The 2023 MDPI Annual Report has
been released!
 
24 pages, 358 KiB  
Article
Existence of Solutions to a System of Fractional q-Difference Boundary Value Problems
by Alexandru Tudorache and Rodica Luca
Mathematics 2024, 12(9), 1335; https://doi.org/10.3390/math12091335 (registering DOI) - 27 Apr 2024
Abstract
We are investigating the existence of solutions to a system of two fractional q-difference equations containing fractional q-integral terms, subject to multi-point boundary conditions that encompass q-derivatives and fractional q-derivatives of different orders. In our main results, we rely [...] Read more.
We are investigating the existence of solutions to a system of two fractional q-difference equations containing fractional q-integral terms, subject to multi-point boundary conditions that encompass q-derivatives and fractional q-derivatives of different orders. In our main results, we rely on various fixed point theorems, such as the Leray–Schauder nonlinear alternative, the Schaefer fixed point theorem, the Krasnosel’skii fixed point theorem for the sum of two operators, and the Banach contraction mapping principle. Finally, several examples are provided to illustrate our findings. Full article
19 pages, 1831 KiB  
Article
Iron Supplementation Increases Tumor Burden and Alters Protein Expression in a Mouse Model of Human Intestinal Cancer
by Ian X. Swain and Adam M. Kresak
Nutrients 2024, 16(9), 1316; https://doi.org/10.3390/nu16091316 (registering DOI) - 27 Apr 2024
Abstract
Iron supplements are widely consumed. However, excess iron may accelerate intestinal tumorigenesis. To determine the effect of excess iron on intestinal tumor burden and protein expression changes between tumor and normal tissues, ApcMin/+ mice were fed control (adequate) and excess iron (45 [...] Read more.
Iron supplements are widely consumed. However, excess iron may accelerate intestinal tumorigenesis. To determine the effect of excess iron on intestinal tumor burden and protein expression changes between tumor and normal tissues, ApcMin/+ mice were fed control (adequate) and excess iron (45 and 450 mg iron/kg diet, respectively; n = 9/group) for 10 wk. Tumor burden was measured, and two-dimensional fluorescence difference gel electrophoresis was used to identify differentially expressed proteins in tumor and normal intestinal tissues. There was a significant increase (78.3%; p ≤ 0.05) in intestinal tumor burden (mm2/cm) with excess iron at wk 10. Of 980 analyzed protein spots, 69 differentially expressed (p ≤ 0.05) protein isoforms were identified, representing 55 genes. Of the isoforms, 56 differed (p ≤ 0.05) between tumor vs. normal tissues from the adequate iron group and 23 differed (p ≤ 0.05) between tumors from the adequate vs. excess iron. Differentially expressed proteins include those involved in cell integrity and adaptive response to reactive oxygen species (including, by gene ID: ANPEP, DPP7, ITGB1, PSMA1 HSPA5). Biochemical pathway analysis found that iron supplementation modulated four highly significant (p ≤ 0.05) functional networks. These findings enhance our understanding of interplay between dietary iron and intestinal tumorigenesis and may help develop more specific dietary guidelines regarding trace element intake. Full article
(This article belongs to the Section Micronutrients and Human Health)
11 pages, 580 KiB  
Systematic Review
Laparoscopic Ligation of the Inferior Mesenteric Artery: A Systematic Review of an Emerging Trend for Addressing Type II Endoleak Following Endovascular Aortic Aneurysm Repair
by Konstantinos Roditis, Paraskevi Tsiantoula, Nikolaos-Nektarios Giannakopoulos, Afroditi Antoniou, Vasileios Papaioannou, Sofia Tzamtzidou, Dimitra Manou, Konstantinos G. Seretis, Theofanis T. Papas and Nikolaos Bessias
J. Clin. Med. 2024, 13(9), 2584; https://doi.org/10.3390/jcm13092584 (registering DOI) - 27 Apr 2024
Abstract
Background/Objectives: this systematic review aims to explore the efficacy and safety of the laparoscopic ligation of the inferior mesenteric artery (IMA) as an emerging trend for addressing a type II endoleak following endovascular aortic aneurysm repair (EVAR). Methods: A comprehensive literature [...] Read more.
Background/Objectives: this systematic review aims to explore the efficacy and safety of the laparoscopic ligation of the inferior mesenteric artery (IMA) as an emerging trend for addressing a type II endoleak following endovascular aortic aneurysm repair (EVAR). Methods: A comprehensive literature search was conducted across several databases including Medline, Scopus, and the Cochrane Central Register of Controlled Trials, adhering to the PRISMA guidelines. The search focused on articles reporting on the laparoscopic ligation of the IMA for the treatment of a type II endoleak post-EVAR. Data were extracted regarding study characteristics, patient demographics, technical success rates, postoperative outcomes, and follow-up results. Results: Our analysis included ten case studies and two retrospective cohort studies, comprising a total of 26 patients who underwent a laparoscopic ligation of the IMA between 2000 and 2023. The mean age of the cohort was 72.3 years, with a male predominance (92.3%). The mean AAA diameter at the time of intervention was 69.7 mm. The technique demonstrated a high technical success rate of 92.3%, with a mean procedure time of 118.4 min and minimal blood loss. The average follow-up duration was 19.9 months, with 73% of patients experiencing regression of the aneurysmal sac, and no reports of an IMA-related type II endoleak during the follow-up period. Conclusions: The laparoscopic ligation of the IMA for a type II endoleak following EVAR presents a promising, minimally invasive alternative with high technical success rates and favorable postoperative outcomes. Despite its potential advantages, including reduced contrast agent use and radiation exposure, its application remains limited to specialized centers. The findings suggest the need for further research in larger prospective studies to validate the effectiveness of this procedure and potentially broaden its clinical adoption. Full article
(This article belongs to the Special Issue Vascular Surgery: Recent Developments and Emerging Trends)
Show Figures

Figure 1

17 pages, 49973 KiB  
Article
Real-Time Multi-Person Video Synthesis with Controllable Prior-Guided Matting
by Aoran Chen, Hai Huang, Yueyan Zhu and Junsheng Xue
Sensors 2024, 24(9), 2795; https://doi.org/10.3390/s24092795 (registering DOI) - 27 Apr 2024
Abstract
In order to enhance the matting performance in multi-person dynamic scenarios, we introduce a robust, real-time, high-resolution, and controllable human video matting method that achieves state of the art on all metrics. Unlike most existing methods that perform video matting frame by frame [...] Read more.
In order to enhance the matting performance in multi-person dynamic scenarios, we introduce a robust, real-time, high-resolution, and controllable human video matting method that achieves state of the art on all metrics. Unlike most existing methods that perform video matting frame by frame as independent images, we design a unified architecture using a controllable generation model to solve the problem of the lack of overall semantic information in multi-person video. Our method, called ControlMatting, uses an independent recurrent architecture to exploit temporal information in videos and achieves significant improvements in temporal coherence and detailed matting quality. ControlMatting adopts a mixed training strategy comprised of matting and a semantic segmentation dataset, which effectively improves the semantic understanding ability of the model. Furthermore, we propose a novel deep learning-based image filter algorithm that enforces our detailed augmentation ability on both matting and segmentation objectives. Our experiments have proved that prior information about the human body from the image itself can effectively combat the defect masking problem caused by complex dynamic scenarios with multiple people. Full article
(This article belongs to the Special Issue Computer Vision and Virtual Reality: Technologies and Applications)
53 pages, 777 KiB  
Systematic Review
The Role of Diet in the Cardiovascular Health of Childhood Cancer Survivors—A Systematic Review
by Ruijie Li, Alan R. Barker, Dimitris Vlachopoulos, Dewi Paris, Christina Schindera, Fabiën N. Belle and Raquel Revuelta Iniesta
Nutrients 2024, 16(9), 1315; https://doi.org/10.3390/nu16091315 (registering DOI) - 27 Apr 2024
Abstract
Background: Childhood cancer survivors (CCSs) face an increased risk of cardiovascular disease (CVD). This systematic review aims to provide the first synthesis of observational and interventional studies on the relationship between diet and cardiovascular health in CCSs. Methods: A comprehensive search was conducted [...] Read more.
Background: Childhood cancer survivors (CCSs) face an increased risk of cardiovascular disease (CVD). This systematic review aims to provide the first synthesis of observational and interventional studies on the relationship between diet and cardiovascular health in CCSs. Methods: A comprehensive search was conducted for studies published between 1990 and July 2023 in PubMed, MEDLINE, CINAHL, Child Development & Adolescent Studies, and Cochrane Library. Eligible studies included observational and interventional studies examining the associations or effects of dietary factors on CVD incidence, cardiac dysfunction, or CVD risk factors in CCSs diagnosed before age 25 years. Results: Ten studies met the inclusion criteria (nine observational and one interventional). Collectively, they comprised 3485 CCSs (male, 1734; female, 1751). The outcomes examined across observational studies included characteristics of obesity, diabetes biomarkers, hypertension indicators, dyslipidaemia biomarkers, and metabolic syndrome. The evidence suggested that greater adherence to healthy diets was associated with lower body mass index, blood pressure, glucose, and triglycerides and higher high-density lipoprotein cholesterol. The 12-week lifestyle intervention study in childhood leukaemia survivors found no impact on obesity indicators. Conclusion: The review results indicate the potentially protective effects of healthy diets. However, the available research remains preliminary and limited, underscoring the need for more rigorous, adequately powered studies. Full article
(This article belongs to the Section Pediatric Nutrition)
19 pages, 3708 KiB  
Article
Research on Pattern Dynamics Behavior of a Fractional Vegetation-Water Model in Arid Flat Environment
by Xiao-Long Gao, Hao-Lu Zhang, Yu-Lan Wang and Zhi-Yuan Li
Fractal Fract. 2024, 8(5), 264; https://doi.org/10.3390/fractalfract8050264 (registering DOI) - 27 Apr 2024
Abstract
In order to stop and reverse land degradation and curb the loss of biodiversity, the United Nations 2030 Agenda for Sustainable Development proposes to combat desertification. In this paper, a fractional vegetation–water model in an arid flat environment is studied. The pattern behavior [...] Read more.
In order to stop and reverse land degradation and curb the loss of biodiversity, the United Nations 2030 Agenda for Sustainable Development proposes to combat desertification. In this paper, a fractional vegetation–water model in an arid flat environment is studied. The pattern behavior of the fractional model is much more complex than that of the integer order. We study the stability and Turing instability of the system, as well as the Hopf bifurcation of fractional order α, and obtain the Turing region in the parameter space. According to the amplitude equation, different types of stationary mode discoveries can be obtained, including point patterns and strip patterns. Finally, the results of the numerical simulation and theoretical analysis are consistent. We find some novel fractal patterns of the fractional vegetation–water model in an arid flat environment. When the diffusion coefficient, d, changes and other parameters remain unchanged, the pattern structure changes from stripes to spots. When the fractional order parameter, β, changes, and other parameters remain unchanged, the pattern structure becomes more stable and is not easy to destroy. The research results can provide new ideas for the prevention and control of desertification vegetation patterns. Full article
(This article belongs to the Section Numerical and Computational Methods)
18 pages, 5033 KiB  
Article
Development of Chitosan-Based Films Incorporated with Chestnut Flower Essential Oil That Possess Good Anti-Ultraviolet Radiation and Antibacterial Effects for Banana Storage
by Yanfei Liu, Jingyuan Zhang, Fei Peng, Kui Niu, Wenlong Hou, Bin Du and Yuedong Yang
Coatings 2024, 14(5), 548; https://doi.org/10.3390/coatings14050548 (registering DOI) - 27 Apr 2024
Abstract
New and valuable packaging materials, with high biocompatibility and biodegradability, have garnered attention in recent years. The aim of this study was to investigate the physicochemical characterization and biological activities of chitosan (CH)-based composite films with the incorporation of chestnut flower essential oil [...] Read more.
New and valuable packaging materials, with high biocompatibility and biodegradability, have garnered attention in recent years. The aim of this study was to investigate the physicochemical characterization and biological activities of chitosan (CH)-based composite films with the incorporation of chestnut flower essential oil (CFEO). The composite films were prepared by the casting method and characterized in terms of structural, morphological, and mechanical properties via FT-IR, XRD, UV, SEM, AFM, and TGA. Antibacterial properties were investigated using Staphylococcus aureus, Escherichia coli, and Calletotrichum musae. Antioxidant capabilities were measured by DPPH assay. The results proved the significantly increased water vapor permeability (WVP), heat resistance, and antibacterial and antioxidant capabilities of CH-CFEO films. The incorporation of CH and CFEO enhanced UV blocking, which made the film shield almost all UV light. Films with a tensile strength of 6.37 ± 0.41 MPa and an elongation at break of 22.57 ± 0.35% were obtained with 6 mg mL−1 of CFEO. Subsequently, banana preservation experiments also confirmed that the composite films could effectively extend shelf life through reducing weight loss. These desirable performances enable our newly developed composite films to be a remarkable packaging material to become alternatives to traditional petroleum-based food-packaging materials and solve the fresh fruit preservation dilemma. Full article
(This article belongs to the Special Issue Functional Coatings in Postharvest Fruit and Vegetables)
Show Figures

Figure 1

15 pages, 7043 KiB  
Article
Hydrodynamic Interactions and Enhanced Energy Harnessing amongst Many WEC Units in Large-Size Wave Parks
by Xinyuan Shao, Jonas W. Ringsberg, Hua-Dong Yao, Uday Rajdeep Sakleshpur Lokesh Gowda, Hrishikesh Nitin Khedkar and Jørgen Hals Todalshaug
J. Mar. Sci. Eng. 2024, 12(5), 730; https://doi.org/10.3390/jmse12050730 (registering DOI) - 27 Apr 2024
Abstract
Interactions between wave energy converters (WECs) can significantly affect the overall energy-harnessing performance of a wave park. Although large-size wave parks with many WEC units are commonly considered in practical applications, it is challenging to simulate such parks due to huge computational costs. [...] Read more.
Interactions between wave energy converters (WECs) can significantly affect the overall energy-harnessing performance of a wave park. Although large-size wave parks with many WEC units are commonly considered in practical applications, it is challenging to simulate such parks due to huge computational costs. This paper presents a numerical model that uses the boundary element method (BEM) to simulate wave parks. Each wave energy converter (WEC) was modelled as a comprehensive system, including WEC buoys, power take-off, and mooring systems, with hydrodynamic interactions included. Two classical layouts for arranging 16 units were simulated using this numerical model. The energy-harnessing performance of these array layouts was analyzed for both regular waves and a selection of irregular sea state conditions with different wave directions, wave heights, wave periods and water depths. For each layout, three WEC separation distances were studied. An increase of up to 16% in the power performance of the WEC under regular waves was observed, which highlights the importance of interaction effects. Full article
(This article belongs to the Special Issue Development and Utilization of Offshore Renewable Energy)
20 pages, 831 KiB  
Article
Definition of Exergetic Efficiency in the Main and Emerging Thermal Desalination Technologies: A Proposal
by Nenna Arakcheeva El Kori, Ana M. Blanco-Marigorta and Noemi Melián Martel
Water 2024, 16(9), 1254; https://doi.org/10.3390/w16091254 (registering DOI) - 27 Apr 2024
Abstract
Increasing attention is being given to reduce the specific energy consumption in desalination processes, which translates into greater use of exergy analysis. An exergetic analysis provides relevant information related to the influence of the efficiency of a single component in the global plant [...] Read more.
Increasing attention is being given to reduce the specific energy consumption in desalination processes, which translates into greater use of exergy analysis. An exergetic analysis provides relevant information related to the influence of the efficiency of a single component in the global plant performance and in the exergy cost of the product. Therefore, an exergy analysis identifies the main improvement potentials in a productive thermodynamic process. Related to desalination technologies, many previous papers deal with the calculation of the parameters involved in the exergy analysis, the exergetic efficiency of different processes, plants, and technologies among them. However, different approaches for formulating the exergetic efficiency have been suggested in the literature, often without sufficient understanding and consistency. In this work, these formulations, applied to the main desalination components and processes, are compared and critically reviewed. Two definitions of exergy efficiency are applied to the desalination components of the three main thermal desalination processes (multieffect distillation–thermal vapour compression, multistage flash distillation, and direct-contact membrane distillation). The results obtained for the exergy efficiency of the MED-TVC, MSF, and DCMD processes for the input–output approach are 21.35%, 17.08%, and 1.28%, respectively, compared to the consumed–produced approach that presented 3.1%, 1.58%, and 0.37%, respectively. The consumed–produced approach seems to better fit the thermodynamic behaviour of thermal desalination systems. Full article
(This article belongs to the Special Issue Advanced Desalination Technologies for Water Treatment)
17 pages, 4499 KiB  
Article
Particle-Filter-Based Fault Diagnosis for the Startup Process of an Open-Cycle Liquid-Propellant Rocket Engine
by Jihyoung Cha, Sangho Ko and Soon-Young Park
Sensors 2024, 24(9), 2798; https://doi.org/10.3390/s24092798 (registering DOI) - 27 Apr 2024
Abstract
This study introduces a fault diagnosis algorithm based on particle filtering for open-cycle liquid-propellant rocket engines (LPREs). The algorithm serves as a model-based method for the startup process, accounting for more than 30% of engine failures. Similar to the previous fault detection and [...] Read more.
This study introduces a fault diagnosis algorithm based on particle filtering for open-cycle liquid-propellant rocket engines (LPREs). The algorithm serves as a model-based method for the startup process, accounting for more than 30% of engine failures. Similar to the previous fault detection and diagnosis (FDD) algorithm for the startup process, the algorithm in this study is composed of a nonlinear filter to generate residuals, a residual analysis, and a multiple-model (MM) approach to detect and diagnose faults from the residuals. In contrast to the previous study, this study makes use of the modified cumulative sum (CUSUM) algorithm, widely used in change-detection monitoring, and a particle filter (PF), which is theoretically the most accurate nonlinear filter. The algorithm is confirmed numerically using the CUSUM and MM methods. Subsequently, the FDD algorithm is compared with an algorithm from a previous study using a Monte Carlo simulation. Through a comparative analysis of algorithmic performance, this study demonstrates that the current PF-based FDD algorithm outperforms the algorithm based on other nonlinear filters. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
18 pages, 5414 KiB  
Article
Dynamic Doppler Characteristics of Maritime Airborne Corner Reflector
by Lingang Wu, Shengliang Hu, Chengxu Feng, Yasong Luo, Zhong Liu and Li Lin
J. Mar. Sci. Eng. 2024, 12(5), 727; https://doi.org/10.3390/jmse12050727 (registering DOI) - 27 Apr 2024
Abstract
The maritime airborne corner reflector (ACR) is a radar reflector that can measure wind speed in an unknown sea area in real time over a long distance. To improve our understanding of how the ACR works, we investigated the Doppler characteristics of the [...] Read more.
The maritime airborne corner reflector (ACR) is a radar reflector that can measure wind speed in an unknown sea area in real time over a long distance. To improve our understanding of how the ACR works, we investigated the Doppler characteristics of the ACR for the first time from a dynamic perspective. First, we constructed a radar echo signal model of the ACR. Then, we obtained the dynamic Doppler characteristics through pulse Doppler processing and discussed the special phenomenon of Doppler broadening. Finally, we proposed a rectangular window decomposition method to analyze the inner principle of the Doppler broadening phenomenon in more detail. In conclusion, this study provides valuable insights into the Doppler characterization of an ACR from a dynamic viewpoint, which contributes to enriching the basic theory of this equipment. Full article
(This article belongs to the Special Issue Ocean Observations)
Show Figures

Figure 1

13 pages, 8405 KiB  
Article
Rapid Fabrication of Yttrium Aluminum Garnet Microhole Array Based on Femtosecond Bessel Beam
by Heng Yang, Yuan Yu, Tong Zhang, Shufang Ma, Lin Chen, Bingshe Xu and Zhiyong Wang
Photonics 2024, 11(5), 408; https://doi.org/10.3390/photonics11050408 (registering DOI) - 27 Apr 2024
Abstract
High-aspect-ratio microholes, the fundamental building blocks for microfluidics, optical waveguides, and other devices, find wide applications in aerospace, biomedical, and photonics fields. Yttrium aluminum garnet (YAG) crystals are commonly used in optical devices due to their low stress, hardness, and excellent chemical stability. [...] Read more.
High-aspect-ratio microholes, the fundamental building blocks for microfluidics, optical waveguides, and other devices, find wide applications in aerospace, biomedical, and photonics fields. Yttrium aluminum garnet (YAG) crystals are commonly used in optical devices due to their low stress, hardness, and excellent chemical stability. Therefore, finding efficient fabrication methods to produce high-quality microholes within YAG crystals is crucial. The Bessel beam, characterized by a uniform energy distribution along its axis and an ultra-long depth of focus, is highly suitable for creating high-aspect-ratio structures. In this study, an axicon lens was used to shape the spatial profile of a femtosecond laser into a Bessel beam. Experimental verification showed a significant improvement in the high aspect ratio of the microholes produced in YAG crystals using the femtosecond Bessel beam. This study investigated the effects of the power and defocus parameters of single-pulse Bessel beams on microhole morphology and size, and microhole units with a maximum aspect ratio of more than 384:1 were obtained. Based on these findings, single-pulse femtosecond Bessel processing parameters were optimized, and an array of 181 × 181 microholes in a 400 μm thick YAG crystal was created in approximately 13.5 min. The microhole array had a periodicity of 5 μm and a unit aspect ratio of 315:1, with near-circular top and subface apertures and high repeatability. Full article
(This article belongs to the Special Issue Laser Processing and Modification of Materials)
Show Figures

Figure 1

15 pages, 3296 KiB  
Article
In Vitro Evaluation of Phytobiotic Mixture Antibacterial Potential against Enterococcus spp. Strains Isolated from Broiler Chicken
by Karolina Wódz, Karolina A. Chodkowska, Hubert Iwiński, Henryk Różański and Jakub Wojciechowski
Int. J. Mol. Sci. 2024, 25(9), 4797; https://doi.org/10.3390/ijms25094797 (registering DOI) - 27 Apr 2024
Abstract
Enterococcus spp. are normal intestinal tract microflorae found in poultry. However, the last decades have shown that several species, e.g., Enterococcus cecorum, have become emerging pathogens in broilers and may cause numerous losses in flocks. In this study, two combinations (H1 and [...] Read more.
Enterococcus spp. are normal intestinal tract microflorae found in poultry. However, the last decades have shown that several species, e.g., Enterococcus cecorum, have become emerging pathogens in broilers and may cause numerous losses in flocks. In this study, two combinations (H1 and H2) of menthol, 1,8-cineol, linalool, methyl salicylate, γ-terpinene, p-cymene, trans-anethole, terpinen-4-ol and thymol were used in an in vitro model, analyzing its effectiveness against the strains E. cecorum, E. faecalis, E. faecium, E. hirae and E. gallinarum isolated from broiler chickens from industrial farms. To identify the isolated strains classical microbiological methods and VITEK 2 GP cards were used. Moreover for E. cecorum a PCR test was used.. Antibiotic sensitivity (MIC) tests were performed for all the strains. For the composition H1, the effective dilution for E. cecorum and E. hirae strains was 1:512, and for E. faecalis, E. faecium and E. gallinarum, 1:1024. The second mixture (H2) showed very similar results with an effectiveness at 1:512 for E. cecorum and E. hirae and 1:1024 for E. faecalis, E. faecium and E. gallinarum. The presented results suggest that the proposed composition is effective against selected strains of Enterococcus in an in vitro model, and its effect is comparable to classical antibiotics used to treat this pathogen in poultry. This may suggest that this product may also be effective in vivo and provide effective support in the management of enterococcosis in broiler chickens. Full article
(This article belongs to the Special Issue Recent Research on Antimicrobial Agents)
Show Figures

Figure 1

16 pages, 5545 KiB  
Article
The Effect of Laser Remelting during SLM on Microstructure and Mechanical Properties of CoCrFeNiNb0.25
by Zhiyuan Yang, Chan Guo, Tao Sun, Jinpeng Hu, Xiaomei Feng and Yifu Shen
Materials 2024, 17(9), 2061; https://doi.org/10.3390/ma17092061 (registering DOI) - 27 Apr 2024
Abstract
A sub-eutectic high-entropy alloy composed of CoCrFeNiNb0.25 was prepared using a combination of mechanical powder mixing and selective laser melting (SLM). The mechanical properties of the alloy were enhanced by employing an interlayer laser remelting process. This study demonstrates the feasibility of [...] Read more.
A sub-eutectic high-entropy alloy composed of CoCrFeNiNb0.25 was prepared using a combination of mechanical powder mixing and selective laser melting (SLM). The mechanical properties of the alloy were enhanced by employing an interlayer laser remelting process. This study demonstrates the feasibility of using mechanical mixing and SLM to form an CoCrFeNiNb0.25 alloy. The interlayer laser remelting process can effectively promote the melting of Nb particles introduced by mechanical mixing, release the stresses near the unfused Nb particles, and reduce their degradation of the specimen properties. The results indicate that the CoCrFeNiNb0.25 alloy, prepared using the interlayer laser remelting process, had an average microhardness of 376 HV, a tensile strength of 974 MPa, and an elongation at break of 10.51%. This process offers a viable approach for rapidly adjusting the composition of high-entropy alloys for SLM forming. Full article
18 pages, 590 KiB  
Article
Quasi-Projective Synchronization of Discrete-Time Fractional-Order Complex-Valued BAM Fuzzy Neural Networks via Quantized Control
by Yingying Xu, Hongli Li, Jikai Yang and Long Zhang
Fractal Fract. 2024, 8(5), 263; https://doi.org/10.3390/fractalfract8050263 (registering DOI) - 27 Apr 2024
Abstract
In this paper, we ponder a kind of discrete-time fractional-order complex-valued fuzzy BAM neural network. Firstly, in order to guarantee the quasi-projective synchronization of the considered networks, an original quantitative control strategy is designed. Next, by virtue of the relevant definitions and properties [...] Read more.
In this paper, we ponder a kind of discrete-time fractional-order complex-valued fuzzy BAM neural network. Firstly, in order to guarantee the quasi-projective synchronization of the considered networks, an original quantitative control strategy is designed. Next, by virtue of the relevant definitions and properties of the Mittag-Leffler function, we propose a novel discrete-time fractional-order Halanay inequality, which is more efficient for disposing of the discrete-time fractional-order models with time delays. Then, based on the new lemma, fractional-order h-difference theory, and comparison principle, we obtain some easy-to-verify synchronization criteria in terms of algebraic inequalities. Finally, numerical simulations are provided to check the accuracy of the proposed theoretical results. Full article
15 pages, 13651 KiB  
Article
Electric Vehicle Battery Disassembly Using Interfacing Toolbox for Robotic Arms
by Alireza Rastegarpanah, Carmelo Mineo, Cesar Alan Contreras, Ali Aflakian, Giovanni Paragliola and Rustam Stolkin
Batteries 2024, 10(5), 147; https://doi.org/10.3390/batteries10050147 (registering DOI) - 27 Apr 2024
Abstract
This paper showcases the integration of the Interfacing Toolbox for Robotic Arms (ITRA) with our newly developed hybrid Visual Servoing (VS) methods to automate the disassembly of electric vehicle batteries, thereby advancing sustainability and fostering a circular economy. ITRA enhances collaboration between industrial [...] Read more.
This paper showcases the integration of the Interfacing Toolbox for Robotic Arms (ITRA) with our newly developed hybrid Visual Servoing (VS) methods to automate the disassembly of electric vehicle batteries, thereby advancing sustainability and fostering a circular economy. ITRA enhances collaboration between industrial robotic arms, server computers, sensors, and actuators, meeting the intricate demands of robotic disassembly, including the essential real-time tracking of components and robotic arms. We demonstrate the effectiveness of our hybrid VS approach, combined with ITRA, in the context of Electric Vehicle (EV) battery disassembly across two robotic testbeds. The first employs a KUKA KR10 robot for precision tasks, while the second utilizes a KUKA KR500 for operations needing higher payload capacity. Conducted in T1 (Manual Reduced Velocity) mode, our experiments underscore a swift communication protocol that links low-level and high-level control systems, thus enabling rapid object detection and tracking. This allows for the efficient completion of disassembly tasks, such as removing the EV battery’s top case in 27 s and disassembling a stack of modules in 32 s. The demonstrated success of our framework highlights its extensive applicability in robotic manufacturing sectors that demand precision and adaptability, including medical robotics, extreme environments, aerospace, and construction. Full article
16 pages, 2939 KiB  
Article
Characterisation of PVL-Positive Staphylococcus argenteus from the United Arab Emirates
by Stefan Monecke, Sindy Burgold-Voigt, Sascha D. Braun, Celia Diezel, Elisabeth M. Liebler-Tenorio, Elke Müller, Rania Nassar, Martin Reinicke, Annett Reissig, Abiola Senok and Ralf Ehricht
Antibiotics 2024, 13(5), 401; https://doi.org/10.3390/antibiotics13050401 (registering DOI) - 27 Apr 2024
Abstract
Staphylococcus argenteus is a recently described staphylococcal species that is related to Staphylococcus aureus but lacks the staphyloxanthin operon. It is able to acquire both resistance markers such as the SCCmec elements and mobile genetic elements carrying virulence-associated genes from S. aureus [...] Read more.
Staphylococcus argenteus is a recently described staphylococcal species that is related to Staphylococcus aureus but lacks the staphyloxanthin operon. It is able to acquire both resistance markers such as the SCCmec elements and mobile genetic elements carrying virulence-associated genes from S. aureus. This includes those encoding the Panton–Valentine leukocidin (PVL), which is associated mainly with severe and/or recurrent staphylococcal skin and soft tissue infections. Here, we describe the genome sequences of two PVL-positive, mecA-negative S. argenteus sequence type (ST) 2250 isolates from the United Arab Emirates in detail. The isolates were found in a dental clinic in the United Arab Emirates (UAE). Both were sequenced using Oxford Nanopore Technology (ONT). This demonstrated the presence of temperate bacteriophages in the staphylococcal genomes, including a PVL prophage. It was essentially identical to the published sequence of phiSa2wa_st78 (GenBank NC_055048), a PVL phage from an Australian S. aureus clonal complex (CC) 88 isolate. Besides the PVL prophage, one isolate carried another prophage and the second isolate carried two additional prophages, whereby the region between these two prophages was inverted. This “flipped” region comprised about 1,083,000 bp, or more than a third of the strain’s genome, and it included the PVL prophage. Prophages were induced by Mitomycin C treatment and subjected to transmission electron microscopy (TEM). This yielded, in accordance to the sequencing results, one or, respectively, two distinct populations of icosahedral phages. It also showed prolate phages which presumptively might be identified as the PVL phage. This observation highlights the significance bacteriophages have as agents of horizontal gene transfer as well as the need for monitoring emerging staphylococcal strains, especially in cosmopolitan settings such as the UAE. Full article
19 pages, 2134 KiB  
Article
Green Roofs on Shipping Containers: How Substrate Thickness Affects Thermal Performance
by Cléo de Araújo Moura, Bianca Botelho de Freitas, Ailton Pinto Alves Filho and Cyro Albuquerque
Buildings 2024, 14(5), 1246; https://doi.org/10.3390/buildings14051246 (registering DOI) - 27 Apr 2024
Abstract
Green roofs have become a popular sustainable solution in urban areas, and in recent years, shipping containers have gained popularity as a sustainable alternative for housing. A promising proposal is to combine these two solutions. This research aims to analyze the thermal behavior [...] Read more.
Green roofs have become a popular sustainable solution in urban areas, and in recent years, shipping containers have gained popularity as a sustainable alternative for housing. A promising proposal is to combine these two solutions. This research aims to analyze the thermal behavior of experimental modules of scale constructions. Four modules were constructed with different substrate thicknesses (4, 6, 8, and 12 cm) to verify the impact on thermal behavior and provide guidance for this technology. Additionally, another module was built without a green roof for control purposes. The indoor and outdoor air temperatures and humidities, soil moistures, and temperatures between green roof layers were recorded in a tropical climate in summer. The behavior was similar between the different thicknesses for the whole period but with significant differences in the indoor temperature amplitudes (13.8 °C for the thinner substrate, 9.7 °C for the thicker one, and 38.7 °C for the bare roof). This study also revealed considerable heat conduction between the side walls and the slab, which resulted in an upward heat flow to the substrate during a day with a clear sky, which is the opposite of what is observed in conventional roofs. During the night and rainy periods, temperatures tend to become closer between the roof’s layers when the substrate dissipates the energy absorbed throughout the day. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
16 pages, 694 KiB  
Article
Uniqueness of Iris Pattern Based on the Auto-Regressive Model
by Natalia A. Schmid, Matthew C. Valenti, Katelyn M. Hampel, Jinyu Zuo, Priyanka Das, Stephanie Schuckers and Joseph Skufca
Sensors 2024, 24(9), 2797; https://doi.org/10.3390/s24092797 (registering DOI) - 27 Apr 2024
Abstract
In this paper, we evaluate the uniqueness of a hypothetical iris recognition system that relies upon a nonlinear mapping of iris data into a space of Gaussian codewords with independent components. Given the new data representation, we develop and apply a sphere packing [...] Read more.
In this paper, we evaluate the uniqueness of a hypothetical iris recognition system that relies upon a nonlinear mapping of iris data into a space of Gaussian codewords with independent components. Given the new data representation, we develop and apply a sphere packing bound for Gaussian codewords and a bound similar to Daugman’s to characterize the maximum iris population as a function of the relative entropy between Gaussian codewords of distinct iris classes. As a potential theoretical approach leading toward the realization of the hypothetical mapping, we work with the auto-regressive model fitted into iris data, after some data manipulation and preprocessing. The distance between a pair of codewords is measured in terms of the relative entropy (log-likelihood ratio statistic is an alternative) between distributions of codewords, which is also interpreted as a measure of iris quality. The new approach to iris uniqueness is illustrated using two toy examples involving two small datasets of iris images. For both datasets, the maximum sustainable population is presented as a function of image quality expressed in terms of relative entropy. Although the auto-regressive model may not be the best model for iris data, it lays the theoretical framework for the development of a high-performance iris recognition system utilizing a nonlinear mapping from the space of iris data to the space of Gaussian codewords with independent components. Full article
(This article belongs to the Section Biosensors)
14 pages, 3466 KiB  
Article
FokI-RYdCas9 Mediates Nearly PAM-Less and High-Precise Gene Editing in Human Cells
by Di Li, Yaqi Cao, Long Xie, Chenfei He, Danrong Jiao, Mengxue Ma, Zhenrui Zuo, Erwei Zuo and Xiaogan Yang
Curr. Issues Mol. Biol. 2024, 46(5), 4021-4034; https://doi.org/10.3390/cimb46050248 (registering DOI) - 27 Apr 2024
Abstract
The demand for high-precision CRISPR/Cas9 systems in biomedicine is experiencing a notable upsurge. The editing system fdCas9 employs a dual-sgRNA strategy to enhance editing accuracy. However, the application of fdCas9 is constrained by the stringent requirement for two protospacer adjacent motifs (PAMs) of [...] Read more.
The demand for high-precision CRISPR/Cas9 systems in biomedicine is experiencing a notable upsurge. The editing system fdCas9 employs a dual-sgRNA strategy to enhance editing accuracy. However, the application of fdCas9 is constrained by the stringent requirement for two protospacer adjacent motifs (PAMs) of Cas9. Here, we devised an optimized editor, fRYdCas9, by merging FokI with the nearly PAM-less RYdCas9 variant, and two fRYdCas9 systems formed a dimer in a proper spacer length to accomplish DNA cleavage. In comparison to fdCas9, fRYdCas9 demonstrates a substantial increase in the number of editable genomic sites, approximately 330-fold, while maintaining a comparable level of editing efficiency. Through meticulous experimental validation, we determined that the optimal spacer length between two FokI guided by RYdCas9 is 16 base pairs. Moreover, fRYdCas9 exhibits a near PAM-less feature, along with no on-target motif preference via the library screening. Meanwhile, fRYdCas9 effectively addresses the potential risks of off-targets, as analyzed through whole genome sequencing (WGS). Mouse embryonic editing shows fRYdCas9 has robust editing capabilities. This study introduces a potentially beneficial alternative for accurate gene editing in therapeutic applications and fundamental research. Full article
(This article belongs to the Section Molecular Medicine)
10 pages, 1501 KiB  
Article
Multi-Objective Design of a Horizontal Flow Subsurface Wetland
by Jhonatan Mendez-Valencia, Carlos Sánchez-López and Eneida Reyes-Pérez
Water 2024, 16(9), 1253; https://doi.org/10.3390/w16091253 (registering DOI) - 27 Apr 2024
Abstract
An artificial wetland is used to treat gray, waste, storm or industrial water. This is an engineering system that uses natural functions of vegetation, soil and organisms to provide secondary treatment to gray water. In the physical design of each artificial wetland, there [...] Read more.
An artificial wetland is used to treat gray, waste, storm or industrial water. This is an engineering system that uses natural functions of vegetation, soil and organisms to provide secondary treatment to gray water. In the physical design of each artificial wetland, there are various action factors that must meet certain characteristics so that the level of gray-water pollution is reduced. In this sense, several design methodologies have been developed and reported in the literature, but some are customized designs and often do not meet the required decontamination objectives. This challenge increases as the complexity of the task in its structure also increases. Particularly in this work, a multi-objective evolutionary algorithm is used to optimize the physical design of a horizontal flow subsurface wetland (HFSW) for gray-water treatment. The study aims to achieve two objectives: first, to minimize the physical volume, and second, to maximize the contaminant removal efficiency. The defined objective functions depend on six design variables called hydraulic retention time, width, length, water depth inside the wetland, substrate depth and slope. Three constraint functions are also defined: removal efficiency greater than 95%, physical volume below 500 m3 and compliance with a length–width ratio is 3:1, varying the population size and number of generations equal to 200, 400, and 600. The set of solutions according to the number of generations as well as the Pareto front corresponds to the best solution that complies with the constraints of the problem of oversizing the HFSW, and the Pareto front shows the interaction between the objectives and their behavior, reflecting the problem’s nature as minimization–maximization. Full article
(This article belongs to the Section Water Quality and Contamination)
28 pages, 2064 KiB  
Review
Nutraceutical and Medicinal Importance of Marine Molluscs
by Yvan Anderson Tchangoue Ngandjui, Tsotlhe Trinity Kereeditse, Ilunga Kamika, Lawrence Mzukisi Madikizela and Titus Alfred Makudali Msagati
Mar. Drugs 2024, 22(5), 201; https://doi.org/10.3390/md22050201 (registering DOI) - 27 Apr 2024
Abstract
Marine molluscs are of enormous scientific interest due to their astonishing diversity in terms of their size, shape, habitat, behaviour, and ecological roles. The phylum Mollusca is the second most common animal phylum, with 100,000 to 200,000 species, and marine molluscs are among [...] Read more.
Marine molluscs are of enormous scientific interest due to their astonishing diversity in terms of their size, shape, habitat, behaviour, and ecological roles. The phylum Mollusca is the second most common animal phylum, with 100,000 to 200,000 species, and marine molluscs are among the most notable class of marine organisms. This work aimed to show the importance of marine molluscs as a potential source of nutraceuticals as well as natural medicinal drugs. In this review, the main classes of marine molluscs, their chemical ecology, and the different techniques used for the extraction of bioactive compounds have been presented. We pointed out their nutraceutical importance such as their proteins, peptides, polysaccharides, lipids, polyphenolic compounds pigments, marine enzymes, minerals, and vitamins. Their pharmacological activities include antimicrobial, anticancer, antioxidant, anti-inflammatory, and analgesic activities. Moreover, certain molluscs like abalones and mussels contain unique compounds with potential medicinal applications, ranging from wound healing to anti-cancer effects. Understanding the nutritional and therapeutic value of marine molluscs highlights their significance in both pharmaceutical and dietary realms, paving the way for further research and utilization in human health. Full article
(This article belongs to the Special Issue Marine Nutraceuticals and Functional Foods: 2nd Edition)
Show Figures

Figure 1

15 pages, 6461 KiB  
Article
EcoHIV Infection of Primary Murine Brain Cell Cultures to Model HIV Replication and Neuropathogenesis
by Boe-Hyun Kim, Wei Chao, Eran Hadas, Alejandra Borjabad, Mary Jane Potash and David J. Volsky
Viruses 2024, 16(5), 693; https://doi.org/10.3390/v16050693 (registering DOI) - 27 Apr 2024
Abstract
Background. EcoHIV is a chimeric HIV that replicates in mice in CD4+ T cells, macrophages, and microglia (but not in neurons), causing lasting neurocognitive impairment resembling neurocognitive disease in people living with HIV. The present study was designed to develop EcoHIV-susceptible primary mouse [...] Read more.
Background. EcoHIV is a chimeric HIV that replicates in mice in CD4+ T cells, macrophages, and microglia (but not in neurons), causing lasting neurocognitive impairment resembling neurocognitive disease in people living with HIV. The present study was designed to develop EcoHIV-susceptible primary mouse brain cultures to investigate the indirect effects of HIV infection on neuronal integrity. Results. We used two EcoHIV clones encoding EGFP and mouse bone marrow-derived macrophages (BMM), mixed mouse brain cells, or enriched mouse glial cells from two wild-type mouse strains to test EcoHIV replication efficiency, the identity of productively infected cells, and neuronal apoptosis and integrity. EcoHIV replicated efficiently in BMM. In mixed brain cell cultures, EcoHIV targeted microglia but did not cause neuronal apoptosis. Instead, the productive infection of the microglia activated them and impaired synaptophysin expression, dendritic density, and axonal structure in the neurons. EcoHIV replication in the microglia and neuronal structural changes during infection were prevented by culture with an antiretroviral. Conclusions. In murine brain cell cultures, EcoHIV replication in the microglia is largely responsible for the aspects of neuronal dysfunction relevant to cognitive disease in infected mice and people living with HIV. These cultures provide a tool for further study of HIV neuropathogenesis and its control. Full article
(This article belongs to the Special Issue Roles of Macrophages in Viral Infections)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop