foods 2024, 13(9), 1391; https://doi.org/10.3390/foods13091391 - 30 Apr 2024
Abstract
This review examines the 15-year presence of mycotoxins in food from Serbia and Croatia to provide a comprehensive overview of trends. Encompassing the timeframe from 2009 to 2023, this study integrates data from both countries and investigates climate change patterns. The results from [...] Read more.
This review examines the 15-year presence of mycotoxins in food from Serbia and Croatia to provide a comprehensive overview of trends. Encompassing the timeframe from 2009 to 2023, this study integrates data from both countries and investigates climate change patterns. The results from Serbia focus primarily on maize and milk and show a strong dependence of contamination on weather conditions. However, there is limited data on mycotoxins in cereals other than maize, as well as in other food categories. Conversely, Croatia has a broader spectrum of studies, with significant attention given to milk and maize, along with more research on other cereals, meat, and meat products compared to Serbia. Over the investigated 15-year period, both Serbia and Croatia have experienced notable shifts in climate, including fluctuations in temperature, precipitation, and humidity levels. These changes have significantly influenced agriculture, consequently affecting the occurrence of mycotoxins in various food products. The results summarized in this 15-year review indicate the urgent need for further research and action to address mycotoxin contamination in Serbian and Croatian food supply chains. This urgency is further emphasized by the changing climatic conditions and their potential to exacerbate public health and food safety risks associated with mycotoxins. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

15 pages, 397 KiB  
Article
A Sensory Shelf-Life Study for the Evaluation of New Eco-Sustainable Packaging of Single-Portion Croissants
by Roberta Tolve, Lucia Sportiello, Giada Rainero, Andrea Pelattieri, Marco Trezzi and Fabio Favati
Foods 2024, 13(9), 1390; https://doi.org/10.3390/foods13091390 - 30 Apr 2024
Abstract
Understanding the correlation between straightforward analytical methods and sensory attributes is pivotal for transitioning to sustainable packaging while improving product quality. In this context, the viability of eco-sustainable packaging alternatives for single-packaged croissants has been investigated through examining the correlations between analytical methods, [...] Read more.
Understanding the correlation between straightforward analytical methods and sensory attributes is pivotal for transitioning to sustainable packaging while improving product quality. In this context, the viability of eco-sustainable packaging alternatives for single-packaged croissants has been investigated through examining the correlations between analytical methods, sensory attributes, employing quantitative descriptive analysis (QDA), and consumer survival analysis. The performance of biaxially oriented polypropylene (BOPP), a petrochemical plastic film, against paper-based, compostable, and biodegradable films over a 150-day croissant storage period was compared in this study, examining both physiochemical and sensory perspectives. The results showed a correlation between a lower water vapour barrier in packaging materials and increased moisture migration and croissant hardness, as assessed by the Avrami kinetic model. Notably, given its reduced barrier properties, the compostable film accelerated sensory profile deterioration, as evidenced by QDA results. Shelf-life estimation, assessed by consumer rejection, underscored the viability of the biodegradable film for up to 185 days, surpassing BOPP, paper-based, and other biodegradable alternatives. Using linear regression, physiochemical parameters associated with predicted shelf-life were elucidated. Overall, croissants were rejected by 50% of consumers when they reached humidity levels below 18%, water activity below 0.81, firmness exceeding 1064 N, pH above 4.4, and acidity below 4.5. Based on the results of this study, biodegradable packaging emerges as a promising alternative to traditional BOPP, offering a sustainable opportunity to extend the shelf-life of croissants. Full article
(This article belongs to the Section Food Packaging and Preservation)
13 pages, 2538 KiB  
Article
Simulation Method for the Impact of Atmospheric Wind Speed on Optical Signals in Satellite–Ground Laser Communication Links
by Wujisiguleng Zhao and Chunyi Chen
Photonics 2024, 11(5), 417; https://doi.org/10.3390/photonics11050417 - 30 Apr 2024
Abstract
To analyze the intensity of atmospheric turbulence in a satellite–ground laser communication link, it is important to consider the effect of increased atmospheric turbulence caused by wind speed. Atmospheric turbulence causes a change in the refractive index, which negatively impacts the quality and [...] Read more.
To analyze the intensity of atmospheric turbulence in a satellite–ground laser communication link, it is important to consider the effect of increased atmospheric turbulence caused by wind speed. Atmospheric turbulence causes a change in the refractive index, which negatively impacts the quality and focusing ability of the laser beam by altering its phase front. To simulate the changes in amplitude and phase characteristics of laser beam propagation in atmospheric turbulence caused by wind speed, a transverse translation phase screen is used. To better understand and address the influence of atmospheric wind speed on the phase of optical signals in satellite–ground laser communication links, this paper proposes a Monte Carlo simulation method. This method utilizes the spatial and temporal variations in the refractive index in the atmosphere and integrates the principles of optical signal propagation in the atmosphere to simulate changes in the phase of optical signals under different wind speed conditions. By analyzing the variations in the received optical signal’s power, the Monte Carlo method is employed to simulate phase screens and logarithmic amplitude screens. Additionally, it models the probability density of the statistical behavior of received optical signal’s fluctuations, as well as the time autocorrelation coefficient of optical signals. This paper, under the coupling condition in satellite–ground laser communication links, conducted a Monte Carlo simulation experiment to analyze the characteristics of the optical signal’s fluctuations in the link and discovered that atmospheric wind speed affects the shape of the power spectral density model of the received optical signal. Increasing wind speed leads to a decrease in the time autocorrelation coefficient of the received optical signal and affects the coupling efficiency. The paper then used a cubic spline interpolation fitting method to verify the models of the power spectral density and the autocorrelation time coefficient of the optical signal. This provides a theoretical foundation and practical guidance for the optimization of satellite–ground laser communication systems. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

16 pages, 1053 KiB  
Article
Date Vinegar: First Isolation of Acetobacter and Formulation of a Starter Culture
by Zahra S. Al-Kharousi, Zainab Al-Ramadhani, Fatma A. Al-Malki and Nasser Al-Habsi
Foods 2024, 13(9), 1389; https://doi.org/10.3390/foods13091389 - 30 Apr 2024
Abstract
There is a lack of scientific analysis and control over the production of date vinegar in Oman, despite its growing demand in the worldwide market. Traditional production of date vinegar may lead to elevated amounts of ethanol (≥0.5%) and reduced content of acetic [...] Read more.
There is a lack of scientific analysis and control over the production of date vinegar in Oman, despite its growing demand in the worldwide market. Traditional production of date vinegar may lead to elevated amounts of ethanol (≥0.5%) and reduced content of acetic acid (<4%) compared to the standard acceptable levels. This study aimed to isolate non-Gluconobacter species from date vinegar produced by spontaneous fermentation and formulate starter cultures for quick and efficient production of date vinegar. In spontaneous fermentation date vinegar samples, the highest concentration of acetic acid was 10.42% on day 50. Acetobacter malorum (5 isolates), A. persici (3 isolates), and A. tropicalis (3 isolates) were identified based on 16S rRNA gene sequences for the first time in date vinegar. For date vinegar prepared with a starter culture of Acetobacter and yeast, the highest concentration of acetic acid was 4.67%. In conclusion, spontaneous fermentation resulted in the production of date vinegar with a high concentration of acetic acid, acceptable concentrations of ethanol and methanol, and the first isolation of three Acetobacter species. The formulated starter culture produced acceptable amounts of acetic acid and the time of fermentation was reduced 10 times (from 40 days to 4 days). This can provide the basis for producing a personalized or commercial product that ensures the production of good-quality date vinegar in an easier, faster, safer, and more efficient way from low-quality and surplus dates. Full article
(This article belongs to the Special Issue Research on Microorganism in Fermented Vegetables and Fruits)
10 pages, 2342 KiB  
Article
Modulation of Second-Order Sideband Efficiency in an Atom-Assisted Optomechanical System
by Liang-Xuan Fan, Tao Shui, Ling Li and Wen-Xing Yang
Photonics 2024, 11(5), 416; https://doi.org/10.3390/photonics11050416 - 30 Apr 2024
Abstract
We propose an efficient scheme to enhance the generation of optical second-order sidebands (OSSs) in an atom-assisted optomechanical system. The cavity field is coupled with a strong driving field and a weak probe field, and a control field is applied to the atom. [...] Read more.
We propose an efficient scheme to enhance the generation of optical second-order sidebands (OSSs) in an atom-assisted optomechanical system. The cavity field is coupled with a strong driving field and a weak probe field, and a control field is applied to the atom. We use the steady-state method to analyze the nonlinear interaction in the system, which is different from the traditional linear analysis method. The existence of an auxiliary three-level atom driven by the control field significantly enhances the generation of an OSS. It is found that the efficiency of the OSS can be effectively modulated by adjusting the Rabi frequency of the control field, optomechanical cooperativity and atomic coupling strength. Our scheme provides a promising solution for controlling light propagation and has potential application in quantum optical devices and quantum information networks. Full article
(This article belongs to the Special Issue Optics and Laser: Light Field Manipulation)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop