The 2023 MDPI Annual Report has
been released!
 
16 pages, 1749 KiB  
Article
Evaluation of an Erbium-Doped Fiber Ring Laser as an Edge Filtering Device for Fiber Bragg Grating Sensor Interrogation
by Nikolaos A. Stathopoulos, Christos Lazakis, Iraklis Simos and Christos Simos
Photonics 2024, 11(5), 407; https://doi.org/10.3390/photonics11050407 (registering DOI) - 27 Apr 2024
Abstract
An easy-to-implement and cost-effective Fiber Bragg Grating (FBG) sensor interrogation technique based on a ring Erbium-Doped Fiber Laser (EDFL) topology is proposed and experimentally assessed. The FBG sensor is part of the EDFL cavity and must have a central wavelength located within the [...] Read more.
An easy-to-implement and cost-effective Fiber Bragg Grating (FBG) sensor interrogation technique based on a ring Erbium-Doped Fiber Laser (EDFL) topology is proposed and experimentally assessed. The FBG sensor is part of the EDFL cavity and must have a central wavelength located within the linear region of the EDF’s amplified spontaneous emission (ASE) spectrum, which occurs at between 1530 and 1540 nm. In this manner, the wavelength-encoded response of the FBG under strain is converted to a linear variation in the laser output power, removing the need for spectrum analysis as well as any limitations from the use of external edge-filtering components. In addition, the laser linewidth is significantly reduced with respect to the FBG bandwidth, thus improving the resolution of the system, whereas its sensitivity can be controlled through pumping power. The performance of the system has been characterized by modeling and experiments for EDFs with different lengths, doping concentrations, and pumping power levels. The influence of mode-hopping in the laser cavity on the resolution and accuracy of the system has also been investigated. Full article
(This article belongs to the Special Issue Fiber Optic Sensors: Science and Applications)
15 pages, 2887 KiB  
Article
Improving Speed Characteristics of High-Torque-Density Motors for Physical Human–robot Interaction Using an Independent Three-Phase Winding Structure
by Junghwan Park and Handdeut Chang
Actuators 2024, 13(5), 161; https://doi.org/10.3390/act13050161 (registering DOI) - 27 Apr 2024
Abstract
Recently, due to the decrease in labor force, increase in labor costs, and the desire for improved quality of life, research on robots has been actively conducted to address these issues. However, it is currently difficult to find robots that physically interact with [...] Read more.
Recently, due to the decrease in labor force, increase in labor costs, and the desire for improved quality of life, research on robots has been actively conducted to address these issues. However, it is currently difficult to find robots that physically interact with humans. The reason is that the actuators of robots do not have a high torque density on their own. To solve this problem, high-torque-density motors, such as proprioceptive actuators, are being researched. However, the torque density is still insufficient for physical interaction with humans, so a motor with higher torque density has been developed. However, high-torque-density motors have the disadvantage of lower speed characteristics due to increased Back EMF levels. Therefore, to address the deterioration of speed characteristics in the developed motor, we applied the independent three-phase winding structure to improve the speed characteristics. Consequently, through comparison with the Y-Connection and D-Connection, we propose the most suitable winding structure for high-torque-density motors intended for physical interaction with humans. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
5 pages, 173 KiB  
Editorial
Contemporary Natural Philosophy and Philosophies—Part 3
by Gordana Dodig-Crnkovic and Marcin J. Schroeder
Philosophies 2024, 9(3), 58; https://doi.org/10.3390/philosophies9030058 (registering DOI) - 27 Apr 2024
Abstract
In 2018, we initiated a series of three Special Issues dedicated to contemporary natural philosophy in the spirit of the goals of the journal Philosophies (See Appendix A and Appendix B) [...] Full article
(This article belongs to the Special Issue Contemporary Natural Philosophy and Philosophies - Part 3)
14 pages, 656 KiB  
Article
Electrochemical Processes Used to Degrade Thiamethoxam in Water and Toxicity Analyses in Non-Target Organisms
by Juliane C. Forti, Pedro E. M. Robles, Yasmin S. Tadayozzi, Maiara A. F. Demori, Felipe A. Santos, Fernando F. Putti and Eduardo F. Vicente
Processes 2024, 12(5), 887; https://doi.org/10.3390/pr12050887 (registering DOI) - 27 Apr 2024
Abstract
Pesticides ensure greater productivity in less time; however, they spread beyond the perimeters to which they are applied to reach non-target organisms, thereby affecting plant, animal, and human health. Thiamethoxam (TMX) is considered to be one of the main agents responsible for poisoning [...] Read more.
Pesticides ensure greater productivity in less time; however, they spread beyond the perimeters to which they are applied to reach non-target organisms, thereby affecting plant, animal, and human health. Thiamethoxam (TMX) is considered to be one of the main agents responsible for poisoning bees and potentially contaminating surface and groundwater. Conventional water-treatment protocols are unable to degrade thiamethoxam; therefore, electrochemically advanced oxidative processes (EAOPs) have become promising alternatives owing to their ease of operation and cost-effectiveness. Herein, we examined the use of EAOPs to oxidize thiamethoxam in commercial Actara® and analyzed treatment efficiencies through phytotoxicity studies using cucumber and maize seeds as bioindicators. In addition, the cost of each process was analyzed based on the resulting current efficiency. The treated solutions were used to germinate seeds that were analyzed for total protein, hydrogen peroxide, lipid peroxidation (MDA), superoxide dismutase (SOD), and catalase (CAT) activities. EAOPs were found to effectively oxidize TMX, with more than 50% degraded and 80% COD removed under all treatment conditions, even when the commercial product was used. The photoelectro-Fenton process using 10 mg L−1 FeSO4 and 100 mg L−1 H2O2 exhibited the best results, with 79% of the TMX degraded and 83% of the COD removed, additionally exhibiting the lowest estimated operating cost (USD 1.01 dm−3). Higher enzymatic SOD and CAT activities, total protein content, and H2O2 concentration were observed; however, no significant changes in MDA were recorded. This treatment protocol effectively oxidizes TMX and reduces its phytotoxicity in maize and cucumber seedlings. Full article
(This article belongs to the Special Issue The Role of Electrochemical Technology in Wastewater Treatment)
16 pages, 3764 KiB  
Article
Oxygen Defects Containing TiN Films for the Hydrogen Evolution Reaction: A Robust Thin-Film Electrocatalyst with Outstanding Performance
by Ayoub Laghrissi and Mohammed Es-Souni
Nanomaterials 2024, 14(9), 770; https://doi.org/10.3390/nano14090770 (registering DOI) - 27 Apr 2024
Abstract
Density functional theory (DFT) calculations of hydrogen adsorption on titanium nitride had previously shown that hydrogen may adsorb on both titanium and nitrogen sites with a moderate adsorption energy. Further, the diffusion barrier was also found to be low. These findings may qualify [...] Read more.
Density functional theory (DFT) calculations of hydrogen adsorption on titanium nitride had previously shown that hydrogen may adsorb on both titanium and nitrogen sites with a moderate adsorption energy. Further, the diffusion barrier was also found to be low. These findings may qualify TiN, a versatile multifunctional material with electronic conductivity, as an electrode material for the hydrogen evolution reaction (HER). This was the main impetus of this study, which aims to experimentally and theoretically investigate the electrocatalytic properties of TiN layers that were processed on a Ti substrate using reactive ion sputtering. The properties are discussed, focusing on the role of oxygen defects introduced during the sputtering process on the HER. Based on DFT calculations, it is shown that these oxygen defects alter the electronic environment of the Ti atoms, which entails a low hydrogen adsorption energy in the range of −0.1 eV; this leads to HER performances that match those of Pt-NPs in acidic media. When a few nanometer-thick layers of Pd-NPs are sputtered on top of the TiN layer, the performance is drastically reduced. This is interpreted in terms of oxygen defects being scavenged by the Pd-NPs near the surface, which is thought to reduce the hydrogen adsorption sites. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
17 pages, 7624 KiB  
Article
Controlled Size Characterization Process for In-Situ TiB2 Particles from Al Matrix Composites Using Nanoparticle Size Analysis
by Mingliang Wang, Qian Wang, Zeyu Bian, Siyi Chen, Yue Gong, Cunjuan Xia, Dong Chen and Haowei Wang
Materials 2024, 17(9), 2052; https://doi.org/10.3390/ma17092052 (registering DOI) - 27 Apr 2024
Abstract
The wide size range and high tendency to agglomerate of in-situ TiB2 particles in reinforced Al matrix composites introduce great difficulties in their size characterization. In order to use a nanoparticle size analyzer (NSA) to obtain the precise size distribution of TiB [...] Read more.
The wide size range and high tendency to agglomerate of in-situ TiB2 particles in reinforced Al matrix composites introduce great difficulties in their size characterization. In order to use a nanoparticle size analyzer (NSA) to obtain the precise size distribution of TiB2 particles, a controlled size characterization process has been explored. First, the extraction and drying processes for TiB2 particles were optimized. In the extraction process, alternated applications of magnetic stirring and normal ultrasound treatments were proven to accelerate the dissolution of the Al matrix in HCl solution. Furthermore, freeze-drying was found to minimize the agglomeration tendency among TiB2 particles, facilitating the acquisition of pure powders. Such powders were quantitatively made into an initial TiB2 suspension. Second, the chemical and physical dispersion technologies involved in initial TiB2 suspension were put into focus. Chemically, adding PEI (M.W. 10000) at a ratio of mPEI/mTiB2 = 1/30 into the initial suspension can greatly improve the degree of TiB2 dispersion. Physically, the optimum duration for high-energy ultrasound application to achieve TiB2 dispersion was 10 min. Overall, the corresponding underlying dispersion mechanisms were discussed in detail. With the combination of these chemical and physical dispersion specifications for TiB2 suspension, the bimodal size distribution of TiB2 was able to be characterized by NSA for the first time, and its number-average diameter was 111 ± 6 nm, which was reduced by 59.8% over the initial suspension. Indeed, the small-sized and large-sized peaks of the TiB2 particles characterized by NSA mostly match the results obtained from transmission electron microscopy and scanning electron microscopy, respectively. Full article
(This article belongs to the Special Issue Advances in Light Alloys and Related Composites)
Show Figures

Figure 1

19 pages, 664 KiB  
Article
Performance Evaluation and Cycle Time Optimization of Vapor-Compression/Adsorption Cascade Refrigeration Systems
by Mahmoud Badawy Elsheniti, Hany Al-Ansary, Jamel Orfi and Abdelrahman El-Leathy
Sustainability 2024, 16(9), 3669; https://doi.org/10.3390/su16093669 (registering DOI) - 27 Apr 2024
Abstract
The reliance on more sustainable refrigeration systems with less electricity consumption attracts a lot of attention as the demand for refrigeration increases due to population growth and global warming threats. This study examines the use of a cascade vapor-compression/adsorption refrigeration system in hot [...] Read more.
The reliance on more sustainable refrigeration systems with less electricity consumption attracts a lot of attention as the demand for refrigeration increases due to population growth and global warming threats. This study examines the use of a cascade vapor-compression/adsorption refrigeration system in hot weather, focusing on condensing temperatures of 50, 55, and 60 °C, whereas an air-cooled condenser is in use due to practical considerations. A fully coupled transient model is developed using COMSOL Multiphysics to simulate the integrated system, considering the practical limitations of the vapor compression system (VCS) and the dynamic nature of the adsorption system (ADS). The model combines a lumped model for the ADS with the manufacturer’s data for a VCS compressor at different condensing and evaporating temperatures. It was found that the VCS is more sensitive to the change in the ADS’s condensing temperature, since when the temperature is raised from 50 °C to 60 °C, the VCS’s COP decreases by 29.5%, while the ADS’s COP decreases by 7.55%. Furthermore, the cycle time of ADS plays an important role in providing the cooling requirements for the bottoming cycle (VCS), and it can be optimized to maximize the energy conversion efficiency of the VCS. At optimum cycle time and compared to the conventional VCS, the cascade system can boost the cooling capacity of the VCS by 18.2%, lower the compressor power by 63.2%, and greatly enhance the COP by 221%. These results indicate that the application of the cascade VCS/ADS in such severe conditions is a more sustainable and energy-efficient solution to meet the growing need for refrigeration. Full article
(This article belongs to the Special Issue Renewable Energy Driven Sorption Cooling and Desalination)
40 pages, 16314 KiB  
Article
Sensitivity of Sentinel-1 Backscatter to Management-Related Disturbances in Temperate Forests
by Sietse van der Woude, Johannes Reiche, Frank Sterck, Gert-Jan Nabuurs, Marleen Vos and Martin Herold
Remote Sens. 2024, 16(9), 1553; https://doi.org/10.3390/rs16091553 (registering DOI) - 27 Apr 2024
Abstract
The rapid and accurate detection of forest disturbances in temperate forests has become increasingly crucial as policy demands and climate pressure on these forests rise. The cloud-penetrating Sentinel-1 radar constellation provides frequent and high-resolution observations with global coverage, but few studies have assessed [...] Read more.
The rapid and accurate detection of forest disturbances in temperate forests has become increasingly crucial as policy demands and climate pressure on these forests rise. The cloud-penetrating Sentinel-1 radar constellation provides frequent and high-resolution observations with global coverage, but few studies have assessed its potential for mapping disturbances in temperate forests. This study investigated the sensitivity of temporally dense C-band backscatter data from Sentinel-1 to varying management-related disturbance intensities in temperate forests, and the influence of confounding factors such as radar backscatter signal seasonality, shadow, and layover on the radar backscatter signal at a pixel level. A unique network of 14 experimental sites in the Netherlands was used in which trees were removed to simulate different levels of management-related forest disturbances across a range of representative temperate forest species. Results from six years (2016–2022) of Sentinel-1 observations indicated that backscatter seasonality is dependent on species phenology and degree of canopy cover. The backscatter change magnitude was sensitive to medium- and high-severity disturbances, with radar layover having a stronger impact on the backscatter disturbance signal than radar shadow. Combining ascending and descending orbits and complementing polarizations compared to a single orbit or polarization was found to result in a 34% mean increase in disturbance detection sensitivity across all disturbance severities. This study underlines the importance of linking high-quality experimental ground-based data to dense satellite time series to improve future forest disturbance mapping. It suggests a key role for C-band backscatter time series in the rapid and accurate large-area monitoring of temperate forests and, in particular, the disturbances imposed by logging practices or tree mortality driven by climate change factors. Full article
18 pages, 3715 KiB  
Article
Microencapsulation of Essential Oils Using Faba Bean Protein and Chia Seed Polysaccharides via Complex Coacervation Method
by Alicja Napiórkowska, Arkadiusz Szpicer, Elżbieta Górska-Horczyczak and Marcin Andrzej Kurek
Molecules 2024, 29(9), 2019; https://doi.org/10.3390/molecules29092019 (registering DOI) - 27 Apr 2024
Abstract
The aim of this study was to develop microcapsules containing juniper or black pepper essential oils, using a combination of faba bean protein and chia seed polysaccharides (in ratios of 1:1, 1:2, 2:1). By synergizing these two polymers, our goal was to enhance [...] Read more.
The aim of this study was to develop microcapsules containing juniper or black pepper essential oils, using a combination of faba bean protein and chia seed polysaccharides (in ratios of 1:1, 1:2, 2:1). By synergizing these two polymers, our goal was to enhance the efficiency of essential oil microencapsulation, opening up various applications in the food industry. Additionally, we aimed to investigate the influence of different polymer mixing ratios on the properties of the resulting microcapsules and the course of the complex coacervation process. To dissolve the essential oils and limit their evaporation, soybean and rapeseed oils were used. The powders resulting from the freeze-drying of coacervates underwent testing to assess microencapsulation efficiency (65.64–87.85%), density, flowability, water content, solubility, and hygroscopicity. Additionally, FT-IR and DSC analyses were conducted. FT-IR analysis confirmed the interactions between the components of the microcapsules, and these interactions were reflected in their high thermal resistance, especially at a protein-to-polysaccharide ratio of 2:1 (177.2 °C). The water content in the obtained powders was low (3.72–7.65%), but it contributed to their hygroscopicity (40.40–76.98%). Full article
Show Figures

Figure 1

10 pages, 276 KiB  
Opinion
Measurement-Based Care in Youth: An Opportunity for Better Clinical Outcomes?
by Roberta Frontini, Catarina Costa, Sílvia Baptista, Constança do Carmo Garcia and António Vian-Lains
Healthcare 2024, 12(9), 910; https://doi.org/10.3390/healthcare12090910 (registering DOI) - 27 Apr 2024
Abstract
Measurement-based care (MBC) is a procedure in which systematic and routine assessments are performed. Through this practice, clinicians can verify the progress of the symptomatology of the patient and adapt the appointments and the intervention to the current symptoms. Studies have reflected on [...] Read more.
Measurement-based care (MBC) is a procedure in which systematic and routine assessments are performed. Through this practice, clinicians can verify the progress of the symptomatology of the patient and adapt the appointments and the intervention to the current symptoms. Studies have reflected on the importance and the benefits of this type of procedure in the adult population, and have shown positive results. However, there is a lack of evidence concerning the remaining populations. Regarding youth, for instance, few articles have evaluated the benefits of using this procedure in clinical practice. However, research focused on this topic has revealed positive results, especially when clinicians were loyal to the MBC procedures. Still, further research is needed. This letter aims to share the methodology used by our multidisciplinary team, composed of psychologists and psychiatrists, in a clinical context at the Hospital Cruz Vermelha, Lisboa, applied to the adult population; the objective is to share and discuss some alterations that could be made to our evaluation protocol to enable the same to be used with the youth population. We believe that implementing MBC for youth is crucial for several reasons, including enhanced treatment efficacy, more personalized treatment, a reduced reliance on subjectivity, and empowerment not only of patients but also families. Full article
13 pages, 5745 KiB  
Article
Evaluating the Influence of Tool Material on the Performance of Refill Friction Stir Spot Welds in AA2029
by Ruth Belnap, Taylor Smith, Paul Blackhurst, Josef Cobb, Heath Misak, John Bosker and Yuri Hovanski
J. Manuf. Mater. Process. 2024, 8(3), 88; https://doi.org/10.3390/jmmp8030088 (registering DOI) - 27 Apr 2024
Abstract
Joining high strength 2xxx series aluminum is known to be complex and difficult; these alloys are traditionally considered non-weldable for fusion welding. This paper describes details on welding AA2029-T8 for skin-stiffened structures using refill friction stir spot welding (RFSSW). RFSSW is a solid-state [...] Read more.
Joining high strength 2xxx series aluminum is known to be complex and difficult; these alloys are traditionally considered non-weldable for fusion welding. This paper describes details on welding AA2029-T8 for skin-stiffened structures using refill friction stir spot welding (RFSSW). RFSSW is a solid-state process invented in the early 2000s that produces spot welds that are strong, lightweight, flush, and hermetic. Cycle times between 1 and 3 s are discussed, and process forces within a range of 8 to 14 kN are demonstrated. Furthermore, lap-shear quasi-static tensile strengths are shown to be between 10 kN and 12 kN in 9 mm diameter spots. A comparison of the performance of RFSSW welds made with various tool materials—which include H13 tool steel, tungsten carbide, and MP159—is detailed. Comparisons of parameters, weld consolidation, and heat-affected zones are presented with discussion related to heat generation specific to each tool material. Full article
Show Figures

Figure 1

13 pages, 2894 KiB  
Article
Two-Line Element Outlier and Space Event Detection Method Based on Multi-Strategy Genetic Algorithm
by Haoyue Zhang, Chunmei Zhao and Zhengbin He
Appl. Sci. 2024, 14(9), 3729; https://doi.org/10.3390/app14093729 (registering DOI) - 27 Apr 2024
Abstract
The detection of two-line element (TLE) outliers and space events play a crucial role in enhancing spatial situational awareness. Therefore, this paper addresses the issue of TLE outlier detection methods that often overlook the mutual influence of multiple factors. Hence, a Multivariate Gaussian [...] Read more.
The detection of two-line element (TLE) outliers and space events play a crucial role in enhancing spatial situational awareness. Therefore, this paper addresses the issue of TLE outlier detection methods that often overlook the mutual influence of multiple factors. Hence, a Multivariate Gaussian Mixture Model (MGMM) is introduced to consider the interdependencies among various indicators. Additionally, a Multi-strategy Genetic Algorithm (MGA) is employed to adjust the complexity of the MGMM, allowing it to accurately learn the actual distribution of TLE data. Initially, the proposed method applies probabilistic fits to the predicted error rate changes for both the TLE semi-major axis and the orbital inclination. Chaos initialization, a posterior probability penalty, and local optimization iterations are subsequently integrated into the genetic algorithm. These enhancements aim to estimate the MGMM parameters, addressing issues related to poor robustness and the susceptibility of the MGMM to converge to local optima. The algorithm’s effectiveness is validated using TLE data from typical space targets. The results demonstrate that the optimized algorithm can efficiently detect outliers and maneuver events within complex TLE data. Notably, the comprehensive detection performance index, measured, using the F1 score, improved by 15.9% compared to the Gaussian mixture model. This significant improvement underscores the importance of the proposed method in bolstering the security of complex space environments. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

21 pages, 2392 KiB  
Article
Integrating Machine Learning and MLOps for Wind Energy Forecasting: A Comparative Analysis and Optimization Study on Türkiye’s Wind Data
by Saadin Oyucu and Ahmet Aksöz
Appl. Sci. 2024, 14(9), 3725; https://doi.org/10.3390/app14093725 (registering DOI) - 27 Apr 2024
Abstract
This study conducted a detailed comparative analysis of various machine learning models to enhance wind energy forecasts, including linear regression, decision tree, random forest, gradient boosting machine, XGBoost, LightGBM, and CatBoost. Furthermore, it developed an end-to-end MLOps pipeline leveraging SCADA data from a [...] Read more.
This study conducted a detailed comparative analysis of various machine learning models to enhance wind energy forecasts, including linear regression, decision tree, random forest, gradient boosting machine, XGBoost, LightGBM, and CatBoost. Furthermore, it developed an end-to-end MLOps pipeline leveraging SCADA data from a wind turbine in Türkiye. This research not only compared models using the RMSE metric for selection and optimization but also explored in detail the impact of integrating machine learning with MLOps on the precision of energy production forecasts. It investigated the suitability and efficiency of ML models in predicting wind energy with MLOps integration. The study explored ways to improve LightGBM algorithm performance through hyperparameter tuning and Docker utilization. It also highlighted challenges in speeding up MLOps development and deployment processes. Model performance was assessed using the RMSE metric, conducting a comparative evaluation across different models. The findings revealed that the RMSE values among the regression models ranged from 460 kW to 192 kW. Focusing on enhancing LightGBM, the research decreased the RMSE value to 190.34 kW. Despite facing technical and operational hurdles, the implementation of MLOps was proven to enhance the speed (latency of 9 ms), reliability (through Docker encapsulation), and scalability (using Docker swarm) of machine learning endeavors. Full article
(This article belongs to the Special Issue AutoML: Advances and Applications)
24 pages, 21296 KiB  
Article
Effects of Pd Alloying and Coating on the Galvanic Corrosion between Cu Wire and Bond Pads for a Semiconductor Packaging
by Young-Ran Yoo and Young-Sik Kim
Coatings 2024, 14(5), 544; https://doi.org/10.3390/coatings14050544 (registering DOI) - 27 Apr 2024
Abstract
Semiconductor chips are packaged in a process that involves creating a path to allow for signals to be exchanged with the outside world and ultimately achieving a form to protect against various external environmental conditions such as heat and moisture. The wire bonding [...] Read more.
Semiconductor chips are packaged in a process that involves creating a path to allow for signals to be exchanged with the outside world and ultimately achieving a form to protect against various external environmental conditions such as heat and moisture. The wire bonding type of packaging is a method in which thin metal wires are bonded to pads to create an electrical connection between the chip and the lead frame. An Epoxy Molding Compound (EMC) can be applied to protect semiconductor chips from external environmental conditions such as heat, shock, and moisture. However, EMC contains halogen elements and sulfides and has hydrophilic properties, which can lead to a corrosive environment. The present study aims to evaluate the influence of chloride, which is a contaminant formed during the PCB manufacturing process. To this end, the galvanic corrosion of bonding wire materials Cu wire, Cu wire alloyed with 1% Pd, and Cu wire coated with Pd was investigated. The first ball bond was bonded to the Al pad and the second stitch bond was bonded to the Au pad of the manufacturing process, after which the galvanic corrosion behavior in the semiconductor packaging module specimen was analyzed. A model of galvanic corrosion behavior was also proposed. Full article
(This article belongs to the Special Issue Coatings for Advanced Devices)
14 pages, 270 KiB  
Article
Teachers’ Knowledge and Experiences after the Implementation of an Eating Disorder Prevention Program in the Physical Education Classroom
by Montserrat Monserrat, Ángeles Arjona, Juan Carlos Checa, Joaquín Tarifa and Darío Salguero
Educ. Sci. 2024, 14(5), 467; https://doi.org/10.3390/educsci14050467 (registering DOI) - 27 Apr 2024
Abstract
Since psychological and social factors are especially prominent among the multiple causes of eating disorders, we argue that school, a meeting place among equals and thus a locus for the transmission of values and attitudes, can play an important role in preventing these [...] Read more.
Since psychological and social factors are especially prominent among the multiple causes of eating disorders, we argue that school, a meeting place among equals and thus a locus for the transmission of values and attitudes, can play an important role in preventing these disorders. This article’s main objective is to verify whether the physical education (PE) class can become an arena for transferring and learning that prevent eating disorders, analyzing teachers’ perceptions of the program development “Psychology for Nutrition and Physical Activity in the Prevention of Eating Disorders” (P-NAF) and specifically: (1) analyzing what teachers know and believe about preventing eating disorders; (2) analyzing the relationship between PE sessions and the acquisition of skills for the prevention of eating disorders; and (3) verifying whether the strategies proposed in the program P-NAF help teachers develop skills for the prevention of eating disorders. We conducted semi-structured interviews with physical education teachers (six women and six men) from five educational institutions in southern Spain. We organized their responses into four blocks: (1) self-esteem, (2) social skills, (3) satisfaction with body image, and (4) nutrition. The results show that physical education teachers are poorly trained in eating disorders, in their detection, as well as their treatment. In particular, there is little communication between health professionals and teachers to provide the information needed to develop effective intervention programs. However, after participating in the Psychology for Nutrition and Physical Activity program, the teachers improved both their knowledge and educational tools when it comes to transmitting that knowledge. We conclude that this program is effective in its objectives and that it should be presented more widely to physical education teachers who work directly with young people. Full article
(This article belongs to the Section Curriculum and Instruction)
9 pages, 224 KiB  
Article
Conditions When the Problems of Linear Programming Are Algorithmically Unsolvable
by Viktor Chernov and Vladimir Chernov
Axioms 2024, 13(5), 293; https://doi.org/10.3390/axioms13050293 (registering DOI) - 27 Apr 2024
Abstract
We study the properties of the constructive linear programming problems. The parameters of linear functions in such problems are constructive real numbers. Solving such a problem involves finding the optimal plan with the constructive real number components. We show that it is impossible [...] Read more.
We study the properties of the constructive linear programming problems. The parameters of linear functions in such problems are constructive real numbers. Solving such a problem involves finding the optimal plan with the constructive real number components. We show that it is impossible to have an algorithm that solves an arbitrary constructive real programming problem. Full article
(This article belongs to the Special Issue Advances in Linear Algebra with Applications)
20 pages, 5292 KiB  
Article
Ovine and Caprine Strains of Corynebacterium pseudotuberculosis on Czech Farms—A Comparative Study
by Jirina Markova, Denisa Langova, Vladimir Babak and Iveta Kostovova
Microorganisms 2024, 12(5), 875; https://doi.org/10.3390/microorganisms12050875 (registering DOI) - 27 Apr 2024
Abstract
Caseous lymphadenitis (CLA) is a worldwide disease of small ruminants caused by Corynebacterium pseudotuberculosis, a facultative intracellular pathogen that is able to survive and multiply in certain white blood cells of the host. In this study, 33 strains of C. pseudotuberculosis were [...] Read more.
Caseous lymphadenitis (CLA) is a worldwide disease of small ruminants caused by Corynebacterium pseudotuberculosis, a facultative intracellular pathogen that is able to survive and multiply in certain white blood cells of the host. In this study, 33 strains of C. pseudotuberculosis were isolated from sheep and goats suffering from CLA on nine farms in the Czech Republic. All these strains were tested for their antibiotic susceptibility, ability to form a biofilm and resistance to the effects of commonly used disinfectant agents. To better understand the virulence of C. pseudotuberculosis, the genomes of strains were sequenced and comparative genomic analysis was performed with another 123 genomes of the same species, including ovis and equi biovars, downloaded from the NCBI. The genetic determinants for the virulence factors responsible for adherence and virulence factors specialized for iron uptake and exotoxin phospholipase D were revealed in every analyzed genome. Carbohydrate-Active Enzymes were compared, revealing the presence of genetic determinants encoding exo-α-sialidase (GH33) and the CP40 protein in most of the analyzed genomes. Thirty-three Czech strains of C. pseudotuberculosis were identified as the biovar ovis on the basis of comparative genome analysis. All the compared genomes of the biovar ovis strains were highly similar regardless of their country of origin or host, reflecting their clonal behavior. Full article
(This article belongs to the Special Issue Bacterial Infections and Antimicrobial Resistance in Animals)
Show Figures

Figure 1

12 pages, 9469 KiB  
Article
Optimized Field Emission from Graphene Sheets with Rare Earth Oxides
by ZhiJianMuCuo Dong, Jianlong Liu, Dayang Wang, Guoling Zhong, Xingyue Xiang and Baoqing Zeng
Coatings 2024, 14(5), 545; https://doi.org/10.3390/coatings14050545 (registering DOI) - 27 Apr 2024
Abstract
This paper demonstrates a simple method to improve the field emission of graphene sheets (GSs) by coating them with thin films of rare earth oxides. The rare earth oxide films are coated on GS using drop coating, without changing the surface morphology, resulting [...] Read more.
This paper demonstrates a simple method to improve the field emission of graphene sheets (GSs) by coating them with thin films of rare earth oxides. The rare earth oxide films are coated on GS using drop coating, without changing the surface morphology, resulting in a remarkable improvement in the field emission properties of GSs. The field emission property of GSs is tunable and can be optimized by applying various rare earth oxide films at the appropriate level. It is found that the turn-on field of GSs is reduced from 4.2 V/mm to 1.7 V/mm by Gd2O3 and to 2.2 V/mm by La2O3. The threshold field of GS is also reduced from 7.8 V/mm to 3.4 V/mm and 4.8 V/mm, respectively. Field emission results indicate that the improvement is due to the low work function surface and more effective emission sites generated around the GS surface after coating. The field emission test and the emission pattern suggest that the field emission performance of GS can be significantly enhanced through the application of La2O3 and Gd2O3 coating, as well as by optimizing the concentration of rare earth oxides in the coating. Hence, the rare earth-coated GS can serve as a potential field emitter. Full article
Show Figures

Figure 1

14 pages, 3465 KiB  
Article
Characterization of Escherichia coli Strains for Novel Production of Plasmodium ovale Lactate Dehydrogenase
by Jae-Won Choi, Sang-Oh Ha, Yeon-Jun Kim, Jun-Seop Shin, Min-Ji Choi, Si-Eun Yu, Junghun Han, Eun-Ji Park, Kyoung Sik Park and Jung Hoon Kang
Microorganisms 2024, 12(5), 876; https://doi.org/10.3390/microorganisms12050876 (registering DOI) - 27 Apr 2024
Abstract
Malaria is one of the most prevalent diseases worldwide with high incidence and mortality. Among the five species that can infect humans, Plasmodium ovale morphologically resembles P. vivax, resulting in misidentification and confusion in diagnosis, and is responsible for malarial disease relapse [...] Read more.
Malaria is one of the most prevalent diseases worldwide with high incidence and mortality. Among the five species that can infect humans, Plasmodium ovale morphologically resembles P. vivax, resulting in misidentification and confusion in diagnosis, and is responsible for malarial disease relapse due to the formation of hypnozoites. P. ovale receives relatively less attention compared to other major parasites, such as P. falciparum and P. vivax, primarily due to its lower pathogenicity, mortality rates, and prevalence rates. To efficiently produce lactate dehydrogenase (LDH), a major target for diagnosing malaria, this study used three Escherichia coli strains, BL21(DE3), BL21(DE3)pLysS, and Rosetta(DE3), commonly used for recombinant protein production. These strains were characterized to select the optimal strain for P. ovale LDH (PoLDH) production. Gene cloning for recombinant PoLDH production and transformation of the three strains for protein expression were performed. The optimal PoLDH overexpression and washing buffer conditions in nickel-based affinity chromatography were established to ensure high-purity PoLDH. The yields of PoLDH expressed by the three strains were as follows: BL21(DE3), 7.6 mg/L; BL21(DE3)pLysS, 7.4 mg/L; and Rosetta(DE3), 9.5 mg/L. These findings are expected to be highly useful for PoLDH-specific diagnosis and development of antimalarial therapeutics. Full article
(This article belongs to the Special Issue Advances in Microbial Cell Factories, 2nd Edition)
17 pages, 2411 KiB  
Review
Mitochondria-Derived Vesicles, Sterile Inflammation, and Pyroptosis in Liver Cancer: Partners in Crime or Innocent Bystanders?
by Flora Guerra, Francesca Romana Ponziani, Ferdinando Cardone, Cecilia Bucci, Emanuele Marzetti and Anna Picca
Int. J. Mol. Sci. 2024, 25(9), 4783; https://doi.org/10.3390/ijms25094783 (registering DOI) - 27 Apr 2024
Abstract
Alterations in cellular signaling, chronic inflammation, and tissue remodeling contribute to hepatocellular carcinoma (HCC) development. The release of damage-associated molecular patterns (DAMPs) upon tissue injury and the ensuing sterile inflammation have also been attributed a role in HCC pathogenesis. Cargoes of extracellular vesicles [...] Read more.
Alterations in cellular signaling, chronic inflammation, and tissue remodeling contribute to hepatocellular carcinoma (HCC) development. The release of damage-associated molecular patterns (DAMPs) upon tissue injury and the ensuing sterile inflammation have also been attributed a role in HCC pathogenesis. Cargoes of extracellular vesicles (EVs) and/or EVs themselves have been listed among circulating DAMPs but only partially investigated in HCC. Mitochondria-derived vesicles (MDVs), a subpopulation of EVs, are another missing link in the comprehension of the molecular mechanisms underlying the onset and progression of HCC biology. EVs have been involved in HCC growth, dissemination, angiogenesis, and immunosurveillance escape. The contribution of MDVs to these processes is presently unclear. Pyroptosis triggers systemic inflammation through caspase-dependent apoptotic cell death and is implicated in tumor immunity. The analysis of this process, together with MDV characterization, may help capture the relationship among HCC development, mitochondrial quality control, and inflammation. The combination of immune checkpoint inhibitors (i.e., atezolizumab and bevacizumab) has been approved as a synergistic first-line systemic treatment for unresectable or advanced HCC. The lack of biomarkers that may allow prediction of treatment response and, therefore, patient selection, is a major unmet need. Herein, we overview the molecular mechanisms linking mitochondrial dysfunction, inflammation, and pyroptosis, and discuss how immunotherapy targets, at least partly, these routes. Full article
(This article belongs to the Special Issue Emerging Role of Immunogenic Cell Death in Cancer Therapy)
16 pages, 2068 KiB  
Technical Note
Fourier Domain Adaptation for the Identification of Grape Leaf Diseases
by Jing Wang, Qiufeng Wu, Tianci Liu, Yuqi Wang, Pengxian Li, Tianhao Yuan and Ziyang Ji
Appl. Sci. 2024, 14(9), 3727; https://doi.org/10.3390/app14093727 (registering DOI) - 27 Apr 2024
Abstract
With the application of computer vision in the field of agricultural disease recognition, the convolutional neural network is widely used in grape leaf disease recognition and has achieved remarkable results. However, most of the grape leaf disease recognition models have the problem of [...] Read more.
With the application of computer vision in the field of agricultural disease recognition, the convolutional neural network is widely used in grape leaf disease recognition and has achieved remarkable results. However, most of the grape leaf disease recognition models have the problem of weak generalization ability. In order to overcome this challenge, this paper proposes an image identification method for grape leaf diseases in different domains based on Fourier domain adaptation. Firstly, Fourier domain adaptation is performed on the labeled source domain data and the unlabeled target domain data. To decrease the gap in distribution between the source domain data and the target domain data, the low-frequency spectrum of the source domain data and the target domain data is swapped. Then, three convolutional neural networks (AlexNet, VGG13, and ResNet101) were used to train the images after style changes and the unlabeled target domain images were classified. The highest accuracy of the three networks can reach 94.6%, 96.7%, and 91.8%, respectively, higher than that of the model without Fourier transform image training. In order to reduce the impact of randomness, when selecting the transformed image, we propose using farthest point sampling to select the image with low feature correlation for the Fourier transform. The final identification result is also higher than the accuracy of the network model trained without transformation. Experimental results showed that Fourier domain adaptation can improve the generalization ability of the model and obtain a more accurate grape leaf disease recognition model. Full article
21 pages, 1871 KiB  
Article
Combination Mechanism of Soil Dissolved Organic Matter and Cu2+ in Vegetable Fields, Forests and Dry Farmland in Lujiang County
by Youru Yao, Jingyi Zhang, Kang Ma, Jing Li, Xin Hu, Yusi Wang, Yuesheng Lin, Fengman Fang and Shiyin Li
Agriculture 2024, 14(5), 684; https://doi.org/10.3390/agriculture14050684 (registering DOI) - 27 Apr 2024
Abstract
Dissolved organic matter (DOM) serves as a critical link in the migration and transformation of heavy metals at the soil–solid interface, influencing the migration behaviour and transformation processes of Cu2+ in soil. There have been studies on the combination mechanisms between DOM [...] Read more.
Dissolved organic matter (DOM) serves as a critical link in the migration and transformation of heavy metals at the soil–solid interface, influencing the migration behaviour and transformation processes of Cu2+ in soil. There have been studies on the combination mechanisms between DOM and Cu2+ in paddy soils. However, the adsorption/complexation and redox processes between DOM and Cu2+ in other agricultural soil types (such as dry farmland and vegetable fields) are unclear. In order to reveal the combination process of DOM with Cu in different agricultural soil types and the dynamic changes in chemical behaviour that occur, this study analysed the variability of DOM components and structure in three soils using three-dimensional fluorescence spectroscopy and X-ray photoelectron spectroscopy. In addition, the priority order of different DOM compounds in combination with Cu and the change process in relation to the Cu valence state in the soil of Lujiang County, Anhui Province, was revealed based on laboratory experiments. The results showed that the composition of soil DOM was mainly composed of humic-like and fulvic-like substances with a clear terrestrial origin and that the organic matter showed a high degree of decomposition characteristics. The results indicated that the composition of soil DOM is mainly composed of humic and fulvic acid-like substances, and they have obvious characteristics of terrestrial origin. In addition, the soil organic matter showed high decomposition characteristics. The complex stability constants (lgKM) of humic acid-like substances with Cu2+ follow the order of forest land (lgKM = 5.21), vegetable land (lgKM = 4.90), and dry farmland (lgKM = 4.88). The lgKM of fulvic acid-like substances with Cu2+ is in the order of dry farmland (lgKM = 4.51) and vegetable land (lgKM = 4.39). Humic acid-like substances in soil DOM combine preferentially with Cu2+, showing a stronger chelating affinity than fulvic acid-like substances. Cu2+ complexes mainly include hydroxyl, phenolic hydroxyl and amino functional groups are included in soil DOM, accompanied by redox reactions. In comparison to dry farmland, the soil DOM in forest and vegetable fields undergoes more intense redox reactions simultaneously with the chelation of Cu2+. Therefore, the application of organic fertilisers to vegetable and forest soils may lead to uncertainties concerning the fate of heavy metals with variable chemical valence. These results contribute to a deeper understanding of the interaction mechanisms between DOM and Cu2+ in agricultural soils. Full article
12 pages, 916 KiB  
Article
Human Impact on the Twenty-Four-Hour Patterns of Steller Sea Lions’ Use of a Haulout in Hokkaido, Japan
by Yuko Chayahara, Yumiko Nakanowataru, Sara Abe, Runa Kurosawa, Sayuki Suma, Nana Murasato, Rin Oyamada, Natsuki Ebashi, Masatoshi Tsunokawa, Mayu Sakurama and Takanori Kooriyama
Animals 2024, 14(9), 1312; https://doi.org/10.3390/ani14091312 (registering DOI) - 27 Apr 2024
Abstract
Steller sea lions (SSLs) migrate to the Hokkaido coast to spend the winter there, leading to conflicts arising with fishermen over herring. This study analyzed the trends in the SSLs’ use of a haulout as a rest site under human pressure. From January [...] Read more.
Steller sea lions (SSLs) migrate to the Hokkaido coast to spend the winter there, leading to conflicts arising with fishermen over herring. This study analyzed the trends in the SSLs’ use of a haulout as a rest site under human pressure. From January to March in 2017, 2018, and 2019, we recorded the SSL behavior at the haulout site off Otaru City, Hokkaido, for 24 h a day using a fixed-point video recorder. We investigated three years of data to analyze the relationships between the SSL behaviors (attendance/landing–entry timings/remaining on land) and herring caught. We also monitored the SSL behaviors during changes in weather conditions and under human pressure. Throughout the three years, the SSLs used the haulout site during harsher weather or under human pressure. In 2017 and 2018, there was a correlation between the herring caught and the maximum number of SSLs on the haulout, but not in 2019. The number of SSLs on the haulout increased from evening to night; most individuals entered the water in the morning. The SSLs probably return to the water around sunrise not only for foraging but also to avoid anthropogenic pressure. The damage caused to the herring fishery by the SSLs was severe, but it is also clear that human pressure changed their behavior in response. Full article
(This article belongs to the Special Issue Research on Relationship between Marine Mammal Ecology and Human)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop