The 2023 MDPI Annual Report has
been released!
 
22 pages, 535 KiB  
Systematic Review
Assessment of Effectiveness and Safety of Aspiration-Assisted Nephrostomic Access Sheaths in PCNL and Intrarenal Pressures Evaluation: A Systematic Review of the Literature
by Marco Nizzardo, Giancarlo Albo, Francesco Ripa, Ester Zino, Elisa De Lorenzis, Luca Boeri, Fabrizio Longo, Emanuele Montanari and Stefano Paolo Zanetti
J. Clin. Med. 2024, 13(9), 2558; https://doi.org/10.3390/jcm13092558 (registering DOI) - 26 Apr 2024
Abstract
Different suction-assisted nephrostomic sheaths have been developed for percutaneous nephrolithotomy (PCNL). Objectives: (1) To examine PCNL techniques performed with different aspiration-assisted sheaths (Clear Petra® sheath, Superperc, SuperminiPCNL, and a miniPCNL patented sheath), with specific regard to effectiveness and safety outcomes in adult [...] Read more.
Different suction-assisted nephrostomic sheaths have been developed for percutaneous nephrolithotomy (PCNL). Objectives: (1) To examine PCNL techniques performed with different aspiration-assisted sheaths (Clear Petra® sheath, Superperc, SuperminiPCNL, and a miniPCNL patented sheath), with specific regard to effectiveness and safety outcomes in adult and paediatric patients; (2) to extrapolate intrarenal pressure (IRP) data during these procedures. Methods: A systematic literature search was performed in accordance with PRISMA guidelines. Relevant articles up to 8 February 2024 were included. Results: Twenty-five studies were selected, thirteen retrospective and twelve prospective. The use of four different aspirating sheaths for miniPCNL was reported: Clear Petra® sheath, Superperc, SuperminiPCNL, and a miniPCNL patented sheath. Stone free rates (SFRs) across techniques ranged from 71.3% to 100%, and complication rates from 1.5% to 38.9%. Infectious complication rates varied from 0 to 27.8% and bleeding complication rates from 0 to 8.9%. Most complications were low grade ones. The trend among studies comparing aspiration- and non-aspiration-assisted miniPCNL was towards equivalent or better SFRs and lower overall infectious and bleeding complication rates in suction techniques. Operation time was consistently lower in suction procedures, with a mean shortening of the procedural time of 19 min. Seven studies reported IRP values during suction miniPCNL. Two studies reported satisfactory SFRs and adequate safety profiles in paediatric patient cohorts. Conclusions: MiniPCNL with aspirating sheaths appears to be safe and effective in both adult and paediatric patients. A trend towards a reduction of overall infectious and bleeding complications with respect to non-suction procedures is evident, with comparable or better SFRs and consistently shorter operative times. The IRP profile seems to be safe with the aid of aspirating sheaths. However, high quality evidence on this topic is still lacking. Full article
(This article belongs to the Special Issue Advances in Surgical Management of Urinary Stones)
26 pages, 13695 KiB  
Article
Local Path Planning Method for Unmanned Ship Based on Encounter Situation Inference and COLREGS Constraints
by Gang Wang, Jingheng Wang, Xiaoyuan Wang, Quanzheng Wang, Longfei Chen, Junyan Han, Bin Wang and Kai Feng
J. Mar. Sci. Eng. 2024, 12(5), 720; https://doi.org/10.3390/jmse12050720 (registering DOI) - 26 Apr 2024
Abstract
Local path planning, as an essential technology to ensure intelligent ships’ safe navigation, has attracted the attention of many scholars worldwide. In most existing studies, the impact of COLREGS has received limited consideration, and there is insufficient exploration of the method in complex [...] Read more.
Local path planning, as an essential technology to ensure intelligent ships’ safe navigation, has attracted the attention of many scholars worldwide. In most existing studies, the impact of COLREGS has received limited consideration, and there is insufficient exploration of the method in complex waters with multiple interfering ships and static obstacles. Therefore, in this paper, a generation method for a time–space overlapping equivalent static obstacle line for ships in multi-ship encounter scenarios where both dynamic and static obstacles coexist is proposed. By dynamically inferring ships’ encounter situations and considering the requirements of COLREGS, the influence of interfering ships and static obstacles on the navigation of the target ship at different times in the near future is represented as static obstacle lines. These lines are then incorporated into the scene that the target ship encountered at the path planning moment. Subsequently, the existing path planning methods were extensively utilized to obtain the local path. Compared with many common path planning methods in random scenarios, the effectiveness and reliability of the method proposed are verified. It has been demonstrated by experimental results that the proposed method can offer a theoretical basis and technical support for the autonomous navigation of unmanned ships. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 7182 KiB  
Article
Effect of Chitin Nanocrystal Deacetylation on a Nature-Mimicking Interface in Carbon Fiber Composites
by Abdellatif M. Abdel-Mohsen, Rasha M. Abdel-Rahman, Lukáš Kalina, Vishakha Vishakha, Ludmila Kaprálková, Pavel Němeček, Josef Jančář and Ivan Kelnar
J. Compos. Sci. 2024, 8(5), 163; https://doi.org/10.3390/jcs8050163 (registering DOI) - 26 Apr 2024
Abstract
The formation of a rigid, tough interface based on a nacre-like structure in carbon fiber (CF) composites is a promising way to eliminate low delamination resistance. An effective method of coating CFs is electrophoretic deposition (EPD), which, in the case of dissimilar components [...] Read more.
The formation of a rigid, tough interface based on a nacre-like structure in carbon fiber (CF) composites is a promising way to eliminate low delamination resistance. An effective method of coating CFs is electrophoretic deposition (EPD), which, in the case of dissimilar components like graphene oxide (GO) and polymeric glue, usually requires chemical bonding/strong interactions. In this work, we focus on chitin nanocrystals (ChNCs), leading to an excellent mechanical performance of artificial nacre, where favorable interactions and bonding with GO are controlled by degrees of deacetylation (5, 15, and 30%). We prepared coatings based on GO/ChNC adducts with 95/5, 90/10, 50/50, and 25/75 ratios using optimized EPD conditions (pH, concentration, voltage, and time). The prepared materials were characterized using FTIR, TEM, XPS, SEM, DLS, and XRD. SEM evaluation indicates the formation of a homogeneous interlayer, which has a fair potential for chemical bonding with the epoxy matrix. Short-beam testing of epoxy matrix composites indicates that the coating does not decrease stiffness and has a relatively low dependence on composition. Therefore, all coatings are promising for a detailed study of delamination resistance using laminate samples. Moreover, facile EPD from the water solution/suspension has a fair potential for industrial applications. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, Volume III)
Show Figures

Figure 1

15 pages, 3260 KiB  
Article
Mitigating the Impact of Harmful Algal Blooms on Aquaculture Using Technological Interventions: Case Study on a South African Farm
by Tahmina Ajmal, Fazeel Mohammed, Martin S. Goodchild, Jipsy Sudarsanan and Sarah Halse
Sustainability 2024, 16(9), 3650; https://doi.org/10.3390/su16093650 (registering DOI) - 26 Apr 2024
Abstract
Seafood, especially from the ocean, is now seen as a greener and more sustainable source of protein, causing an increase in its demand. This has also led to people making choices towards seafood as a replacement for carbon-intensive protein sources. As a result, [...] Read more.
Seafood, especially from the ocean, is now seen as a greener and more sustainable source of protein, causing an increase in its demand. This has also led to people making choices towards seafood as a replacement for carbon-intensive protein sources. As a result, the demand for seafood is growing, and as the aquaculture industry looks to increase production, keeping products safe and sustainable is imperative. There are many challenges faced by the aquaculture industry in meeting these increased demands. One such challenge is the presence of harmful algal blooms (HABs) in the ocean, which can have a major impact on aquatic life. In this paper, we look at the impact of this challenge on aquaculture and monitoring strategies whilst illustrating the potential for technological interventions to help mitigate the impact of an HAB. We will focus on Abagold Limited, a land-based marine aquaculture business that specialises in the large-scale production of abalone (Haliotis midae) based in Hermanus, South Africa. HABs are considered a threat to commercial-scale abalone farming along the South African coastline and require continuous monitoring. The most recent HAB was in February–April 2019, when the area experienced a severe red-tide event with blooms of predominantly Lingulodinium polyedrum. We present some of the monitoring strategies employing digital technologies to future-proof the industry. This article presents the development of a novel hybrid water quality forecasting model based on a TriLux multi-parameter sensor to monitor key water quality parameters. The actual experimental real water quality data from Abagold Limited show a good correlation as a basis for a forecasting model which would be a useful tool for the management of HABs in the aquaculture industry. Full article
(This article belongs to the Special Issue Sustainability in Water Resources, Water Quality, and Architecture)
Show Figures

Figure 1

15 pages, 366 KiB  
Article
Kitambaa: A Convivial Future-Oriented Framework for Kinangop’s Learning Hub
by Caroline Kuhn, Mary Warui and Dominic Kimani
Educ. Sci. 2024, 14(5), 465; https://doi.org/10.3390/educsci14050465 (registering DOI) - 26 Apr 2024
Abstract
The aim of this paper, and more generally, our project “Impact from the ground” (a multi-stage ongoing project), is to reimagine education so that it transcends the walls and harsh constraints of a “universal one size fits all” education. To achieve this, we [...] Read more.
The aim of this paper, and more generally, our project “Impact from the ground” (a multi-stage ongoing project), is to reimagine education so that it transcends the walls and harsh constraints of a “universal one size fits all” education. To achieve this, we propose a framework that will inform the design of a participatory approach to co-create a learning hub (an informal lifelong learning opportunity) with and within the community. To weave this framework, we explore the current landscape of education, looking at the challenges that youth from rural settings face to complete their studies in urban universities, and the difficulties they experience when looking for jobs after having done so. We briefly explain our research project and contextualize it in Kinangop, a small region in the Nyandarua County in Kenya, where we explored the enablers and constraints people face to engage in social innovation. We proceed to imagine an alternative education that is local and organic, with different principles and theories weaved into a fabric kitambaa (in Swahili) that serves as the ground for an education intervention that is meaningful, binding, and bonding for the community members. In so doing, we aim to center matters of knowledge production as multi-epistemic conversations, situating those at the margins of epistemic divisions at the center of productive and creative debates. Full article
(This article belongs to the Special Issue Decolonising Educational Technology)
20 pages, 6458 KiB  
Article
Multi-Source Dataset Assessment and Variation Characteristics of Snow Depth in Eurasia from 1980 to 2018
by Kaili Cheng, Zhigang Wei, Xianru Li and Li Ma
Atmosphere 2024, 15(5), 530; https://doi.org/10.3390/atmos15050530 (registering DOI) - 26 Apr 2024
Abstract
Snow is an indicator of climate change. Its variation can affect surface energy, water balance, and atmospheric circulation, providing important feedback on climate change. There is a lack of assessment of the spatial characteristics of multi-source snow data in Eurasia, and these data [...] Read more.
Snow is an indicator of climate change. Its variation can affect surface energy, water balance, and atmospheric circulation, providing important feedback on climate change. There is a lack of assessment of the spatial characteristics of multi-source snow data in Eurasia, and these data exhibit high spatial variability and other differences. Therefore, using data obtained from the Global Historical Climatology Network Daily (GHCND) from 1980 to 2018, snow depth information from ERA5, MERRA2, and GlobSnow is assessed in this study. The spatiotemporal variation characteristics and the primary spatial modes of seasonal variations in snow depth are analyzed. The results show that the snow depth, according to GlobSnow data, is closer to that of the measured site data, while the ERA5_Land and MERRA2 data are overestimated. The annual variations in snow depth are consistent with seasonal variations in winter and spring, with an increasing trend in the mountains of Central Asia and Siberia and a decreasing trend in most of the rest of Eurasia. The dominant patterns of snow depth in late autumn, winter, and spring are all north–south dipole patterns, and there is overall consistency in summer. Full article
(This article belongs to the Section Meteorology)
20 pages, 819 KiB  
Article
Co-Delivery of an Innovative Organoselenium Compound and Paclitaxel by pH-Responsive PCL Nanoparticles to Synergistically Overcome Multidrug Resistance in Cancer
by Daniela Mathes, Letícia Bueno Macedo, Taís Baldissera Pieta, Bianca Costa Maia, Oscar Endrigo Dorneles Rodrigues, Julliano Guerin Leal, Marcelo Wendt, Clarice Madalena Bueno Rolim, Montserrat Mitjans and Daniele Rubert Nogueira-Librelotto
Pharmaceutics 2024, 16(5), 590; https://doi.org/10.3390/pharmaceutics16050590 (registering DOI) - 26 Apr 2024
Abstract
In this study, we designed the association of the organoselenium compound 5′-Seleno-(phenyl)-3′-(ferulic-amido)-thymidine (AFAT-Se), a promising innovative nucleoside analogue, with the antitumor drug paclitaxel, in poly(ε-caprolactone) (PCL)-based nanoparticles (NPs). The nanoprecipitation method was used, adding the lysine-based surfactant, 77KS, as a pH-responsive adjuvant. The [...] Read more.
In this study, we designed the association of the organoselenium compound 5′-Seleno-(phenyl)-3′-(ferulic-amido)-thymidine (AFAT-Se), a promising innovative nucleoside analogue, with the antitumor drug paclitaxel, in poly(ε-caprolactone) (PCL)-based nanoparticles (NPs). The nanoprecipitation method was used, adding the lysine-based surfactant, 77KS, as a pH-responsive adjuvant. The physicochemical properties presented by the proposed NPs were consistent with expectations. The co-nanoencapsulation of the bioactive compounds maintained the antioxidant activity of the association and evidenced greater antiproliferative activity in the resistant/MDR tumor cell line NCI/ADR-RES, both in the monolayer/two-dimensional (2D) and in the spheroid/three-dimensional (3D) assays. Hemocompatibility studies indicated the safety of the nanoformulation, corroborating the ability to spare non-tumor 3T3 cells and human mononuclear cells of peripheral blood (PBMCs) from cytotoxic effects, indicating its selectivity for the cancerous cells. Furthermore, the synergistic antiproliferative effect was found for both the association of free compounds and the co-encapsulated formulation. These findings highlight the antitumor potential of combining these bioactives, and the proposed nanoformulation as a potentially safe and effective strategy to overcome multidrug resistance in cancer therapy. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

19 pages, 768 KiB  
Article
Physico-Chemical Characteristics of pH-Driven Active Film Loading with Curcumin Based on the Egg White Protein and Sodium Alginate Matrices
by Hanyu Li, Mengzhuo Liu, Xinyi Ju, Huajiang Zhang, Ning Xia, Jing Wang, Zhongjiang Wang and Ahmed M. Rayan
Foods 2024, 13(9), 1340; https://doi.org/10.3390/foods13091340 (registering DOI) - 26 Apr 2024
Abstract
The low solubility and stability of fat-soluble curcumin in water limit its application in active packaging. This study explored the use of a pH-driven method to investigate the preparation and enhancement of the performance of films loaded with curcumin in a matrix of [...] Read more.
The low solubility and stability of fat-soluble curcumin in water limit its application in active packaging. This study explored the use of a pH-driven method to investigate the preparation and enhancement of the performance of films loaded with curcumin in a matrix of sodium alginate (Alg) and egg white protein (EWP). In this study, the EWP, Alg, and curcumin primarily bind through hydrogen bonding, electrostatic interactions, and hydrophobic interactions. Compared to EWP films, the films loaded with curcumin through the pH-driven method exhibited enhanced extensibility and water resistance, with an elongation at break (EB) of 103.56 ± 3.13% and a water vapor permeability (WVP) of 1.67 ± 0.03 × 1010 g·m/m2·Pa·s. The addition of Alg improved the encapsulation efficiency and thermal stability of curcumin, thereby enhancing the antioxidant activity of the film through the addition of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, which resulted in 106.95 ± 2.61 μg TE/g and 144.44 ± 8.89 μg TE/g, respectively. It is noteworthy that the detrimental effect of Alg on the color responsiveness of films containing curcumin has also been observed. This study provides a potential strategy and consideration for the loading of low water-soluble active substances and the preparation of active packaging. Full article
11 pages, 671 KiB  
Article
Discovery of Antimicrobial Agents Based on Structural and Functional Study of the Klebsiella pneumoniae MazEF Toxin–Antitoxin System
by Chenglong Jin, Sung-Min Kang, Do-Hee Kim, Yuno Lee and Bong-Jin Lee
Antibiotics 2024, 13(5), 398; https://doi.org/10.3390/antibiotics13050398 (registering DOI) - 26 Apr 2024
Abstract
Klebsiella pneumoniae causes severe human diseases, but its resistance to current antibiotics is increasing. Therefore, new antibiotics to eradicate K. pneumoniae are urgently needed. Bacterial toxin–antitoxin (TA) systems are strongly correlated with physiological processes in pathogenic bacteria, such as growth arrest, survival, and [...] Read more.
Klebsiella pneumoniae causes severe human diseases, but its resistance to current antibiotics is increasing. Therefore, new antibiotics to eradicate K. pneumoniae are urgently needed. Bacterial toxin–antitoxin (TA) systems are strongly correlated with physiological processes in pathogenic bacteria, such as growth arrest, survival, and apoptosis. By using structural information, we could design the peptides and small-molecule compounds that can disrupt the binding between K. pneumoniae MazE and MazF, which release free MazF toxin. Because the MazEF system is closely implicated in programmed cell death, artificial activation of MazF can promote cell death of K. pneumoniae. The effectiveness of a discovered small-molecule compound in bacterial cell killing was confirmed through flow cytometry analysis. Our findings can contribute to understanding the bacterial MazEF TA system and developing antimicrobial agents for treating drug-resistant K. pneumoniae. Full article
12 pages, 467 KiB  
Article
Long-Term Impairment of Working Ability in Subjects under 60 Years of Age Hospitalised for COVID-19 at 2 Years of Follow-Up: A Cross-Sectional Study
by Luisa Frallonardo, Annunziata Ilenia Ritacco, Angela Amendolara, Domenica Cassano, Giorgia Manco Cesari, Alessia Lugli, Mariangela Cormio, Michele De Filippis, Greta Romita, Giacomo Guido, Luigi Piccolomo, Vincenzo Giliberti, Francesco Cavallin, Francesco Vladimiro Segala, Francesco Di Gennaro and Annalisa Saracino
Viruses 2024, 16(5), 688; https://doi.org/10.3390/v16050688 (registering DOI) - 26 Apr 2024
Abstract
Coronavirus disease 2019 (COVID-19) can lead to persistent and debilitating symptoms referred to as Post-Acute sequelae of SARS-CoV-2 infection (PASC) This broad symptomatology lasts for months after the acute infection and impacts physical and mental health and everyday functioning. In the present study, [...] Read more.
Coronavirus disease 2019 (COVID-19) can lead to persistent and debilitating symptoms referred to as Post-Acute sequelae of SARS-CoV-2 infection (PASC) This broad symptomatology lasts for months after the acute infection and impacts physical and mental health and everyday functioning. In the present study, we aimed to evaluate the prevalence and predictors of long-term impairment of working ability in non-elderly people hospitalised for COVID-19. Methods: This cross-sectional study involved 322 subjects hospitalised for COVID-19 from 1 March 2020 to 31 December 2022 in the University Hospital of Bari, Apulia, Italy, enrolled at the time of their hospital discharge and followed-up at a median of 731 days since hospitalization (IQR 466–884). Subjects reporting comparable working ability and those reporting impaired working ability were compared using the Mann-Whitney test (continuous data) and Fisher’s test or Chi-Square test (categorical data). Multivariable analysis of impaired working ability was performed using a logistic regression model. Results: Among the 322 subjects who were interviewed, 184 reported comparable working ability (57.1%) and 134 reported impaired working ability (41.6%) compared to the pre-COVID-19 period. Multivariable analysis identified age at hospital admission (OR 1.02, 95% CI 0.99 to 1.04), female sex (OR 1.90, 95% CI 1.18 to 3.08), diabetes (OR 3.73, 95% CI 1.57 to 9.65), receiving oxygen during hospital stay (OR 1.76, 95% CI 1.01 to 3.06), and severe disease (OR 0.51, 95% CI 0.26 to 1.01) as independent predictors of long-term impaired working ability after being hospitalised for COVID-19. Conclusions: Our findings suggest that PASC promotes conditions that could result in decreased working ability and unemployment. These results highlight the significant impact of this syndrome on public health and the global economy, and the need to develop clinical pathways and guidelines for long-term care with specific focus on working impairment. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
17 pages, 4902 KiB  
Article
Challenges of Including Wet Grasslands with Variable Groundwater Tables in Large-Area Crop Production Simulations
by Valeh Khaledi, Bahareh Kamali, Gunnar Lischeid, Ottfried Dietrich, Mariel F. Davies and Claas Nendel
Agriculture 2024, 14(5), 679; https://doi.org/10.3390/agriculture14050679 (registering DOI) - 26 Apr 2024
Abstract
Large-scale assessments of agricultural productivity necessitate integrated simulations of cropland and grassland ecosystems within their spatiotemporal context. However, simultaneous simulations face limitations due to assumptions of uniform species distribution. Grasslands, particularly those with shallow groundwater tables, are highly sensitive to water availability, undergoing [...] Read more.
Large-scale assessments of agricultural productivity necessitate integrated simulations of cropland and grassland ecosystems within their spatiotemporal context. However, simultaneous simulations face limitations due to assumptions of uniform species distribution. Grasslands, particularly those with shallow groundwater tables, are highly sensitive to water availability, undergoing rapid species composition changes. We hypothesised that predicting above-ground biomass (AGB) remains challenging due to these dynamic responses. Ten years of data from four lysimeters at a German wet grassland site, with varying water table treatments, was utilised to test this hypothesis. Correlation analysis revealed a strong positive indirect effect of the water regime on AGB, with a one-year time lag (r = 0.97). The MONICA model initially exhibited fair agreement (d = 0.69) in simulating Leaf-Area-Index (LAI) but performed poorly in replicating AGB (d = 0.3). After removing the species composition change effect from the LAI and AGB datasets, the simulation notably improved, with the overall relative root mean square error (rRMSE) of AGB decreasing from 1.55 to 0.90 between the first and second simulations. This demonstrates MONICA’s ability to predict grass growth patterns amidst changing water supply levels for constant species composition. However, it needs a competition model to capture biomass growth changes with varying water supply. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

13 pages, 2687 KiB  
Article
Effect of Size and Morphology of Different ZnO Nanostructures on the Performance of Dye-Sensitized Solar Cells
by Sunandan Baruah, Rakesh A. Afre and Diego Pugliese
Energies 2024, 17(9), 2076; https://doi.org/10.3390/en17092076 (registering DOI) - 26 Apr 2024
Abstract
In this study, the influence of zinc oxide (ZnO) nanostructures with various morphologies on the performance of dye-sensitized solar cells (DSSCs) was investigated. Photo-electrodes were fabricated incorporating ZnO transport layers of distinct nanoscale morphologies—namely nanoparticles, microballs, spiky microballs, belts, and triangles—and their respective [...] Read more.
In this study, the influence of zinc oxide (ZnO) nanostructures with various morphologies on the performance of dye-sensitized solar cells (DSSCs) was investigated. Photo-electrodes were fabricated incorporating ZnO transport layers of distinct nanoscale morphologies—namely nanoparticles, microballs, spiky microballs, belts, and triangles—and their respective current–voltage characteristics were evaluated. It was observed that the DSSCs employing the triangular ZnO nanostructures, with a side length of approximately 30 nm, achieved the highest power conversion efficiency of 2.62%. This was closely followed by the DSSCs using spherical nanoparticles with an average diameter of approximately 20 nm, yielding an efficiency of 2.54%. In contrast, the efficiencies of DSSCs with microball and spiky microball ZnO nanostructures were significantly lower, measuring 0.31 and 1.79%, respectively. The reduction in efficiency for the microball-based DSSCs is attributed to the formation of micro-cracks within the thin film during the fabrication process. All DSSC configurations maintained a uniform active area of 4 mm². Remarkably, the highest fill factor of 59.88% was recorded for DSSCs utilizing the triangular ZnO morphology, with the spherical nanoparticles attaining a marginally lower fill factor of 59.38%. This investigation corroborates the hypothesis that reduced particle size in the transport layer correlates with enhanced DSSC performance, which is further amplified when the nanoparticles possess pointed geometries that induce strong electric fields due to elevated charge concentrations. Full article
16 pages, 27615 KiB  
Article
Crystal Plasticity Finite Element Modeling of the Influences of Ultrafine-Grained Austenite on the Mechanical Response of a Medium-Mn Steel
by Pengfei Shen, Yang Liu and Xiang Zhang
Crystals 2024, 14(5), 405; https://doi.org/10.3390/cryst14050405 (registering DOI) - 26 Apr 2024
Abstract
Medium manganese (medium-Mn) steel, one of the third-generation advanced high-strength steels (AHSS), delivers impressive mechanical properties such as high yield strength, ultimate tensile strength, and uniform elongation. One notable feature of medium-Mn steels is the presence of ultrafine-grained (UFG) austenite, achieved through phase [...] Read more.
Medium manganese (medium-Mn) steel, one of the third-generation advanced high-strength steels (AHSS), delivers impressive mechanical properties such as high yield strength, ultimate tensile strength, and uniform elongation. One notable feature of medium-Mn steels is the presence of ultrafine-grained (UFG) austenite, achieved through phase transformation from the parent martensite phase during intercritical annealing. While, in general, UFG is considered a strengthening mechanism, the impact of UFG austenites in medium-Mn steel has not been fully studied. In this manuscript, we advance our previous work on crystal plasticity simulation based on the Taylor model to consider fully resolved high-fidelity microstructures and systematically study the influence of the UFG austenites. The original microstructure with UFG is reconstructed from a set of serial electron backscatter diffraction (EBSD) scans, where the exact grain morphology, orientation, and phase composition are preserved. This microstructure was further analyzed to identify the UFG austenites and recover them to their parent martensite before the intercritical annealing. These two high-fidelity microstructures are used for a comparative study using dislocation density-based crystal plasticity finite modeling to understand the impact of UFG austenites on both the local and overall mechanical responses. Full article
Show Figures

Figure 1

28 pages, 6299 KiB  
Article
Oral Supplementation of Ozonated Sunflower Oil Augments Plasma Antioxidant and Anti-inflammatory Abilities with Enhancement of High-Density Lipoproteins Functionality in Rats
by Kyung-Hyun Cho, Ji-Eun Kim, Myeong-Sung Lee and Ashutosh Bahuguna
Antioxidants 2024, 13(5), 529; https://doi.org/10.3390/antiox13050529 (registering DOI) - 26 Apr 2024
Abstract
Research on ozonated sunflower oil (OSO) is mostly restricted to its topical application, whereas the functional and toxicological assessment of oral OSO consumption is yet to be solved. Herein, OSO was orally supplemented in rats to assess the impact on plasma antioxidant status, [...] Read more.
Research on ozonated sunflower oil (OSO) is mostly restricted to its topical application, whereas the functional and toxicological assessment of oral OSO consumption is yet to be solved. Herein, OSO was orally supplemented in rats to assess the impact on plasma antioxidant status, low-density lipoproteins (LDL), and high-density lipoproteins (HDL). Also, the functionality of HDL from the OSO-supplemented rats (OSO-HDL) was tested against carboxymethyl-lysine (CML)- induced hyperinflammation in embryo and adult zebrafish. The results revealed that four weeks of OSO supplementation (3 g/kg BW/day) had no adverse effect on rats’ hematological and blood biochemical profiles. Nonetheless, decreased interleukin (IL)-6, and LDL-C levels, along with enhanced ferric ion reduction ability (FRA) and sulfhydryl content, were observed in the plasma of OSO-supplemented rats compared to the control and sunflower oil (SO) supplemented group. In addition, OSO supplementation stabilized apoA-I/HDL and augmented HDL-allied paraoxonase (PON)-1 activity. The microinjection of OSO-HDL (10 nL, 2 mg/mL) efficiently prevented the CML (500 ng)-induced zebrafish embryo mortality and developmental deformities. Similarly, OSO-HDL thwarted CML-posed neurotoxicity and demonstrated a significant hepatoprotective effect against CML-induced fatty liver changes, hepatic inflammation, oxidative stress, and apoptosis, as well as exhibiting a noticeable influence to revert CML-induced dyslipidemia. Conclusively, OSO supplementation demonstrated no toxic effects on rats, ameliorated plasma antioxidant status, and positively influenced HDL stability and functionality, leading to a protective effect against CML-induced toxicity in zebrafish. Full article
16 pages, 1025 KiB  
Article
Synthesis of Mixed Phosphonate Esters and Amino Acid-Based Phosphonamidates, and Their Screening as Herbicides
by Simon Backx, Willem Desmedt, Andreas Dejaegere, Andreas Simoens, Jef Van de Poel, Dorota Krasowska, Kris Audenaert, Christian V. Stevens and Sven Mangelinckx
Int. J. Mol. Sci. 2024, 25(9), 4739; https://doi.org/10.3390/ijms25094739 (registering DOI) - 26 Apr 2024
Abstract
While organophosphorus chemistry is gaining attention in a variety of fields, the synthesis of the phosphorus derivatives of amino acids remains a challenging task. Previously reported methods require the deprotonation of the nucleophile, complex reagents or hydrolysis of the phosphonate ester. In this [...] Read more.
While organophosphorus chemistry is gaining attention in a variety of fields, the synthesis of the phosphorus derivatives of amino acids remains a challenging task. Previously reported methods require the deprotonation of the nucleophile, complex reagents or hydrolysis of the phosphonate ester. In this paper, we demonstrate how to avoid these issues by employing phosphonylaminium salts for the synthesis of novel mixed n-alkylphosphonate diesters or amino acid-derived n-alkylphosphonamidates. We successfully applied this methodology for the synthesis of novel N-acyl homoserine lactone analogues with varying alkyl chains and ester groups in the phosphorus moiety. Finally, we developed a rapid, quantitative and high-throughput bioassay to screen a selection of these compounds for their herbicidal activity. Together, these results will aid future research in phosphorus chemistry, agrochemistry and the synthesis of bioactive targets. Full article
(This article belongs to the Special Issue Organic Compounds: Design, Synthesis and Biological Application)
11 pages, 388 KiB  
Article
The Relationship between Digital Game Addiction Tendency and Depressive Symptoms in Children (36–72 Months)
by Melike Yavas Celik
Children 2024, 11(5), 520; https://doi.org/10.3390/children11050520 (registering DOI) - 26 Apr 2024
Abstract
Aim: We aimed to evaluate the relationship between digital game addiction tendency and depressive symptoms in children (36–72 months). Method: We conducted this research in a virtual environment with the mothers of 747 children (36–72 months). A predictive evaluation was performed using [...] Read more.
Aim: We aimed to evaluate the relationship between digital game addiction tendency and depressive symptoms in children (36–72 months). Method: We conducted this research in a virtual environment with the mothers of 747 children (36–72 months). A predictive evaluation was performed using a simple regression analysis between the mean scores of the Digital Game Addiction Tendency Scale (DGATS) and the Child Depressive Symptoms Assessment Scale (CDSAS). Results: A total of 53.9% of children reported that they play games for 3–24 h a day. The average duration of children playing digital games was 2.86 ± 1.86 h per day. The total mean score of the CDSAS was 142.48 ± 27.36. The total mean score the children received from DGATS was 46.34 ± 17.28. In the regression analysis, it was determined that there was a strong positive correlation between the (DGATS) total score average and the (CDSAS) total score average (R = 0.52, R2 = 0.27, p < 0.05). Accordingly, digital game addiction tendency explains 27% of children’s depressive symptoms. Conclusions: When the standardized beta coefficient and t values are examined, it can be said that digital game addiction tendency is a significant predictor of children’s depressive symptoms. Full article
(This article belongs to the Special Issue Stress and Stress Resilience in Children and Adolescents)
33 pages, 1437 KiB  
Article
Analyzing Urban Climatic Shifts in Annaba City: Decadal Trends, Seasonal Variability and Extreme Weather Events
by Bouthaina Sayad, Oumr Adnan Osra, Adel Mohammad Binyaseen and Wajdy Sadagh Qattan
Atmosphere 2024, 15(5), 529; https://doi.org/10.3390/atmos15050529 (registering DOI) - 26 Apr 2024
Abstract
Global warming is one of the most pressing challenges of our time, contributing to climate change effects and with far-reaching implications for built environments. The main aim of this study is to assess the extent to which Annaba city, Algeria, as part of [...] Read more.
Global warming is one of the most pressing challenges of our time, contributing to climate change effects and with far-reaching implications for built environments. The main aim of this study is to assess the extent to which Annaba city, Algeria, as part of the Mediterranean region, is affected by global climate change and its broader influences. The study investigated climatic shifts in Annaba city, using a multi-step methodology integrating data collection and analysis techniques. Data collection included 23 years of climate data (2000–2023) from Annaba’s meteorological station, on-site measurements of microclimatic variations, and a questionnaire survey. The collected data underwent four main analyses: a time series analysis to describe climate parameters over 23 years, a statistical analysis to predict potential future climatic conditions (2024–2029) and the correlation of various climatic variables using specialized bioclimate tools to highlight seasonal variability, a spatial study of the urban heat island (UHI) phenomenon and perceived climatic shifts, and an analysis of extreme weather events characterizing heat atmospheric events in the context of urban climate change in the Mediterranean region. The findings revealed a consistent warming trend in Annaba city, with prolonged extreme climate conditions observed, particularly in the last four years (2020–2023). Significant temperature fluctuations were emphasized, notably in July 2023, with record-breaking maximum temperatures reaching 48.2 °C, the hottest on record with an increase of 3.8 °C, and presenting challenges amplified by the urban heat island effect, causing temperature differentials of up to 6 °C within built-up areas. Projections for 2029 suggest a tendency towards heightened aridity with a significant shift towards a new climate seasonality featuring two distinct main seasons—moderate and hot challenging. The abrupt disruption of calm weather conditions in Annaba on 24 July 2023 highlighted the influence of atmospheric circulation within the Mediterranean region featured for both anticyclones and atmospheric blocking phenomena on local weather patterns. Full article
(This article belongs to the Special Issue Climate and Weather Extremes in the Mediterranean)
21 pages, 3147 KiB  
Article
Quantitative Research on the Morphological Characteristics of Lunar Impact Craters of Different Stratigraphic Ages since the Imbrian Period
by Ke Zhang, Jianzhong Liu, Li Zhang, Yaya Gu, Zongyu Yue, Sheng Zhang, Jingyi Zhang, Huibin Qin and Jingwen Liu
Remote Sens. 2024, 16(9), 1540; https://doi.org/10.3390/rs16091540 (registering DOI) - 26 Apr 2024
Abstract
Impact craters serve as recorders of lunar evolutionary history, and determining the stratigraphic ages of craters is crucial. However, the age of many craters on the Moon remains undetermined. The morphology of craters is closely related to their stratigraphic ages. In the study, [...] Read more.
Impact craters serve as recorders of lunar evolutionary history, and determining the stratigraphic ages of craters is crucial. However, the age of many craters on the Moon remains undetermined. The morphology of craters is closely related to their stratigraphic ages. In the study, we systematically and quantitatively analyzed seven morphological parameters of 432 impact craters with known stratigraphic ages (Copernican, Eratosthenian, Imbrian), including crater depth, wall width, wall height, rim height, irregularity, volume, and roughness, as well as rock abundance. The study provided a range of morphological parameters for craters from the Copernican, Eratosthenian, and Imbrian. Additionally, we derived power law relationships between five morphological parameters and crater diameter, excluding irregularity and roughness. Furthermore, the transitional crater diameters from simple to complex crater morphology were determined for the Copernican and Eratosthenian, approximately 13 km and 15 km, respectively. These results suggest systematic differences in the lunar regolith in different stratigraphic ages. For impact craters of the same diameter, as crater age increases, irregularity tends to be greater, while crater depth, wall width, wall height, rim height, volume, roughness, and rock abundance tend to be smaller. Therefore, in cases where the diameter is determined, the actual values of morphological parameters and rock abundance can be used to constrain the stratigraphic age information of craters of an unknown age. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
12 pages, 2658 KiB  
Article
The Influence of Aging Precipitates on the Mechanical Properties of Al–Li Alloys and Microstructural Analysis
by Ganghui Li, Wei Xiao, Xiwu Li, Kai Wen, Guanjun Gao, Lizhen Yan, Yanan Li, Hongwei Yan, Yongan Zhang, Xingquan Wang and Baiqing Xiong
Metals 2024, 14(5), 506; https://doi.org/10.3390/met14050506 (registering DOI) - 26 Apr 2024
Abstract
In this work, the evolution of mechanical properties of binary Al–Li alloys with four approximately equal gradient Li contents (0.91–3.98 wt.%) under aging conditions is thoroughly investigated. The alloys undergo aging treatments at 175 °C for x hours (x = 0–120 h), and [...] Read more.
In this work, the evolution of mechanical properties of binary Al–Li alloys with four approximately equal gradient Li contents (0.91–3.98 wt.%) under aging conditions is thoroughly investigated. The alloys undergo aging treatments at 175 °C for x hours (x = 0–120 h), and the peak-aged times of the four alloys are 6 h, 12 h, 48 h and 48 h, respectively, as the Li concentration increases. Both in the solution-treated and peak-aged states, the elastic modulus of binary Al–Li alloys exhibits an approximately linear increase with increasing Li content, consistent with trends predicted by density functional theory (DFT) calculations. Due to the presence of Al3Li precipitates, the modulus of higher-Li-concentration alloys in the peak-aged state increases by approximately 1.4–2.5% compared with that of alloys in the solution-treated state. Additionally, the study finds that increasing Li content significantly enhances the tensile strength and yield strength of the alloy but decreases its ductility, leading to a transition in fracture mode from ductile to brittle, as evidenced by a microscopic analysis of fracture surfaces. Under peak-aged (175 °C/48 h), the alloy with the highest Li content exhibits the maximum tensile strength of 341 MPa and a yield strength of 296 MPa, while its elongation is the lowest at 2.1%. These findings contribute to a deeper understanding of the effects of aging precipitates on the mechanical properties of Al–Li alloys, providing fundamental guidance for the design of future generations of Al–Li alloys. Full article
(This article belongs to the Special Issue Advances in Lightweight Alloys)
46 pages, 20932 KiB  
Review
Carbon Quantum Dots: Properties, Preparation, and Applications
by Jichuan Kong, Yihui Wei, Feng Zhou, Liting Shi, Shuangjie Zhao, Mengyun Wan and Xiangfeng Zhang
Molecules 2024, 29(9), 2002; https://doi.org/10.3390/molecules29092002 (registering DOI) - 26 Apr 2024
Abstract
Carbon quantum dots are a novel form of carbon material. They offer numerous benefits including particle size adjustability, light resistance, ease of functionalization, low toxicity, excellent biocompatibility, and high-water solubility, as well as their easy accessibility of raw materials. Carbon quantum dots have [...] Read more.
Carbon quantum dots are a novel form of carbon material. They offer numerous benefits including particle size adjustability, light resistance, ease of functionalization, low toxicity, excellent biocompatibility, and high-water solubility, as well as their easy accessibility of raw materials. Carbon quantum dots have been widely used in various fields. The preparation methods employed are predominantly top-down methods such as arc discharge, laser ablation, electrochemical and chemical oxidation, as well as bottom-up methods such as templates, microwave, and hydrothermal techniques. This article provides an overview of the properties, preparation methods, raw materials for preparation, and the heteroatom doping of carbon quantum dots, and it summarizes the applications in related fields, such as optoelectronics, bioimaging, drug delivery, cancer therapy, sensors, and environmental remediation. Finally, currently encountered issues of carbon quantum dots are presented. The latest research progress in synthesis and application, as well as the challenges outlined in this review, can help and encourage future research on carbon quantum dots. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Graphical abstract

16 pages, 10605 KiB  
Article
Identification and Mitigation of Subsidence in Karstic Areas with Sustainable Geotechnical Structures: A Case Study in Gallur (Spain)
by Alberto Gracia, Francisco Javier Torrijo, Julio Garzón-Roca and Miguel Pérez-Picallo
Sustainability 2024, 16(9), 3643; https://doi.org/10.3390/su16093643 (registering DOI) - 26 Apr 2024
Abstract
In various areas of the Ebro valley in Spain, including the region discussed here, the risk of sinkholes is becoming particularly severe, particularly impacting urban areas and roadways where land subsidence from karstic processes is common. However, knowledge of the area, its geological–geotechnical [...] Read more.
In various areas of the Ebro valley in Spain, including the region discussed here, the risk of sinkholes is becoming particularly severe, particularly impacting urban areas and roadways where land subsidence from karstic processes is common. However, knowledge of the area, its geological–geotechnical configuration, and the carrying out of specific research studies are allowing solutions to be tested in an attempt to resolve these situations. A case in point is the examination of settlement issues along a stretch of the access road leading to the city of Gallur from the east (known as Camino Real) in the Zaragoza province, Spain. Numerous surface manifestations of recent subsidence and/or collapse activities have been observed, manifesting as craters and ground undercuts, some several meters in diameter. The prevalence of highly karstifiable materials in the area, evident from the existence of subsidence pockets and collapse dolines, poses significant safety concerns, particularly for traffic and town access, prompting the closure of Camino Real for several years. Local and provincial authorities have embarked on studies to try to recognise this type of situation. Reports aimed at defining karstification processes, conducting geomechanical analyses of subsidence and cavity collapses, and proposing technical measures to mitigate risks have been prepared. Finally, a consolidation solution was proposed based on injections at column-depth of mortar with special characteristics, combined with the replacement and reinforcement of the most superficial soil by means of high-tensile-strength geotextile meshes. Full article
(This article belongs to the Special Issue Advances in Sustainable Geotechnical Structure and Geomaterials)
Show Figures

Figure 1

12 pages, 2717 KiB  
Article
A Model-Free Deep Reinforcement Learning-Based Approach for Assessment of Real-Time PV Hosting Capacity
by Jude Suchithra, Duane A. Robinson and Amin Rajabi
Energies 2024, 17(9), 2075; https://doi.org/10.3390/en17092075 (registering DOI) - 26 Apr 2024
Abstract
Assessments of the hosting capacity of electricity distribution networks are of paramount importance, as they facilitate the seamless integration of rooftop photovoltaic systems into the grid, accelerating the transition towards a more carbon neutral and sustainable system. This paper employs a deep reinforcement [...] Read more.
Assessments of the hosting capacity of electricity distribution networks are of paramount importance, as they facilitate the seamless integration of rooftop photovoltaic systems into the grid, accelerating the transition towards a more carbon neutral and sustainable system. This paper employs a deep reinforcement learning-based approach to evaluate the real-time hosting capacity of low voltage distribution networks in a model-free manner. The proposed approach only requires real-time customer voltage data and solar irradiation data to provide a fast and accurate estimate of real-time hosting capacity at each customer connection point. This study addresses the imperative for accurate electrical models, which are frequently unavailable, in evaluating the hosting capacity of electricity distribution networks. To meet this challenge, the proposed approach utilizes a deep neural network-based, data-driven model of a low-voltage electricity distribution network. This proposed methodology incorporates model-free elements, enhancing its adaptability and robustness. In addition, a comparative analysis between model-based and model-free hosting capacity assessment methods is presented, highlighting their respective strengths and weaknesses. The utilization of the proposed hosting capacity estimation model enables distribution network service providers to make well-informed decisions regarding grid planning, leading to cost minimization. Full article
Show Figures

Figure 1

13 pages, 1055 KiB  
Article
Tuning the Dynamic Thermal Parameters of Nanocarbon Ionanofluids: A Photopyroelectric Study
by Mohanachandran Nair Sindhu Swapna, Carmen Tripon, Alexandra Farcas, Dorin Nicolae Dadarlat, Dorota Korte and Sankaranarayana Iyer Sankararaman
C 2024, 10(2), 40; https://doi.org/10.3390/c10020040 (registering DOI) - 26 Apr 2024
Abstract
The present work delineates the tailoring of the thermal effusivity and diffusivity of the novel class of heat transfer fluids—ionanofluids—by the incorporation of nanocarbons like diesel soot (DS), camphor soot (CS), carbon nanotubes (CN), and graphene (GR). When the thermal diffusivity delivers information [...] Read more.
The present work delineates the tailoring of the thermal effusivity and diffusivity of the novel class of heat transfer fluids—ionanofluids—by the incorporation of nanocarbons like diesel soot (DS), camphor soot (CS), carbon nanotubes (CN), and graphene (GR). When the thermal diffusivity delivers information on the thermal energy propagation, the thermal effusivity concerns the energy exchange at the interface, enabling energy-efficient thermal system design. The nanocarbons are subjected to morphological characterisation by field emission scanning electron microscopy. Fourier-transform infrared and Raman spectroscopic analyses confirm functional groups and vibrational bands. The microcrystalline size and graphiticity are also understood from the Raman spectrum. Ionanofluids prepared by dispersing nanocarbons into an ionic liquid base 1-Butyl-3-methylimidazolium methyl sulfate (BMMS) are analysed by nondestructive photopyroelectric calorimetry (PPE). The PPE analysis of ionanofluids demonstrates that nanocarbons influence thermal parameters in the base fluid, with soot ionanofluids exhibiting increased thermal effusivity and diffusivity due to their various carbon allotropic composition. This study underscores the importance of selecting the appropriate carbon allotrope for tailoring ionanofluids’ thermal properties, providing insights into manipulating these properties for enhanced performance across various industrial applications. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop