The 2023 MDPI Annual Report has
been released!
 
20 pages, 8175 KiB  
Article
Genetic Enhancement of Blast and Bacterial Leaf Blight Resistance in Rice Variety CO 51 through Marker-Assisted Selection
by Samuthirapandi Subburaj, Thiyagarajan Thulasinathan, Viswabharathy Sakthivel, Bharathi Ayyenar, Rohit Kambale, Veera Ranjani Rajagopalan, Sudha Manickam, Raghu Rajasekaran, Gopalakrishnan Chellappan, Kalaimagal Thiyagarajan, Manonmani Swaminathan and Raveendran Muthurajan
Agriculture 2024, 14(5), 693; https://doi.org/10.3390/agriculture14050693 (registering DOI) - 28 Apr 2024
Abstract
The increased use of chemicals in rice farming poses significant issues regarding the emergence of pesticide/fungicide resistance and environmental sustainability concerns. This study was aimed at the genetic improvement of blast, bacterial leaf blight (BB) and gall midge resistance in a popular rice [...] Read more.
The increased use of chemicals in rice farming poses significant issues regarding the emergence of pesticide/fungicide resistance and environmental sustainability concerns. This study was aimed at the genetic improvement of blast, bacterial leaf blight (BB) and gall midge resistance in a popular rice variety CO 51 which already harbours a blast resistance gene Pi54. Efforts were made to pyramid an additional blast resistance gene Pi9 along with two BB resistance genes (xa13 and Xa21) and two gall midge resistance genes (Gm1 and Gm4) into an elite rice variety CO 51 to enhance the resistance level to biotic stresses. The superior lines were selected using functional markers conferring resistance to blast (NBS4 and Pi54MAS linked to Pi9 and Pi54 genes, respectively) and BB [(xa13Prom (xa13) and pTA248 (Xa21)] and SSR markers linked to Gm1 (RM1328) and Gm4 (RM22550) for phenotypic screening and agronomic evaluation. The genotyping and phenotyping of F6 and BC2F6 progenies of CO 51 X 562-4, for agronomic traits and resistance to BB and blast, identified ten superior progenies in F6 and five superior progenies in BC2F6. The breeding lines harbouring both xa13+Xa21 exhibited high levels of resistance to BB (score ≤ 1 cm) and Pi9+Pi54 exhibited strong resistance to blast (score ≤ 2). Identified lines can be evaluated further for varietal improvement or utilised as genetic stocks in breeding programs. Full article
(This article belongs to the Special Issue Feature Papers in Genotype Evaluation and Breeding)
Show Figures

Figure 1

20 pages, 2728 KiB  
Article
Have Agricultural Land-Use Carbon Emissions in China Peaked? An Analysis Based on Decoupling Theory and Spatial EKC Model
by Haoyue Wu, Bangwen Ding, Lu Liu, Lei Zhou, Yue Meng and Xiangjiang Zheng
Land 2024, 13(5), 585; https://doi.org/10.3390/land13050585 (registering DOI) - 28 Apr 2024
Abstract
Assessing the emission-peaking process of agricultural land use provides valuable insights for mitigating global warming. This study calculated agricultural land-use carbon emissions (ALUCEs) in China from 2000 to 2020 and explored the peaking process based on quantitative criteria. Further, we applied the Tapio [...] Read more.
Assessing the emission-peaking process of agricultural land use provides valuable insights for mitigating global warming. This study calculated agricultural land-use carbon emissions (ALUCEs) in China from 2000 to 2020 and explored the peaking process based on quantitative criteria. Further, we applied the Tapio decoupling index and environmental Kuznets curve (EKC) model to discuss the robustness of the peaking process. The main conclusions are as follows: (1) From 2000 to 2020, China’s average ALUCEs were 368.1 Mt C-eq (1349.7 CO2-eq), peaking at 396.9 Mt C-eq (1455.3 Mt CO2-eq) in 2015 before plateauing. Emissions from agricultural materials and soil management had entered the declining period, while those from rice cultivation were in the peaking period, those from straw burning were still rising, and those from livestock breeding remained at the plateauing phase. (2) The provinces of Beijing, Tianjin, and nine others saw a decline in ALUCEs, while Hainan, Guizhou, and another nine provinces observed plateauing, and Ningxia, Qinghai, and six other provinces experienced peaking. (3) Decoupling analysis confirmed that emission-peaking states remained stable even with agricultural growth. Instead of an inverted U-shaped relationship, we found an N-shaped relationship between ALUCEs and agricultural GDP. The spatial EKC model indicated that the peaking process had spillover effects between provinces. It is recommended that China accelerate ALUCE mitigation based on the source and phase of emissions, considering the peaking process and magnitude. Full article
(This article belongs to the Section Land Environmental and Policy Impact Assessment)
Show Figures

Figure 1

20 pages, 4771 KiB  
Article
Advancing the Decarbonization of the Construction Sector: Lifecycle Quality and Performance Assurance of Nearly Zero-Energy Buildings
by Emanuele Piaia, Beatrice Turillazzi, Roberto Di Giulio and Rizal Sebastian
Sustainability 2024, 16(9), 3687; https://doi.org/10.3390/su16093687 (registering DOI) - 28 Apr 2024
Abstract
Dealing with and maintaining high-quality standards in the design and construction phases is challenging, especially for on-site construction. Issues like improper implementation of building components and poor communication can widen the gap between design specifications and actual conditions. To prevent this, particularly for [...] Read more.
Dealing with and maintaining high-quality standards in the design and construction phases is challenging, especially for on-site construction. Issues like improper implementation of building components and poor communication can widen the gap between design specifications and actual conditions. To prevent this, particularly for energy-efficient buildings, it is vital to develop resilient, sustainable strategies. These should optimize resource use, minimize environmental impact, and enhance livability, contributing to carbon neutrality by 2050 and climate change mitigation. Traditional post-occupancy evaluations, which identify defects after construction, are impractical for addressing energy performance gaps. A new, real-time inspection approach is necessary throughout the construction process. This paper suggests an innovative guideline for prefabricated buildings, emphasizing digital ‘self-instruction’ and ‘self-inspection’. These procedures ensure activities impacting quality adhere to specific instructions, drawings, and 3D models, incorporating the relevant acceptance criteria to verify completion. This methodology, promoting alignment with planned energy-efficient features, is supported by BIM-based software and Augmented Reality (AR) tools, embodying Industry 4.0 principles. BIM (Building Information Modeling) and AR bridge the gap between virtual design and actual construction, improving stakeholder communication and enabling real-time monitoring and adjustments. This integration fosters accuracy and efficiency, which are key for energy-efficient and nearly zero-energy buildings, marking a shift towards a more precise, collaborative, and environmentally sensible construction industry. Full article
14 pages, 1697 KiB  
Article
Utilization of Whey for Eco-Friendly Bio-Preservation of Mexican-Style Fresh Cheeses: Antimicrobial Activity of Lactobacillus casei 21/1 Cell-Free Supernatants (CFS)
by Victor E. Vera-Santander, Ricardo H. Hernández-Figueroa, Daniela Arrioja-Bretón, María T. Jiménez-Munguía, Emma Mani-López and Aurelio López-Malo
Int. J. Environ. Res. Public Health 2024, 21(5), 560; https://doi.org/10.3390/ijerph21050560 (registering DOI) - 28 Apr 2024
Abstract
Using whey, a by-product of the cheese-making process, is important for maximizing resource efficiency and promoting sustainable practices in the food industry. Reusing whey can help minimize environmental impact and produce bio-preservatives for foods with high bacterial loads, such as Mexican-style fresh cheeses. [...] Read more.
Using whey, a by-product of the cheese-making process, is important for maximizing resource efficiency and promoting sustainable practices in the food industry. Reusing whey can help minimize environmental impact and produce bio-preservatives for foods with high bacterial loads, such as Mexican-style fresh cheeses. This research aims to evaluate the antimicrobial and physicochemical effect of CFS from Lactobacillus casei 21/1 produced in a conventional culture medium (MRS broth) and another medium using whey (WB medium) when applied in Mexican-style fresh cheese inoculated with several indicator bacteria (Escherichia coli, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes). The CFSs (MRS or WB) were characterized for organic acids concentration, pH, and titratable acidity. By surface spreading, CFSs were tested on indicator bacteria inoculated in fresh cheese. Microbial counts were performed on inoculated cheeses during and after seven days of storage at 4 ± 1.0 °C. Moreover, pH and color were determined in cheeses with CFS treatment. Lactic and acetic acid were identified as the primary antimicrobial metabolites produced by the Lb. casei 21/1 fermentation in the food application. A longer storage time (7 days) led to significant reductions (p < 0.05) in the microbial population of the indicator bacteria inoculated in the cheese when it was treated with the CFSs (MRS or WB). S. enterica serovar Typhimurium was the most sensitive bacteria, decreasing 1.60 ± 0.04 log10 CFU/g with MRS-CFS, whereas WB-CFS reduced the microbial population of L. monocytogenes to 1.67 log10 CFU/g. E. coli and S. aureus were the most resistant at the end of storage. The cheese’s pH with CFSs (MRS or WB) showed a significant reduction (p < 0.05) after CFS treatment, while the application of WB-CFS did not show greater differences in color (ΔE) compared with MRS-CFS. This study highlights the potential of CFS from Lb. casei 21/1 in the WB medium as an ecological bio-preservative for Mexican-style fresh cheese, aligning with the objectives of sustainable food production and guaranteeing food safety. Full article
(This article belongs to the Special Issue Foods and One Health)
Show Figures

Figure 1

22 pages, 14311 KiB  
Article
The Genesis of AIbyAI Integrated Circuit: Where AI Creates AI
by Emilio Isaac Baungarten-Leon, Susana Ortega-Cisneros, Mohamed Abdelmoneum, Ruth Yadira Vidana Morales and German Pinedo-Diaz
Electronics 2024, 13(9), 1704; https://doi.org/10.3390/electronics13091704 (registering DOI) - 28 Apr 2024
Abstract
The typical Integrated Circuit (IC) development process commences with formulating specifications in natural language and subsequently proceeds to Register Transfer Level (RTL) implementation. RTL code is traditionally generated through manual efforts, using Hardware Description Languages (HDL) such as VHDL or Verilog. High-Level Synthesis [...] Read more.
The typical Integrated Circuit (IC) development process commences with formulating specifications in natural language and subsequently proceeds to Register Transfer Level (RTL) implementation. RTL code is traditionally generated through manual efforts, using Hardware Description Languages (HDL) such as VHDL or Verilog. High-Level Synthesis (HLS), on the other hand, converts programming languages to HDL; these methods aim to streamline the engineering process, minimizing human effort and errors. Currently, Electronic Design Automation (EDA) algorithms have been improved with the use of AI, with new advancements in commercial (such as ChatGPT, Bard, among others) Large Language Models (LLM) and open-source tools presenting an opportunity to automate the chip design process. This paper centers on the creation of AIbyAI, a Convolutional Neural Network (CNN) IC entirely developed by an LLM (ChatGPT-4), and its manufacturing with the first fabricable open-source Process Design Kit (PDK), SKY130A. The challenges, opportunities, advantages, disadvantages, conversation flow, and workflow involved in CNN IC development are presented in this work, culminating in the manufacturing process of AIbyAI using a 130 nm technology, marking a groundbreaking achievement as possibly the world’s first CNN entirely written by AI for its IC manufacturing with a free PDK, being a benchmark for systems that can be generated today with LLMs. Full article
(This article belongs to the Special Issue Generative AI and Its Transformative Potential)
16 pages, 11059 KiB  
Article
Effect of Post-Plasma Nitrocarburized Treatment on Mechanical Properties of Carburized and Quenched 18Cr2Ni4WA Steel
by Dazhen Fang, Jinpeng Lu, Haichun Dou, Zelong Zhou, Jiwen Yan, Yang Li and Yongyong He
Lubricants 2024, 12(5), 153; https://doi.org/10.3390/lubricants12050153 (registering DOI) - 28 Apr 2024
Abstract
Under extreme conditions such as high speed and heavy load, 18Cr2Ni4WA steel cannot meet the service requirements even after carburizing and quenching processes. In order to obtain better surface mechanical properties and tribological property, a hollow cathode ion source diffusion strengthening device was [...] Read more.
Under extreme conditions such as high speed and heavy load, 18Cr2Ni4WA steel cannot meet the service requirements even after carburizing and quenching processes. In order to obtain better surface mechanical properties and tribological property, a hollow cathode ion source diffusion strengthening device was used to nitride the traditional carburizing and quenching samples. Unlike traditional ion carbonitriding technology, the low-temperature ion carbonitriding technology used in this article can increase the surface hardness of the material by 50% after 3 h of treatment, from the original 600 HV0.1 to 900 HV0.1, while the core hardness only decreases by less than 20%. The effect of post-ion carbonitriding treatment on mechanical properties and tribological properties of the carburized and quenched 18Cr2Ni4WA steel was investigated. Samples in different treatment are characterized using optical microscopy (OM), scanning electron microscopy (SEM), optimal SRV-4 high temperature tribotester, as well as Vickers hardness tester. Under two conditions of 6N light load and 60 N heavy load, compared with untreated samples, the wear rate of ion carbonitriding samples decreased by more than 99%, while the friction coefficient remained basically unchanged. Furthermore, the careful selection of ion nitrocarburizing and carburizing tempering temperatures in this study has been shown to significantly enhance surface hardness and wear resistance, while preserving the overall hardness of the carburized sample. The present study demonstrates the potential of ion carbonitriding technology as a viable post-treatment method for carburized gears. Full article
Show Figures

Figure 1

14 pages, 4456 KiB  
Article
The Epitaxial Growth of Ge and GeSn Semiconductor Thin Films on C-Plane Sapphire
by Emmanuel Wangila, Calbi Gunder, Petro M. Lytvyn, Mohammad Zamani-Alavijeh, Fernando Maia de Oliveira, Serhii Kryvyi, Hryhorii Stanchu, Aida Sheibani, Yuriy I. Mazur, Shui-Qing Yu and Gregory Salamo
Crystals 2024, 14(5), 414; https://doi.org/10.3390/cryst14050414 (registering DOI) - 28 Apr 2024
Abstract
Ge1−xSnx growth on a new sapphire platform has been demonstrated. This involved the growth of GeSn on Ge/GaAs layers using the algorithm developed. The resultant growths of Ge on GaAs/AlAs/sapphire and Ge1−xSnx on Ge/GaAs/AlAs/sapphire were investigated by [...] Read more.
Ge1−xSnx growth on a new sapphire platform has been demonstrated. This involved the growth of GeSn on Ge/GaAs layers using the algorithm developed. The resultant growths of Ge on GaAs/AlAs/sapphire and Ge1−xSnx on Ge/GaAs/AlAs/sapphire were investigated by in situ and ex situ characterization techniques to ascertain the surface morphology, crystal structure, and quality. The growth mode of Ge on GaAs was predominantly two-dimensional (2D), which signifies a layer-by-layer deposition, contributing to enhanced crystal quality in the Ge/GaAs system. The growth of Ge1−xSnx with 10% Sn on a graded profile for 30 min shows uniform composition and a strong peak on the reciprocal space map (RSM). On the other hand, the partially relaxed growth of the alloy on RSM was established. Full article
(This article belongs to the Special Issue Epitaxial Growth of Semiconductor Materials and Devices)
Show Figures

Figure 1

13 pages, 5609 KiB  
Article
Does the Artificial Enhancement and Release Activity Affect the Genetic Diversity of Marbled Rockfish Sebastiscus marmoratus in Zhoushan Waters?
by Senping Jiang, Xinyi Chen, Pengfei Li, Haoxue Wang, Jiji Li, Kaida Xu and Yingying Ye
Fishes 2024, 9(5), 161; https://doi.org/10.3390/fishes9050161 (registering DOI) - 28 Apr 2024
Abstract
Artificial enhancement and release activity is an important method in the restoration of fishery resources. In order to understand the possible genetic effect of hatchery-released populations on wild populations during the artificial enhancement and release activities of Sebastiscus marmoratus in Zhoushan waters, we [...] Read more.
Artificial enhancement and release activity is an important method in the restoration of fishery resources. In order to understand the possible genetic effect of hatchery-released populations on wild populations during the artificial enhancement and release activities of Sebastiscus marmoratus in Zhoushan waters, we utilized mitochondrial DNA control region sequences to examine the genetic diversity in four S. marmoratus populations, including one farmed population, one released population and two wild populations. A total of 68 haplotypes from 123 individuals were detected, including 3 shared haplotypes. Haplotype diversity ranged from 0.944 to 0.980, with a mean of 0.966. The nucleotide diversity ranged from 0.020 to 0.025, with a mean of 0.022. Analysis of Molecular Variance (AMOVA) indicated that the primary genetic variation occurs within populations and the index of genetic differentiation between populations (FST) among the four populations showed no differentiation. The results indicate that the current artificial enhancement and release has not impacted the S. marmoratus population in Zhoushan waters. Continued long-term monitoring is essential to protect the high-quality germplasm resources of S. marmoratus. Full article
Show Figures

Graphical abstract

9 pages, 563 KiB  
Communication
Adverse Reactions in Relapsed/Refractory B-Cell Lymphoma Administered with Chimeric Antigen Receptor T Cell Alone or in Combination with Autologous Stem Cell Transplantation
by Haolong Lin, Ting Deng, Lijun Jiang, Fankai Meng, Yang Cao, Yicheng Zhang, Renying Ge and Xiaojian Zhu
Cancers 2024, 16(9), 1722; https://doi.org/10.3390/cancers16091722 (registering DOI) - 28 Apr 2024
Abstract
(1) Background: The combination of CAR-T with ASCT has been observed to enhance the efficacy of CAR-T cell therapy. However, the impact of this combination on adverse reactions is still uncertain. (2) Methods: Between January 2019 and February 2023, 292 patients diagnosed with [...] Read more.
(1) Background: The combination of CAR-T with ASCT has been observed to enhance the efficacy of CAR-T cell therapy. However, the impact of this combination on adverse reactions is still uncertain. (2) Methods: Between January 2019 and February 2023, 292 patients diagnosed with r/r B-cell lymphoma received either CAR-T therapy alone or in combination with ASCT at our institution. We evaluated the incidence of CRS and CRES and utilized a logistic regression model to identify factors contributing to severe CRS (grade 3–4) and CRES (grade 3–4). (3) Results: The overall incidence of CRS and CRES was 78.9% and 8.2% in 147 patients receiving CAR-T alone, and 95.9% and 15.2% in 145 patients receiving CAR-T combined with ASCT, respectively. The incidence of overall CRS (p < 0.0001) and mild CRS (grade 1–2) (p = 0.021) was elevated in the ASCT combined with CAR-T group. No significant difference was observed in severe CRS and CRES between the groups. Among the 26 cases of lymphoma involving the central nervous system (CNS), 96.2% (25/26) developed CRS (15.4% grade 3–4), and 34.6% (9/26) manifested CRES (7.7% grade 3–4). Female patients had a lower incidence of severe CRS but a higher incidence of severe CRES. Lymphomas with CNS involvement demonstrated a higher risk of CRES compared to those without central involvement. (4) Conclusions: The combination of ASCT with CAR-T demonstrated a preferable option in r/r B-cell lymphoma without an increased incidence of severe CRS and CRES. Full article
(This article belongs to the Special Issue Immunotherapy in the Management of Hematologic Malignancy)
Show Figures

Figure 1

11 pages, 3169 KiB  
Article
Effects of a Low Dose of Orally Administered Creatine Monohydrate on Post-Fatigue Muscle Power in Young Soccer Players
by Álvaro Huerta Ojeda, Emilio Jofré-Saldía, Maximiliano Torres-Banduc, Sergio Galdames Maliqueo, Guillermo Barahona-Fuentes, Carlos Cofré Acevedo, Gabriela Lizana Romero, Regina de Villa Garduño, Gerardo Riquelme Vera, Pablo Vera Paredes, Benjamín Barrios Ávalos, Tatiane Morales Serey, María-Mercedes Yeomans-Cabrera and Carlos Jorquera-Aguilera
Nutrients 2024, 16(9), 1324; https://doi.org/10.3390/nu16091324 (registering DOI) - 28 Apr 2024
Abstract
The use of creatine monohydrate (Cr) in professional soccer is widely documented. However, the effect of low doses of Cr on the physical performance of young soccer players is unknown. This study determined the effect of a low dose of orally administered Cr [...] Read more.
The use of creatine monohydrate (Cr) in professional soccer is widely documented. However, the effect of low doses of Cr on the physical performance of young soccer players is unknown. This study determined the effect of a low dose of orally administered Cr on muscle power after acute intra-session fatigue in young soccer players. Twenty-eight young soccer players (mean age = 17.1 ± 0.9 years) were randomly assigned to either a Cr (n = 14, 0.3 g·kg−1·day−1 for 14 days) or placebo group (n = 14), using a two-group matched, double-blind, placebo-controlled design. Before and after supplementation, participants performed 21 repetitions of 30 m (fatigue induction), and then, to measure muscle power, they performed four repetitions in half back squat (HBS) at 65% of 1RM. Statistical analysis included a two-factor ANOVA (p ˂ 0.05). Bar velocity at HBS, time: p = 0.0006, ŋp2 = 0.22; group: p = 0.0431, ŋp2 = 0.12, time × group p = 0.0744, ŋp2 = 0.02. Power at HBS, time: p = 0.0006, ŋp2 = 0.12; group: p = 0.16, ŋp2 = 0.06, time × group: p = 0.17, ŋp2 = 0.009. At the end of the study, it was found that, after the induction of acute intra-session fatigue, a low dose of Cr administered orally increases muscle power in young soccer players. Full article
(This article belongs to the Section Sports Nutrition)
Show Figures

Figure 1

17 pages, 4689 KiB  
Article
A Walking Trajectory Tracking Control Based on Uncertainties Estimation for a Drilling Robot for Rockburst Prevention
by Jinheng Gu, Shicheng He, Jianbo Dai, Dong Wei, Haifeng Yan, Chao Tan, Zhongbin Wang and Lei Si
Machines 2024, 12(5), 298; https://doi.org/10.3390/machines12050298 (registering DOI) - 28 Apr 2024
Abstract
A walking trajectory tracking control approach for a walking electrohydraulic control system is developed to reduce the walking trajectory tracking deviation and enhance robustness. The model uncertainties are estimated by a designed state observer. A saturation function is used to attenuate sliding mode [...] Read more.
A walking trajectory tracking control approach for a walking electrohydraulic control system is developed to reduce the walking trajectory tracking deviation and enhance robustness. The model uncertainties are estimated by a designed state observer. A saturation function is used to attenuate sliding mode chattering in the designed sliding mode controller. Additionally, a walking trajectory tracking control strategy is proposed to improve the walking trajectory tracking performance in terms of response time, tracking precision, and robustness, including walking longitudinal and lateral trajectory tracking controllers. Finally, simulation and experimental results are employed to verify the trajectory tracking performance and observability of the model uncertainties. The results testify that the proposed approach is better than other comparative methods, and the longitudinal and lateral trajectory tracking average absolute errors are controlled in 10.23 mm and 22.34 mm, respectively, thereby improving the walking trajectory tracking performance of the walking electrohydraulic control system for the coal mine drilling robot for rockburst prevention. Full article
(This article belongs to the Special Issue Key Technologies in Intelligent Mining Equipment)
Show Figures

Figure 1

16 pages, 4293 KiB  
Article
Hybrid Materials for Vascular Applications: A Preliminary In Vitro Assessment
by Martina Todesco, Martina Casarin, Deborah Sandrin, Laura Astolfi, Filippo Romanato, Germana Giuggioli, Fabio Conte, Gino Gerosa, Chiara Giulia Fontanella and Andrea Bagno
Bioengineering 2024, 11(5), 436; https://doi.org/10.3390/bioengineering11050436 (registering DOI) - 28 Apr 2024
Abstract
The production of biomedical devices able to appropriately interact with the biological environment is still a great challenge. Synthetic materials are often employed, but they fail to replicate the biological and functional properties of native tissues, leading to a variety of adverse effects. [...] Read more.
The production of biomedical devices able to appropriately interact with the biological environment is still a great challenge. Synthetic materials are often employed, but they fail to replicate the biological and functional properties of native tissues, leading to a variety of adverse effects. Several commercial products are based on chemically treated xenogeneic tissues: their principal drawback is due to weak mechanical stability and low durability. Recently, decellularization has been proposed to bypass the drawbacks of both synthetic and biological materials. Acellular materials can integrate with host tissues avoiding/mitigating any foreign body response, but they often lack sufficient patency and impermeability. The present paper investigates an innovative approach to the realization of hybrid materials that combine decellularized bovine pericardium with polycarbonate urethanes. These hybrid materials benefit from the superior biocompatibility of the biological tissue and the mechanical properties of the synthetic polymers. They were assessed from physicochemical, structural, mechanical, and biological points of view; their ability to promote cell growth was also investigated. The decellularized pericardium and the polymer appeared to well adhere to each other, and the two sides were distinguishable. The maximum elongation of hybrid materials was mainly affected by the pericardium, which allows for lower elongation than the polymer; this latter, in turn, influenced the maximum strength achieved. The results confirmed the promising features of hybrid materials for the production of vascular grafts able to be repopulated by circulating cells, thus, improving blood compatibility. Full article
Show Figures

Figure 1

10 pages, 1810 KiB  
Article
The Time from Submission to Publication in Primary Health Care Journals: A Cross-Sectional Study
by Tsung-An Chen, Ming-Hwai Lin, Yu-Chun Chen and Tzeng-Ji Chen
Publications 2024, 12(2), 13; https://doi.org/10.3390/publications12020013 (registering DOI) - 28 Apr 2024
Abstract
Background: The time from submission to publication can significantly impact the speed of knowledge dissemination and is influenced by multiple factors. This research aims to investigate the time from submission to publication of journals of primary health care and to explore the factors [...] Read more.
Background: The time from submission to publication can significantly impact the speed of knowledge dissemination and is influenced by multiple factors. This research aims to investigate the time from submission to publication of journals of primary health care and to explore the factors that influence this duration. Methods: We selected journals of primary health care and extracted their impact factors, annual publication frequencies, and open access status. The time from submission to acceptance (SA lag), acceptance to publication (AP lag), and submission to publication (SP lag) were calculated. Additionally, we conducted statistical analyses to determine whether impact factors, annual publication frequencies, and journal open access status had an influence on publication time. Results: This study revealed the average SP lag was 243.4 days (interquartile range, IQR 159–306), the average SA lag was 177.8 days (IQR 99–229.3), and the average AP lag was 65.6 days (IQR 14–101). Variations were observed in SP lag, SA lag, and AP lag among different journals. SP lag generally decreased with higher impact factors. Journals with open access had longer SA lag but shorter AP lag. There was a general trend of decreasing SP lag and SA lag with an increasing number of annual publications, but no clear trend was observed for AP lag. Conclusions: Improvements are needed in reducing the duration from submission to publication for primary health care journals. Significant variation exists among journals. Additionally, factors such as the impact factor, open access status, and the number of annual publications may influence publication speed. Full article
Show Figures

Figure 1

17 pages, 4896 KiB  
Article
Design and Experiment of an Autonomous Navigation System for a Cattle Barn Feed-Pushing Robot Based on UWB Positioning
by Zejin Chen, Haifeng Wang, Mengchuang Zhou, Jun Zhu, Jiahui Chen and Bin Li
Agriculture 2024, 14(5), 694; https://doi.org/10.3390/agriculture14050694 (registering DOI) - 28 Apr 2024
Abstract
The autonomous navigation system of feed-pushing robots is one of the key technologies for the intelligent breeding of dairy cows, and its accuracy has a significant influence on the quality of feed-pushing operations. Currently, the navigation methods of feed-pushing robots in the complex [...] Read more.
The autonomous navigation system of feed-pushing robots is one of the key technologies for the intelligent breeding of dairy cows, and its accuracy has a significant influence on the quality of feed-pushing operations. Currently, the navigation methods of feed-pushing robots in the complex environment of cattle barns mainly include visual, LiDAR, and geomagnetic navigation, but there are still problems relating to low navigation accuracy. An autonomous navigation system based on ultra-wideband (UWB) positioning utilizing the dynamic forward-looking distance pure pursuit algorithm is proposed in this paper. First, six anchor nodes were arranged in the corners and central feeding aisle of a 30 × 86 m rectangular standard barn to form a rectangular positioning area. Then, utilizing the 9ITL-650 feed-pushing robot as a platform and integrating UWB wireless positioning technology, a global coordinate system for the cattle barn was established, and the expected path was planned. Finally, the pure pursuit model was improved based on the robot’s two-wheel differential kinematics model, and a dynamic forward-looking distance pure pursuit controller based on PID regulation was designed to construct a comprehensive autonomous navigation control system. Subsequently, field experiments were conducted in the cattle barn. The experimental results show that the static positioning accuracy of the UWB system for the feed-pushing robot was less than 16 cm under no-line-of-sight conditions in the cattle barn. At low speeds, the robot was subjected to linear tracking comparative experiments with forward-looking distances of 50, 100, 150, and 200 cm. The minimum upper-line distance of the dynamic forward-looking distance model was 205.43 cm. In the steady-state phase, the average lateral deviation was 3.31 cm, with an average standard deviation of 2.58 cm and the average root mean square error (RMSE) of 4.22 cm. Compared with the fixed forward-looking distance model, the average lateral deviation, the standard deviation, and the RMSE were reduced by 42.83%, 37.07%, and 42.90%, respectively. The autonomous navigation experiments conducted on the feed-pushing robot at travel speeds of 6, 8, and 10 m/min demonstrated that the maximum average lateral deviation was 7.58 cm, the maximum standard deviation was 8.22 cm, and the maximum RMSE was 11.07 cm, meeting the autonomous navigation requirements for feed-pushing operations in complex barn environments. This study provides support for achieving high-precision autonomous navigation control technology in complex environments. Full article
(This article belongs to the Topic Current Research on Intelligent Equipment for Agriculture)
Show Figures

Figure 1

16 pages, 3463 KiB  
Review
Role of Abscisic Acid, Reactive Oxygen Species, and Ca2+ Signaling in Hydrotropism—Drought Avoidance-Associated Response of Roots
by Baris Uzilday, Kaori Takahashi, Akie Kobayashi, Rengin Ozgur Uzilday, Nobuharu Fujii, Hideyuki Takahashi and Ismail Turkan
Plants 2024, 13(9), 1220; https://doi.org/10.3390/plants13091220 (registering DOI) - 28 Apr 2024
Abstract
Plant roots exert hydrotropism in response to moisture gradients to avoid drought stress. The regulatory mechanism underlying hydrotropism involves novel regulators such as MIZ1 and GNOM/MIZ2 as well as abscisic acid (ABA), reactive oxygen species (ROS), and Ca2+ signaling. ABA, ROS, and [...] Read more.
Plant roots exert hydrotropism in response to moisture gradients to avoid drought stress. The regulatory mechanism underlying hydrotropism involves novel regulators such as MIZ1 and GNOM/MIZ2 as well as abscisic acid (ABA), reactive oxygen species (ROS), and Ca2+ signaling. ABA, ROS, and Ca2+ signaling are also involved in plant responses to drought stress. Although the mechanism of moisture gradient perception remains largely unknown, the sensory apparatus has been reported to reside in the root elongation zone rather than in the root cap. In Arabidopsis roots, hydrotropism is mediated by the action of MIZ1 and ABA in the cortex of the elongation zone, the accumulation of ROS at the root curvature, and the variation in the cytosolic Ca2+ concentration in the entire root tip including the root cap and stele of the elongation zone. Moreover, root exposure to moisture gradients has been proposed to cause asymmetric ABA distribution or Ca2+ signaling, leading to the induction of the hydrotropic response. A comprehensive and detailed analysis of hydrotropism regulators and their signaling network in relation to the tissues required for their function is apparently crucial for understanding the mechanisms unique to root hydrotropism. Here, referring to studies on plant responses to drought stress, we summarize the recent findings relating to the role of ABA, ROS, and Ca2+ signaling in hydrotropism, discuss their functional sites and plausible networks, and raise some questions that need to be answered in future studies. Full article
(This article belongs to the Special Issue Molecular Mechanisms Underlying Root Growth Behavior)
Show Figures

Figure 1

18 pages, 871 KiB  
Article
Life Cycle CO2 Emissions Analysis of a High-Tech Greenhouse Horticulture Utilizing Wood Chips for Heating in Japan
by Jun Taguchi, Hiroki Hondo and Yue Moriizumi
Sustainability 2024, 16(9), 3692; https://doi.org/10.3390/su16093692 (registering DOI) - 28 Apr 2024
Abstract
High-tech greenhouse horticulture offers efficient crop cultivation that is unaffected by outdoor climate. However, compared to conventional cultivation systems, energy requirements, such as greenhouse heating and control, are larger, and concerns about the associated increase in CO2 emissions exist. Although several previous [...] Read more.
High-tech greenhouse horticulture offers efficient crop cultivation that is unaffected by outdoor climate. However, compared to conventional cultivation systems, energy requirements, such as greenhouse heating and control, are larger, and concerns about the associated increase in CO2 emissions exist. Although several previous studies have analyzed CO2 emissions from high-tech greenhouse horticulture, few have covered the entire life cycle. This study aimed to analyze CO2 emissions from high-tech greenhouse horticulture for tomatoes in Japan across the entire life cycle. A hybrid method combining process and input–output analyses was used to estimate life cycle CO2 (LC-CO2) emissions. The emission reduction potential of replacing liquefied petroleum gas (LPG) for greenhouse heating with wood chips was also examined. The results show that LC-CO2 emissions were estimated to be 3.67 kg-CO2 per 1 kg of tomato, 55.6% of which came from the production and combustion of LPG for greenhouse heating. The substitution of LPG with wood chips has the potential to reduce LC-CO2 emissions by up to 49.1%. However, the improved LC-CO2 emissions are still higher than those of conventional cultivation systems; thus, implementing additional measures to reduce LC-CO2 emissions is crucial. Full article
(This article belongs to the Special Issue Controlled Environment Agriculture for Sustainable Farming)
17 pages, 6541 KiB  
Article
Numerical Simulation and Experimental Verification of Quality Detection of Grouting in Pre-Stressed Pipelines Based on Transmission Wave Method
by Qingshan Wang, Yun Luo, Yang Liu, Minghao Song, Heng Liu and Xiaoge Liu
Appl. Sci. 2024, 14(9), 3773; https://doi.org/10.3390/app14093773 (registering DOI) - 28 Apr 2024
Abstract
The quality of grouting in pre-stressed pipelines plays a critical role in ensuring the safety and durability of pre-stressed concrete bridges. In this study, the transmission wave method was proposed as a means to assess the quality of grouting in pre-stressed pipelines. The [...] Read more.
The quality of grouting in pre-stressed pipelines plays a critical role in ensuring the safety and durability of pre-stressed concrete bridges. In this study, the transmission wave method was proposed as a means to assess the quality of grouting in pre-stressed pipelines. The ABAQUS finite element simulation (FE simulation) method was used to study the propagation of hammer stress waves in pre-stressed pipes. A full-scale test was conducted to verify the numerical simulation using the AGI-BWG instrument system developed to detect the quality of grouting. The results show that the propagation speed of transmitted waves increases and the frequency shifts towards higher frequencies with an increase in void length within pre-stressed pipelines. This research suggests that the propagation velocity of elastic waves in pre-stressed pipelines serves as a key indicator of grouting quality. The transmission wave method, based on hammer signals, proves to be an effective tool for detecting the quality of grouting in pre-stressed pipelines. Full article
(This article belongs to the Special Issue Advances in Civil Structural Damage Detection and Health Monitoring)
Show Figures

Figure 1

24 pages, 2742 KiB  
Review
Key Insights from Preflight Planning for Safety Improvement in General Aviation: A Systematic Literature Review
by Nuno Moura Lopes, Fátima Trindade Neves and Manuela Aparicio
Appl. Sci. 2024, 14(9), 3771; https://doi.org/10.3390/app14093771 (registering DOI) - 28 Apr 2024
Abstract
This study highlights the disproportionate number of fatal and non-fatal accidents in general aviation (GA) compared to airline carriers, emphasizing the need to investigate the contributing factors to these incidents. It identifies poor decision-making and a lack of situational awareness as key issues [...] Read more.
This study highlights the disproportionate number of fatal and non-fatal accidents in general aviation (GA) compared to airline carriers, emphasizing the need to investigate the contributing factors to these incidents. It identifies poor decision-making and a lack of situational awareness as key issues and presents a systematic literature review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method to analyze preflight information used by GA pilots. The findings underscore the significance of operational factors in ensuring a successful flight and suggest modifications to pilot license renewal processes, with an emphasis on the adoption of digital preflight tools. A new theoretical framework based on the operational factors identified is also introduced, which could serve as a foundation for future studies and interventions aimed at enhancing safety in general aviation. Full article
24 pages, 4645 KiB  
Article
Extraction of Protein and Bioactive Compounds from Mediterranean Red Algae (Sphaerococcus coronopifolius and Gelidium spinosum) Using Various Innovative Pretreatment Strategies
by Jihen Dhaouafi, Naima Nedjar, Mourad Jridi, Montassar Romdhani and Rafik Balti
Foods 2024, 13(9), 1362; https://doi.org/10.3390/foods13091362 (registering DOI) - 28 Apr 2024
Abstract
In this study, the release of proteins and other biomolecules into an aqueous media from two red macroalgae (Sphaerococcus coronopifolius and Gelidium spinosum) was studied using eight different cell disruption techniques. The contents of carbohydrates, pigments, and phenolic compounds coextracted with [...] Read more.
In this study, the release of proteins and other biomolecules into an aqueous media from two red macroalgae (Sphaerococcus coronopifolius and Gelidium spinosum) was studied using eight different cell disruption techniques. The contents of carbohydrates, pigments, and phenolic compounds coextracted with proteins were quantified. In addition, morphological changes at the cellular level in response to the different pretreatment methods were observed by an optical microscope. Finally, the antioxidant capacity of obtained protein extracts was evaluated using three in vitro tests. For both S. coronopifolius and G. spinosum, ultrasonication for 60 min proved to be the most effective technique for protein extraction, yielding values of 3.46 ± 0.06 mg/g DW and 9.73 ± 0.41 mg/g DW, respectively. Furthermore, the highest total contents of phenolic compounds, flavonoids, and carbohydrates were also recorded with the same method. However, the highest pigment contents were found with ultrasonication for 15 min. Interestingly, relatively high antioxidant activities like radical scavenging activity (31.57–65.16%), reducing power (0.51–1.70, OD at 700 nm), and ferrous iron-chelating activity (28.76–61.37%) were exerted by the different protein extracts whatever the pretreatment method applied. This antioxidant potency could be attributed to the presence of polyphenolic compounds, pigments, and/or other bioactive substances in these extracts. Among all the used techniques, ultrasonication pretreatment for 60 min appears to be the most efficient method in terms of destroying the macroalgae cell wall and extracting the molecules of interest, especially proteins. The protein fractions derived from the two red macroalgae under these conditions were precipitated with ammonium sulfate, lyophilized, and their molecular weight distribution was determined using SDS-PAGE. Our results showed that the major protein bands were observed between 25 kDa and 60 kDa for S. coronopifolius and ranged from 20 kDa to 150 kDa for G. spinosum. These findings indicated that ultrasonication for 60 min could be sufficient to disrupt the algae cells for obtaining protein-rich extracts with promising biological properties, especially antioxidant activity. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

17 pages, 7486 KiB  
Article
Protection Coordination Strategy for the Distributed Electric Aircraft Propulsion Systems
by Anil Kumar Reddy Siddavatam, Kaushik Rajashekara, Hao Huang and Fred Wang
World Electr. Veh. J. 2024, 15(5), 187; https://doi.org/10.3390/wevj15050187 (registering DOI) - 28 Apr 2024
Abstract
The current trend in distributed electric aircraft propulsion systems is to utilize the DC bus system at higher voltage levels than conventional aircraft systems. With Boeing and Airbus utilizing the +/−270 V bipolar DC bus system, the research on high-voltage systems is increasing [...] Read more.
The current trend in distributed electric aircraft propulsion systems is to utilize the DC bus system at higher voltage levels than conventional aircraft systems. With Boeing and Airbus utilizing the +/−270 V bipolar DC bus system, the research on high-voltage systems is increasing gradually, with voltage levels ranging from 1 to 10 kV systems or +/−0.5 to +/−5 kV DC bus systems. These voltage levels present considerable challenges to the distributed electric aircraft propulsion systems. In addition to partial discharge effects, there are other challenges, particularly the challenge associated with effectively limiting short-circuit fault currents due to the low cable impedance of the distribution system. The cable impedance is a significant factor that determines the fault current during fault conditions. Due to the low impedance, there is a sharp increase in fault current, necessitating an enhanced protection strategy, which ensures that the system is adequately protected. This paper introduces a coordinated protection strategy specifically designed for distributed electric aircraft propulsion systems to mitigate or prevent short-circuit faults. The proposed algorithm utilizes an I2t-based strategy and the current-limiting-based strategy to protect the system from short-circuit faults and overload conditions. Redundant backup protection is also included in the algorithm in case the circuit breaker fails to operate. Full article
(This article belongs to the Special Issue Electric and Hybrid Electric Aircraft Propulsion Systems)
Show Figures

Figure 1

27 pages, 13389 KiB  
Article
Quantitative Assessment and Impact Analysis of Land Surface Deformation in Wuxi Based on PS-InSAR and GARCH Model
by Shengyi Zhang, Lichang Xu, Rujian Long, Le Chen, Shenghan Wang, Shaowei Ning, Fan Song and Linlin Zhang
Remote Sens. 2024, 16(9), 1568; https://doi.org/10.3390/rs16091568 (registering DOI) - 28 Apr 2024
Abstract
Land surface deformation, including subsidence and uplift, has significant impacts on human life and the natural environment. In recent years, the city of Wuxi, China has experienced large-scale surface deformation following the implementation of a groundwater abstraction ban policy in 2005. To accurately [...] Read more.
Land surface deformation, including subsidence and uplift, has significant impacts on human life and the natural environment. In recent years, the city of Wuxi, China has experienced large-scale surface deformation following the implementation of a groundwater abstraction ban policy in 2005. To accurately measure the regional impacts and understand the underlying mechanisms, we investigated the spatiotemporal characteristics of surface deformation in Wuxi from 2015 to 2023 using 100 Sentinel-1A SAR images and the Persistent Scatterer InSAR (PS-InSAR) technique. The results revealed that surface deformation in Wuxi exhibited significant spatial and temporal variations, with some areas experiencing alternating trends of subsidence and uplift rather than consistent unidirectional change. To uncover the factors influencing this volatility, we conducted a comprehensive analysis focusing on groundwater, precipitation, and soil geology. This study found strong correlations between the groundwater level changes and surface deformation, with the soft soil geology of the area, characterized by alternating layers of sand and clay, further increasing the surface volatility. Moreover, we innovatively applied the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model, typically used in financial analyses, to analyze the subsidence displacement time series in Wuxi. Based on this model, we propose a new “Amplitude Factor” index to evaluate overall surface deformation volatility in the city. Our qualitative assessment of surface stability based on the Amplitude Factor was consistent with research findings, demonstrating the accuracy and effectiveness of the proposed model. These results provide valuable insights for urban planning, construction, and safety control, highlighting the importance of continuous monitoring and analysis of surface deformation volatility for the city’s future development and safety. Full article
Show Figures

Figure 1

13 pages, 1369 KiB  
Article
Integration of Computational Pipeline to Streamline Efficacious Drug Nomination and Biomarker Discovery in Glioblastoma
by Danielle Maeser, Robert F. Gruener, Robert Galvin, Adam Lee, Tomoyuki Koga, Florina-Nicoleta Grigore, Yuta Suzuki, Frank B. Furnari, Clark Chen and R. Stephanie Huang
Cancers 2024, 16(9), 1723; https://doi.org/10.3390/cancers16091723 (registering DOI) - 28 Apr 2024
Abstract
Glioblastoma multiforme (GBM) is the deadliest, most heterogeneous, and most common brain cancer in adults. Not only is there an urgent need to identify efficacious therapeutics, but there is also a great need to pair these therapeutics with biomarkers that can help tailor [...] Read more.
Glioblastoma multiforme (GBM) is the deadliest, most heterogeneous, and most common brain cancer in adults. Not only is there an urgent need to identify efficacious therapeutics, but there is also a great need to pair these therapeutics with biomarkers that can help tailor treatment to the right patient populations. We built patient drug response models by integrating patient tumor transcriptome data with high-throughput cell line drug screening data as well as Bayesian networks to infer relationships between patient gene expression and drug response. Through these discovery pipelines, we identified agents of interest for GBM to be effective across five independent patient cohorts and in a mouse avatar model: among them are a number of MEK inhibitors (MEKis). We also predicted phosphoglycerate dehydrogenase enzyme (PHGDH) gene expression levels to be causally associated with MEKi efficacy, where knockdown of this gene increased tumor sensitivity to MEKi and overexpression led to MEKi resistance. Overall, our work demonstrated the power of integrating computational approaches. In doing so, we quickly nominated several drugs with varying known mechanisms of action that can efficaciously target GBM. By simultaneously identifying biomarkers with these drugs, we also provide tools to select the right patient populations for subsequent evaluation. Full article
(This article belongs to the Collection Oncology: State-of-the-Art Research in the USA)
Show Figures

Figure 1

22 pages, 1497 KiB  
Article
Investigating the Impact of Combined Daylight and Electric Light on Human Perception of Indoor Spaces
by Niloofar Nikookar, Azadeh Omidfar Sawyer, Mayank Goel and Siobhan Rockcastle
Sustainability 2024, 16(9), 3691; https://doi.org/10.3390/su16093691 (registering DOI) - 28 Apr 2024
Abstract
People spend more than 90% of their time indoors, and, as such, improving indoor lighting quality can enhance their quality of life by positively influencing both physiological and psychological aspects. Numerous studies suggest that perceptions of a space vary depending on a number [...] Read more.
People spend more than 90% of their time indoors, and, as such, improving indoor lighting quality can enhance their quality of life by positively influencing both physiological and psychological aspects. Numerous studies suggest that perceptions of a space vary depending on a number of lighting attributes present. Significant effort has been made across various fields to identify the spatial lighting conditions and attributes that impact human perception, although we lack studies that explore the impact of these conditions in tandem. This paper investigates how interior lighting conditions influence human impressions of room ambiance. The study examines 16 different interior scenes, considering factors such as sky condition (sunny vs. overcast), shading blinds position (open vs. closed), presence or absence of electric light (on vs. off), and Correlated Color Temperature (CCT) (2700 K, 4000 K, and 6500 K). The evaluation is conducted within an office environment at Carnegie Mellon University, using a combination of objective lighting metrics and subjective assessments. In total, 26 participants, consisting of 11 females, 14 males, and one undisclosed, aged between 18 and 50, evaluated the office ambiance under various lighting conditions using semantic differential scales. The analysis showed that the variation of blinds and CCT levels significantly influenced the participants’ impression of light. The study also identified statistically significant interactions between “blinds and CCT” and “blinds and sky” conditions, highlighting the combined influence of these variables on shaping indoor light impressions. This research offers valuable insights into the complex interplay of different lighting factors in shaping human perceptions, and underscores the importance of optimizing indoor lighting conditions for creating healthy and sustainable indoor environments. Full article

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop