The 2023 MDPI Annual Report has
been released!
 
10 pages, 598 KiB  
Article
Longevity and Potential Mechanisms of Fenpropathrin Resistance in Asian Citrus Psyllid, Diaphorina citri Kuwayama
by Xuedong Chen, Dara G. Stockton, Torrence A. Gill, Hunter Gossett, Jawwad A. Qureshi, Kirsten S. Pelz-Stelinski and Lukasz L. Stelinski
Horticulturae 2024, 10(5), 448; https://doi.org/10.3390/horticulturae10050448 (registering DOI) - 27 Apr 2024
Abstract
The stability of resistance to fenpropathrin was assessed using five populations of Diaphorina citri with varying initial resistances ranging from fully susceptible (SS) to fully resistant (RR). Furthermore, we quantified the relative expression of voltage-gated sodium channel (VGSC) genes in crosses [...] Read more.
The stability of resistance to fenpropathrin was assessed using five populations of Diaphorina citri with varying initial resistances ranging from fully susceptible (SS) to fully resistant (RR). Furthermore, we quantified the relative expression of voltage-gated sodium channel (VGSC) genes in crosses of field-selected and laboratory-susceptible D. citri lines after eight months without insecticide selection. We found that resistance to fenpropathrin remained elevated up to eight months after exposure to fenpropathrin. A real-time quantitative PCR analysis using the susceptible baseline population revealed that levels of VGSC gene expression were significantly higher in the RS75 cross and the RR100 fully resistant line eight months after their last fenpropathrin exposure. Our results suggest that while fenpropathrin resistance is likely unstable under field conditions when interbreeding with susceptible individuals is possible, resistance can remain stable for at least 8 months if those populations are isolated. Further, insecticide rotation and the maintenance of susceptible reservoirs of individuals should mitigate fenpropathrin resistance in D. citri over time. The development of a VGSC gene biomarker may be a useful tool for monitoring pyrethroid resistance in D. citri going forward. Full article
(This article belongs to the Section Insect Pest Management)
Show Figures

Figure 1

11 pages, 2563 KiB  
Article
A Study of Lunar Regolith Obtained during the Apollo and Luna Space Programs Based on Principal Component Analysis
by Jacek Katzer, Janusz Kobaka and Karol Seweryn
Aerospace 2024, 11(5), 348; https://doi.org/10.3390/aerospace11050348 (registering DOI) - 27 Apr 2024
Abstract
In this study, a modern principal component analysis (PCA) of the chemical properties of lunar soils was conducted. American and Soviet results acquired during the Apollo and Luna missions, respectively, were analyzed and compared. The chemical composition of the lunar soil was the [...] Read more.
In this study, a modern principal component analysis (PCA) of the chemical properties of lunar soils was conducted. American and Soviet results acquired during the Apollo and Luna missions, respectively, were analyzed and compared. The chemical composition of the lunar soil was the focus of our analysis, the main aim of which was to assess any possible differences between the results provided by the missions in question. The results were visualized in two- and three-dimensional spaces. The use of PCA virtual variables enabled the chemical composition of the lunar soil to be fully visualized—something impossible to achieve using traditional techniques—and key similarities and differences among the properties of the lunar soil samples were determined. The sources of any differences were then conceptualized. The work reported in this paper offers new directions for future studies, especially research into the design of new lunar soil simulants for lunar construction and civil engineering programs. Full article
(This article belongs to the Special Issue Planetary Exploration)
Show Figures

Figure 1

21 pages, 1396 KiB  
Review
Hepatitis Delta Virus and Hepatocellular Carcinoma
by Daniele Lombardo, Maria Stella Franzè, Giuseppe Caminiti and Teresa Pollicino
Pathogens 2024, 13(5), 362; https://doi.org/10.3390/pathogens13050362 (registering DOI) - 27 Apr 2024
Abstract
The hepatitis D virus (HDV) is a compact, enveloped, circular RNA virus that relies on hepatitis B virus (HBV) envelope proteins to initiate a primary infection in hepatocytes, assemble, and secrete new virions. Globally, HDV infection affects an estimated 12 million to 72 [...] Read more.
The hepatitis D virus (HDV) is a compact, enveloped, circular RNA virus that relies on hepatitis B virus (HBV) envelope proteins to initiate a primary infection in hepatocytes, assemble, and secrete new virions. Globally, HDV infection affects an estimated 12 million to 72 million people, carrying a significantly elevated risk of developing cirrhosis, liver failure, and hepatocellular carcinoma (HCC) compared to an HBV mono-infection. Furthermore, HDV-associated HCC often manifests at a younger age and exhibits more aggressive characteristics. The intricate mechanisms driving the synergistic carcinogenicity of the HDV and HBV are not fully elucidated but are believed to involve chronic inflammation, immune dysregulation, and the direct oncogenic effects of the HDV. Indeed, recent data highlight that the molecular profile of HCC associated with HDV is unique and distinct from that of HBV-induced HCC. However, the question of whether the HDV is an oncogenic virus remains unanswered. In this review, we comprehensively examined several crucial aspects of the HDV, encompassing its epidemiology, molecular biology, immunology, and the associated risks of liver disease progression and HCC development. Full article
(This article belongs to the Special Issue Oncoviruses and Molecular Mechanisms of Viral Carcinogenesis)
13 pages, 1211 KiB  
Article
Metabolic Syndrome According to Dietary and Health-Related Lifestyle in Male Cancer Survivors and Non-Cancer over 40 Years of Age
by Huan Meng, Yongchul Choi and Kitae Yim
Foods 2024, 13(9), 1351; https://doi.org/10.3390/foods13091351 (registering DOI) - 27 Apr 2024
Abstract
Researchers often report higher metabolic syndrome (MetS) pr\4;evalence among cancer survivors than among non-cancer individuals. This study aims to explore the impact of cancer presence, activity type, and dietary lifestyle on MetS in males over 40 years of age. Participants (n = [...] Read more.
Researchers often report higher metabolic syndrome (MetS) pr\4;evalence among cancer survivors than among non-cancer individuals. This study aims to explore the impact of cancer presence, activity type, and dietary lifestyle on MetS in males over 40 years of age. Participants (n = 9846; 618 cancer survivors, 9228 non-cancer) were selected by extracting data from a Korean government database spanning the years 2016 to 2021. Physical activity patterns, dietary habits, and MetS factors were measured, and a multiple logistic regression analysis was statistically processed for an odds ratio (OR). MetS was present in 32.8% of cancer survivors and 28.6% of non-cancer individuals. Gastric cancer survivors exhibited a 16% lower OR for MetS versus non-cancer participants. The ORs were higher by 1.60-, 1.45-, and 1.26-fold for colorectal, urinary, and other cancers, respectively. Cancer survivors with high calorie, carbohydrate, and fat intakes exhibited ORs of 2.01 (95% CI 1.28−4.04), 2.33 (95% CI 1.28−4.54), and 1.39 (95% CI 1.05−2.37) compared to the recommended level. The high fiber-intake group reduced the MetS OR by 20%. In conclusion, The MetS prevalence was higher in survivors with colorectal cancer, urinary cancer, and other cancers, while it was lower in patients with gastric cancer. Survivors with low rates of eating three meals a day, high skipping breakfast, increased eating-out rate, and no nutritional learning opportunity displayed higher MetS prevalence. Additionally, cancer survivors who had more strength and leisure activities had a lower OR of MetS. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

11 pages, 429 KiB  
Article
Benefit or Problem: Exploration of How Response Options Affect Self-Reported Behaviors and Interests in Autistic Adults
by Hyein Lee, Nikita Jadav, Ellen Wilkinson and Vanessa H. Bal
Healthcare 2024, 12(9), 911; https://doi.org/10.3390/healthcare12090911 (registering DOI) - 27 Apr 2024
Abstract
Assessment of restricted, repetitive behaviors (RRB) in autism evaluations often assumes that these behaviors negatively impact the individual. Qualitative studies of first-person accounts indicate the negative impact of the stigma associated with RRBs but also provide insights into the positive aspects. The current [...] Read more.
Assessment of restricted, repetitive behaviors (RRB) in autism evaluations often assumes that these behaviors negatively impact the individual. Qualitative studies of first-person accounts indicate the negative impact of the stigma associated with RRBs but also provide insights into the positive aspects. The current study explores how framing response options as negative (i.e., level of problem associated with occurrence) or positive (i.e., level of benefit associated with occurrence) affects RRB self-reports in autistic adults. Sixty-six autistic adults aged 18–59 filled out the Repetitive Behavior Scale-Revised (RBS-R) and a modified RBS-R+, assessing problems and benefits of reported behaviors, respectively. There was a moderate to strong correlation between the forms, each assessing problems and benefits in terms of the number of behaviors endorsed (r = 0.746) and the levels of benefits and problems (r = 0.637). Autistic adults reported a higher number of RRBs in the form that assessed problems, but the number of behaviors was comparable between the forms when counting in the response option of the occurrence of behavior without having a benefit. Despite some variability in the level of problems and the benefits across the subdomains of RRB, autistic adults largely rated comparable levels of associated benefits and problems, highlighting the complexity of RRBs as having both positive and negative impacts. Future screening and diagnostic tools for adults should aim to assess both positive and negative aspects of autistic features to afford a more nuanced understanding of individual experiences while still yielding diagnostically relevant information. Qualitative studies are needed to better understand the complex experiences associated with these behaviors; however, it may be important to ensure that options for endorsement of behaviors without a specific benefit are also needed to ensure some behaviors (e.g., self-injurious behaviors) are not missed. Full article
Show Figures

Figure 1

22 pages, 9923 KiB  
Review
A State of the Art on Cryogenic Cooling and Its Applications in the Machining of Difficult-to-Machine Alloys
by Mehmet Erdi Korkmaz and Munish Kumar Gupta
Materials 2024, 17(9), 2057; https://doi.org/10.3390/ma17092057 (registering DOI) - 27 Apr 2024
Abstract
Cryogenic cooling has gathered significant attention in the manufacturing industry. There are inherent difficulties in machining materials that are difficult to machine because of high levels of hardness, abrasiveness, and heat conductivity. Increased tool wear, diminished surface finish, and reduced machining efficiency are [...] Read more.
Cryogenic cooling has gathered significant attention in the manufacturing industry. There are inherent difficulties in machining materials that are difficult to machine because of high levels of hardness, abrasiveness, and heat conductivity. Increased tool wear, diminished surface finish, and reduced machining efficiency are the results of these problems, and traditional cooling solutions are insufficient to resolve them. The application of cryogenic cooling involves the use of extremely low temperatures, typically achieved by employing liquid nitrogen or other cryogenic fluids. This study reviews the current state of cryogenic cooling technology and its use in machining difficult-to-machine materials. In addition, this review encompasses a thorough examination of cryogenic cooling techniques, including their principles, mechanisms, and effects on machining performance. The recent literature was used to discuss difficult-to-machine materials and their machining properties. The role of cryogenic cooling in machining difficult materials was then discussed. Finally, the latest technologies and methods involved in cryogenic cooling condition were discussed in detail. The outcome demonstrated that the exploration of cryogenic cooling methods has gained prominence in the manufacturing industry due to their potential to address challenges associated with the machining of exotic alloys. Full article
Show Figures

Figure 1

11 pages, 4858 KiB  
Article
Preparation and Corrosion Resistance of OMMT/EP Composite Coatings in Sulfur-Containing Sodium Aluminate Solution
by Jun Xu, Dongyu Li, Hanli Wang and Bianli Quan
Coatings 2024, 14(5), 546; https://doi.org/10.3390/coatings14050546 (registering DOI) - 27 Apr 2024
Abstract
Organic montmorillonite (OMMT) was prepared from Na-montmorillonite (MMT) by Hexadecylamine (HDA) modification. The composite material has good smoothness, acidity, and salt resistance. OMMT was characterized using small-angle X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and a video optical contact angle measuring [...] Read more.
Organic montmorillonite (OMMT) was prepared from Na-montmorillonite (MMT) by Hexadecylamine (HDA) modification. The composite material has good smoothness, acidity, and salt resistance. OMMT was characterized using small-angle X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and a video optical contact angle measuring instrument. The results showed that the layer spacing was enlarged from 1.44 nm to 2.87 nm after the modification, and the hydrophobicity performance was greatly improved. The organic modification of MMT was successful. The surface morphology, roughness, and anticorrosion properties of the organic montmorillonite/epoxy (OMMT/EP) composite coating were investigated and compared with those of the epoxy (EP) coating. The OMMT/EP composite coating had a flatter surface than the EP coating. The roughness was reduced from 65.5 nm to 10.3 nm. The electrochemical impedance spectroscopy showed that the composite coating’s thickness positively affected its anticorrosion performance, the corrosion current density (Icorr) decreased with the increase in thickness, and its maximum impedance was much larger than that of EP coating. The protection efficiency of the OMMT/EP composite coating was 77.90%, which is a significant improvement over the EP’s 31.27%. In addition, the corrosion resistance of the composite coating gradually decreased with increasing immersion time, but the change was insignificant. Full article
Show Figures

Figure 1

18 pages, 3109 KiB  
Article
Development, High-Throughput Profiling, and Biopanning of a Large Phage Display Single-Domain Antibody Library
by Hee Eon Lee, Ah Hyun Cho, Jae Hyeon Hwang, Ji Woong Kim, Ha Rim Yang, Taehoon Ryu, Yushin Jung and Sukmook Lee
Int. J. Mol. Sci. 2024, 25(9), 4791; https://doi.org/10.3390/ijms25094791 (registering DOI) - 27 Apr 2024
Abstract
Immunoglobulin G-based monoclonal antibodies (mAbs) have been effective in treating various diseases, but their large molecular size can limit their penetration of tissue and efficacy in multifactorial diseases, necessitating the exploration of alternative forms. In this study, we constructed a phage display library [...] Read more.
Immunoglobulin G-based monoclonal antibodies (mAbs) have been effective in treating various diseases, but their large molecular size can limit their penetration of tissue and efficacy in multifactorial diseases, necessitating the exploration of alternative forms. In this study, we constructed a phage display library comprising single-domain antibodies (sdAbs; or “VHHs”), known for their small size and remarkable stability, using a total of 1.6 × 109 lymphocytes collected from 20 different alpacas, resulting in approximately 7.16 × 1010 colonies. To assess the quality of the constructed library, next-generation sequencing-based high-throughput profiling was performed, analyzing approximately 5.65 × 106 full-length VHH sequences, revealing 92% uniqueness and confirming the library’s diverse composition. Systematic characterization of the library revealed multiple sdAbs with high affinity for three therapeutically relevant antigens. In conclusion, our alpaca sdAb phage display library provides a versatile resource for diagnostics and therapeutics. Furthermore, the library’s vast natural VHH antibody repertoire offers insights for generating humanized synthetic sdAb libraries, further advancing sdAb-based therapeutics. Full article
Show Figures

Figure 1

14 pages, 2074 KiB  
Article
Impact of Polyethylene-Glycol-Induced Water Potential on Methane Yield and Microbial Consortium Dynamics in the Anaerobic Degradation of Glucose
by Jin Yeo and Yong-Woo Jeon
Bioengineering 2024, 11(5), 433; https://doi.org/10.3390/bioengineering11050433 (registering DOI) - 27 Apr 2024
Abstract
This study investigated the relationship between water potential (Ψ) and the cation-induced inhibition of methane production in anaerobic digesters. The Ψ around methanogens was manipulated using polyethylene glycol (PEG) in a batch anaerobic reactor, ranging from −0.92 to −5.10 MPa. The ultimate methane [...] Read more.
This study investigated the relationship between water potential (Ψ) and the cation-induced inhibition of methane production in anaerobic digesters. The Ψ around methanogens was manipulated using polyethylene glycol (PEG) in a batch anaerobic reactor, ranging from −0.92 to −5.10 MPa. The ultimate methane potential (Bu) decreased significantly from 0.293 to 0.002 Nm3 kg−1-VSadded as Ψ decreased. When Ψ lowered from −0.92 MPa to −1.48 MPa, the community distribution of acetoclastic Methanosarcina decreased from 59.62% to 40.44%, while those of hydrogenotrophic Methanoculleus and Methanobacterium increased from 17.70% and 1.30% to 36.30% and 18.07%, respectively. These results mirrored changes observed in methanogenic communities affected by cation inhibition with KCl. Our findings strongly indicate that the inhibitory effect of cations on methane production may stem more from the water stress induced by cations than from their direct toxic effects. This study highlights the importance of considering Ψ dynamics in understanding cation-mediated inhibition in anaerobic digesters, providing insights into optimizing microbial processes for enhanced methane production from organic substrates. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Figure 1

12 pages, 8390 KiB  
Article
Prediction of Delayed Surface Subsidence Based on the Improved Knothe-n Model
by Jianhui Dong, Chengqian Tang, Xiao Liu and Yangdan Dong
Appl. Sci. 2024, 14(9), 3742; https://doi.org/10.3390/app14093742 (registering DOI) - 27 Apr 2024
Abstract
The delayed surface subsidence caused by coal seam mining is a problem that cannot be ignored, while accurate prediction of the surface subsidence provides a guarantee of the safety and stability of the relevant areas. However, the traditional Knothe model has limitations in [...] Read more.
The delayed surface subsidence caused by coal seam mining is a problem that cannot be ignored, while accurate prediction of the surface subsidence provides a guarantee of the safety and stability of the relevant areas. However, the traditional Knothe model has limitations in considering delayed surface subsidence. Because of this, the Knothe-n time function model is segmented and improved by using the data of the subsidence area obtained from a FLAC3D-based numerical model, and the maximum delayed surface subsidence in different periods is calculated. The analytical results are compared with the numerical results to validate the effectiveness of the improved segmented time function model in predicting delayed surface subsidence. The improved model is applied to predict the surface subsidence in the Yutianbao subsidence area. The root-mean-square error between the predicted and measured values for the maximum subsidence monitoring point is 1.12, and the root-mean-square error between the average predicted and measured values for the surface monitoring points is 0.37, which verifies the accuracy of the improved model. The prediction model provides a scientific basis for environmental protection and safety management after coal seam mining. Full article
Show Figures

Figure 1

13 pages, 5653 KiB  
Technical Note
Exploring the Potential of a Novel Iodine-Based Material as an Alternative Contrast Agent in X-ray Imaging Studies
by Kristina Bliznakova, Iliyan Kolev, Nikolay Dukov, Tanya Dimova and Zhivko Bliznakov
Materials 2024, 17(9), 2059; https://doi.org/10.3390/ma17092059 (registering DOI) - 27 Apr 2024
Abstract
Background: Contrast-enhanced mammography is one of the new emerging imaging techniques used for detecting breast tissue lesions. Optimization of imaging protocols and reconstruction techniques for this modality, however, requires the involvement of physical phantoms. Their development is related to the use of radiocontrast [...] Read more.
Background: Contrast-enhanced mammography is one of the new emerging imaging techniques used for detecting breast tissue lesions. Optimization of imaging protocols and reconstruction techniques for this modality, however, requires the involvement of physical phantoms. Their development is related to the use of radiocontrast agents. This study assesses the X-ray properties of a novel contrast material in clinical settings. This material is intended for experimental use with physical phantoms, offering an alternative to commonly available radiocontrast agents. Materials and Methods: The water-soluble sodium salt of the newly synthesized diiodine-substituted natural eudesmic acid, Sodium 2,6-DiIodo-3,4,5-TriMethoxyBenzoate [NaDITMB], has been investigated with respect to one of the most commonly applied radiocontrast medium in medical practice—Omnipaque®. For this purpose, simulation and experimental studies were carried out with a computational phantom and a physical counterpart, respectively. Synthetic and experimental X-ray images were subsequently produced under varying beam kilovoltage peaks (kVps), and the proposed contrast material was evaluated. Results and Discussion: Simulation results revealed equivalent absorptions between the two simulated radiocontrast agents. Experimental findings supported these simulations, showing a maximum deviation of 3.7% between the image gray values of contrast materials for NaDITMB and Omnipaque solutions for a 46 kVp X-ray beam. Higher kVp X-ray beams show even smaller deviations in the mean grey values of the imaged contrast agents, with the NaDITMB solution demonstrating less than a 2% deviation compared to Omnipaque. Conclusion: The proposed contrast agent is a suitable candidate for use in experimental work related to contrast-enhanced imaging by utilizing phantoms. It boasts the advantages of easy synthesis and is recognized for its safety, ensuring a secure environment for both the experimenter and the environment. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Medical Applications (2nd Edition))
Show Figures

Figure 1

16 pages, 4211 KiB  
Article
Influence of Pulsed Interference Laser Heating on Crystallisation of Amorphous Fe77Cu1Si13B9 Ribbons
by Agnieszka Radziszewska and Olaf Czyż
Materials 2024, 17(9), 2060; https://doi.org/10.3390/ma17092060 (registering DOI) - 27 Apr 2024
Abstract
Amorphous Fe77Cu1Si13B9 ribbons were treated with pulsed laser interference heating (PLIH). The research results will significantly contribute to a better understanding of the impact of PLIH on crystallisation and magnetic properties in precisely defined micro-areas of [...] Read more.
Amorphous Fe77Cu1Si13B9 ribbons were treated with pulsed laser interference heating (PLIH). The research results will significantly contribute to a better understanding of the impact of PLIH on crystallisation and magnetic properties in precisely defined micro-areas of Fe77Cu1Si13B9 (FeCuSiB) ribbons, which has not yet been described in the literature. It was confirmed here that the use of the laser heating process allowed for the achievement of two-dimensional crystallised micro-areas, periodically distributed (at a distance of 17 µm) on the surface of the amorphous ribbons. The correlation between structural changes (SEM, TEM, HRTEM) and the distribution of magnetic field lines of heated amorphous Fe77Cu1Si13B9 ribbons is presented. Particular attention is paid to structural changes in micro-areas where, by controlling the laser interference heating process, the partial crystallisation of amorphous alloys and the formation of clusters or single nanocrystallites (α-Fe(Si)) embedded in an amorphous matrix occur. The addition of copper to the FeSiB alloy promoted the inhibition of grain growth. Electron holography of micro-areas confirmed shifts in the magnetic field lines in the areas of nanocrystallites, the presence of which in the structure caused the magnetisation of the surrounding amorphous matrix. Full article
(This article belongs to the Section Metals and Alloys)
14 pages, 4310 KiB  
Article
Suppression of Contraction Raises Calcium Ion Levels in the Heart of Zebrafish Larvae
by Antonio Martinez-Sielva, Manuel Vicente, Jussep Salgado-Almario, Aarón Garcia-Blazquez, Beatriz Domingo and Juan Llopis
Biosensors 2024, 14(5), 219; https://doi.org/10.3390/bios14050219 (registering DOI) - 27 Apr 2024
Abstract
Zebrafish larvae have emerged as a valuable model for studying heart physiology and pathophysiology, as well as for drug discovery, in part thanks to its transparency, which simplifies microscopy. However, in fluorescence-based optical mapping, the beating of the heart results in motion artifacts. [...] Read more.
Zebrafish larvae have emerged as a valuable model for studying heart physiology and pathophysiology, as well as for drug discovery, in part thanks to its transparency, which simplifies microscopy. However, in fluorescence-based optical mapping, the beating of the heart results in motion artifacts. Two approaches have been employed to eliminate heart motion during calcium or voltage mapping in zebrafish larvae: the knockdown of cardiac troponin T2A and the use of myosin inhibitors. However, these methods disrupt the mechano-electric and mechano-mechanic coupling mechanisms. We have used ratiometric genetically encoded biosensors to image calcium in the beating heart of intact zebrafish larvae because ratiometric quantification corrects for motion artifacts. In this study, we found that halting heart motion by genetic means (injection of tnnt2a morpholino) or chemical tools (incubation with para-aminoblebbistatin) leads to bradycardia, and increases calcium levels and the size of the calcium transients, likely by abolishing a feedback mechanism that connects contraction with calcium regulation. These outcomes were not influenced by the calcium-binding domain of the gene-encoded biosensors employed, as biosensors with a modified troponin C (Twitch-4), calmodulin (mCyRFP1-GCaMP6f), or the photoprotein aequorin (GFP-aequorin) all yielded similar results. Cardiac contraction appears to be an important regulator of systolic and diastolic Ca2+ levels, and of the heart rate. Full article
(This article belongs to the Special Issue Recent Advances and Perspectives of Fluorescent Biosensors)
Show Figures

Figure 1

13 pages, 16041 KiB  
Article
Enhanced Nanotwinned Copper Bonding through Epoxy-Induced Copper Surface Modification
by Tsan-Feng Lu, Pei-Wen Wang, Yuan-Fu Cheng, Yu-Ting Yen and YewChung Sermon Wu
Nanomaterials 2024, 14(9), 771; https://doi.org/10.3390/nano14090771 (registering DOI) - 27 Apr 2024
Abstract
For decades, Moore’s Law has neared its limits, posing significant challenges to further scaling it down. A promising avenue for extending Moore’s Law lies in three-dimensional integrated circuits (3D ICs), wherein multiple interconnected device layers are vertically bonded using Cu–Cu bonding. The primary [...] Read more.
For decades, Moore’s Law has neared its limits, posing significant challenges to further scaling it down. A promising avenue for extending Moore’s Law lies in three-dimensional integrated circuits (3D ICs), wherein multiple interconnected device layers are vertically bonded using Cu–Cu bonding. The primary bonding mechanism involves Cu solid diffusion bonding. However, the atomic diffusion rate is notably low at temperatures below 300 °C, maintaining a clear and distinct weak bonding interface, which, in turn, gives rise to reliability issues. In this study, a new method of surface modification using epoxy resin to form fine grains on a nanotwinned Cu film was proposed. When bonded at 250 °C, the interfacial grains grew significantly into both sides of the Cu film. When bonded at 300 °C, the interfacial grains extended extensively, eventually eliminating the original bonding interface. Full article
(This article belongs to the Special Issue Nano Surface Engineering)
Show Figures

Figure 1

22 pages, 1107 KiB  
Article
Quantitative and Longitudinal Assessment of Systemic Innate Immunity in Health and Disease Using a 2D Gene Model
by Hongxing Lei
Biomedicines 2024, 12(5), 969; https://doi.org/10.3390/biomedicines12050969 (registering DOI) - 27 Apr 2024
Abstract
Dysregulation of innate immunity is deeply involved in infectious and autoimmune diseases. For a better understanding of pathogenesis and improved management of these diseases, it is of vital importance to implement convenient monitoring of systemic innate immunity. Built upon our previous works on [...] Read more.
Dysregulation of innate immunity is deeply involved in infectious and autoimmune diseases. For a better understanding of pathogenesis and improved management of these diseases, it is of vital importance to implement convenient monitoring of systemic innate immunity. Built upon our previous works on the host transcriptional response to infection in peripheral blood, we proposed a 2D gene model for the simultaneous assessment of two major components of systemic innate immunity, including VirSig as the signature of the host response to viral infection and BacSig as the signature of the host response to bacterial infection. The revelation of dysregulation in innate immunity by this 2D gene model was demonstrated with a wide variety of transcriptome datasets. In acute infection, distinctive patterns of VirSig and BacSig activation were observed in viral and bacterial infection. In comparison, both signatures were restricted to a defined range in the vast majority of healthy adults, regardless of age. In addition, BacSig showed significant elevation during pregnancy and an upward trend during development. In tuberculosis (TB), elevation of BacSig and VirSig was observed in a significant portion of active TB patients, and abnormal BacSig was also associated with a longer treatment course. In cystic fibrosis (CF), abnormal BacSig was observed in a subset of patients, and no overall change in BacSig abnormality was observed after the drug treatment. In systemic sclerosis-associated interstitial lung disease (SSc-ILD), significant elevation of VirSig and BacSig was observed in some patients, and treatment with a drug led to the further deviation of BacSig from the control level. In systemic lupus erythematosus (SLE), positivity for the anti-Ro autoantibody was associated with significant elevation of VirSig in SLE patients, and the additive effect of VirSig/BacSig activation was also observed in SLE patients during pregnancy. Overall, these data demonstrated that the 2D gene model can be used to assess systemic innate immunity in health and disease, with the potential clinical applications including patient stratification, prescription of antibiotics, understanding of pathogenesis, and longitudinal monitoring of treatment response. Full article
(This article belongs to the Section Immunology and Immunotherapy)
18 pages, 6111 KiB  
Article
The Impact of Microplastic Concentration and Particle Size on the Germination and Seedling Growth of Pisum sativum L.
by Yibo Li, Genshen Yang, Chen Yu, Xiaoting Lei, Xuguang Xing, Xiaoyi Ma and Yan Sun
Agronomy 2024, 14(5), 923; https://doi.org/10.3390/agronomy14050923 (registering DOI) - 27 Apr 2024
Abstract
Hydroponic experiments were conducted to investigate the effects of varying particle sizes (5 μm, 0.1 μm, and 0.08 μm) and concentrations (0, 50, 100, 200, 500, 1000, and 2000 mg/L) of polystyrene plastic microspheres (PS-MPs) on the germination and growth of P. sativum [...] Read more.
Hydroponic experiments were conducted to investigate the effects of varying particle sizes (5 μm, 0.1 μm, and 0.08 μm) and concentrations (0, 50, 100, 200, 500, 1000, and 2000 mg/L) of polystyrene plastic microspheres (PS-MPs) on the germination and growth of P. sativum seeds in order to investigate the effects of the microplastic environment on crop seed germination and seedling growth. The findings demonstrated that PS-MPs significantly harmed P. sativum seed germination. Specifically, low concentrations or high particle sizes weakened or promoted P. sativum seed germination, indicating varying susceptibilities to PS-MP treatment at different particle sizes. The strongest inhibitory effect on growth was observed under small particle size (0.08 μm) and high concentration (2000 mg/L). Stress had less of an impact on P. sativum in environments with low concentrations of PS-MPs, but in environments with medium and high concentrations, physiological and biochemical indicators like germination rate, stem length, and root length were significantly impacted. Furthermore, the particle size and concentration of PS-MPs had an impact on the growth effect of P. sativum seedlings. The indices of P. sativum seed germination were significantly impacted by the particle size of PS-MPs, despite the fact that PS-MP concentration was low. When the concentration of PS-MPs is low, the effects of varying PS-MP particle sizes on seed germination and root length are as follows: 0.1 μm > 5 μm > 0.08 μm. The concentration of PS-MPs had a significant impact on how it affected the buildup of dry matter and photosynthetic pigment. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

14 pages, 535 KiB  
Article
Risk Factors for Overweight and Obesity in Later School-Aged Children: Focus on Lifestyle Behaviours and Psychosocial Characteristics
by Yong-Sook Eo and Myo-Sung Kim
Healthcare 2024, 12(9), 912; https://doi.org/10.3390/healthcare12090912 (registering DOI) - 27 Apr 2024
Abstract
The study analysed the 12th wave (2019) of data from the Panel Study on Korean Children conducted by the Korea Institute of Child Care and Education. A total of 1174 children were selected as the subjects of the study. The results concerning the [...] Read more.
The study analysed the 12th wave (2019) of data from the Panel Study on Korean Children conducted by the Korea Institute of Child Care and Education. A total of 1174 children were selected as the subjects of the study. The results concerning the identifying factors influencing overweight and obesity in later school-aged children revealed that when compared to boys, girls were 1.66 times more likely to be overweight or obese. Moreover, for every one-hour increase in media usage time, the likelihood of being overweight or obese increased by 1.23 times, and for every one-point increase in body dissatisfaction, the probability of being overweight or obese increased by 2.07 times. However, among personality traits, neuroticism was associated with a 0.96 times lower likelihood of being overweight or obese. These findings underscore the significance of considering not only lifestyle factors but also psychosocial characteristics such as body dissatisfaction and neuroticism as predictive factors for overweight and obesity in later school-aged children, providing a basis for intervention. Full article
(This article belongs to the Special Issue Interventions for Preventing Obesity in Children and Adolescents)
26 pages, 2976 KiB  
Article
Management Policy in Urban Rail Transit System: Trade-Off between Social Distancing and Service Efficiency Using Simulation in the Post-Epidemic Era
by Zhichao Cao, Avishai (Avi) Ceder, Zihan Wang, Silin Zhang and Yaoyao Wang
Systems 2024, 12(5), 151; https://doi.org/10.3390/systems12050151 (registering DOI) - 27 Apr 2024
Abstract
The past COVID-19 pandemic introduced the world to the necessity of dealing with the trade-off between minimizing probability of contagion, and providing people with services they need. This trade-off stipulates that a large person-to-person distance will reduce contagion probability, but will render service [...] Read more.
The past COVID-19 pandemic introduced the world to the necessity of dealing with the trade-off between minimizing probability of contagion, and providing people with services they need. This trade-off stipulates that a large person-to-person distance will reduce contagion probability, but will render service inefficient, and vice versa. This work focuses on the urban rail transit (URT) hub, as an example of a busy passenger area, from which we can derive an optimal preparedness policy to use during the pandemic time of any coronaviruses. We use simulation methodology, based on the classical social force model, to represent behaviors and characteristics of pedestrians. Passenger flow movement process is a mechanism we explore to figure out how the epidemic management policy and pedestrian psychological-related behaviors interact with the URT system. The systems’ complexity regarding contagion-prevention distances are tested over a few scenarios: before/after the outbreak, and for different person-to-person distances demonstrating different crowd levels. A case study of Xinjiekou Station, Nanjing URT, China, enables assessment of passenger management policy with person-to-person distances of 0.5 m, 1.0 m and 2.0 m. Multi-scenario performance illustrates the trade-off in dynamic between the efficiency of pedestrians’ walking behaviors and the distancing needs for preventing coronaviruses transmission. The results show that queuing length with social distancing of 1.0 m and 2.0 m is increased by 4.17% and 21.22%. The average delays in boarding are 14.1 s and 22.5 s for 1.0 m and 2.0 m, which leads to 15.29% and 22.39% increases, respectively, in comparison with ordinary social distancing of about 0.5 m. Full article
(This article belongs to the Special Issue Decision Making and Policy Analysis in Transportation Planning)
3 pages, 145 KiB  
Editorial
Characterization, Applications and New Technologies of Civil Engineering Materials and Structures
by Wensheng Wang, Qinglin Guo and Jue Li
Materials 2024, 17(9), 2058; https://doi.org/10.3390/ma17092058 (registering DOI) - 27 Apr 2024
Abstract
With the continuous development of large-scale maintenance of infrastructure, accurate, reasonable, and efficient mechanical behavior evaluation and performance prediction of civil materials and structures have become the keys to improving service durability and intelligent maintenance management for infrastructure [...] Full article
14 pages, 5647 KiB  
Article
OpenWeedGUI: An Open-Source Graphical Tool for Weed Imaging and YOLO-Based Weed Detection
by Jiajun Xu, Yuzhen Lu and Boyang Deng
Electronics 2024, 13(9), 1699; https://doi.org/10.3390/electronics13091699 (registering DOI) - 27 Apr 2024
Abstract
Weed management impacts crop yield and quality. Machine vision technology is crucial to the realization of site-specific precision weeding for sustainable crop production. Progress has been made in developing computer vision algorithms, machine learning models, and datasets for weed recognition, but there has [...] Read more.
Weed management impacts crop yield and quality. Machine vision technology is crucial to the realization of site-specific precision weeding for sustainable crop production. Progress has been made in developing computer vision algorithms, machine learning models, and datasets for weed recognition, but there has been a lack of open-source, publicly available software tools that link imaging hardware and offline trained models for system prototyping and evaluation, hindering community-wise development efforts. Graphical user interfaces (GUIs) are among such tools that can integrate hardware, data, and models to accelerate the deployment and adoption of machine vision-based weeding technology. This study introduces a novel GUI called OpenWeedGUI, designed for the ease of acquiring images and deploying YOLO (You Only Look Once) models for real-time weed detection, bridging the gap between machine vision and artificial intelligence (AI) technologies and users. The GUI was created in the framework of PyQt with the aid of open-source libraries for image collection, transformation, weed detection, and visualization. It consists of various functional modules for flexible user controls and a live display window for visualizing weed imagery and detection. Notably, it supports the deployment of a large suite of 31 different YOLO weed detection models, providing flexibility in model selection. Extensive indoor and field tests demonstrated the competencies of the developed software program. The OpenWeedGUI is expected to be a useful tool for promoting community efforts to advance precision weeding technology. Full article
Show Figures

Figure 1

11 pages, 3186 KiB  
Article
Heat-Insulated Regenerated Fibers with UV Resistance: Silk Fibroin/Al2O3 Nanoparticles
by Jianjun Guo, Song Lu, Yi Zhou, Yuanyuan Yang, Xiaoxian Yao and Guohua Wu
Molecules 2024, 29(9), 2023; https://doi.org/10.3390/molecules29092023 (registering DOI) - 27 Apr 2024
Abstract
The various wastes generated by silkworm silk textiles that are no longer in use are increasing, which is causing considerable waste and contamination. This issue has attracted widespread attention in countries that use a lot of silk. Therefore, enhancing the mechanical properties of [...] Read more.
The various wastes generated by silkworm silk textiles that are no longer in use are increasing, which is causing considerable waste and contamination. This issue has attracted widespread attention in countries that use a lot of silk. Therefore, enhancing the mechanical properties of regenerated silk fibroin (RSF) and enriching the function of silk are important directions to expand the comprehensive utilization of silk products. In this paper, the preparation of RSF/Al2O3 nanoparticles (NPs) hybrid fiber with different Al2O3 NPs contents by wet spinning and its novel performance are reported. It was found that the RSF/Al2O3 NPs hybrid fiber was a multifunctional fiber material with thermal insulation and UV resistance. Natural light tests showed that the temperature rise rate of RSF/Al2O3 NPs hybrid fibers was slower than that of RSF fibers, and the average temperature rose from 29.1 °C to about 35.4 °C in 15 min, while RSF fibers could rise to about 40.1 °C. UV absorption tests showed that the hybrid fiber was resistant to UV radiation. Furthermore, the addition of Al2O3 NPs may improve the mechanical properties of the hybrid fibers. This was because the blending of Al2O3 NPs promoted the self-assembly of β-sheets in the RSF reaction mixture in a dose-dependent manner, which was manifested as the RSF/Al2O3 NPs hybrid fibers had more β-sheets, crystallinity, and a smaller crystal size. In addition, RSF/Al2O3 NPs hybrid fibers had good biocompatibility and durability in micro-alkaline sweat environments. The above performance makes the RSF/Al2O3 NPs hybrid fibers promising candidates for application in heat-insulating and UV-resistant fabrics as well as military clothing. Full article
Show Figures

Figure 1

12 pages, 1880 KiB  
Review
Recent Advances of MSCs in Renal IRI: From Injury to Renal Fibrosis
by Xinhao Niu, Xiaoqing Xu, Cuidi Xu, Yin Celeste Cheuk and Ruiming Rong
Bioengineering 2024, 11(5), 432; https://doi.org/10.3390/bioengineering11050432 (registering DOI) - 27 Apr 2024
Abstract
Renal fibrosis is a pathological endpoint of maladaptation after ischemia-reperfusion injury (IRI), and despite many attempts, no good treatment has been achieved so far. At the core of renal fibrosis is the differentiation of various types of cells into myofibroblasts. MSCs were once [...] Read more.
Renal fibrosis is a pathological endpoint of maladaptation after ischemia-reperfusion injury (IRI), and despite many attempts, no good treatment has been achieved so far. At the core of renal fibrosis is the differentiation of various types of cells into myofibroblasts. MSCs were once thought to play a protective role after renal IRI. However, growing evidence suggests that MSCs have a two-sided nature. In spite of their protective role, in maladaptive situations, MSCs start to differentiate towards myofibroblasts, increasing the myofibroblast pool and promoting renal fibrosis. Following renal IRI, it has been observed that Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs) and Renal Resident Mesenchymal Stem Cells (RR-MSCs) play important roles. This review presents evidence supporting their involvement, discusses their potential mechanisms of action, and suggests several new targets for future research. Full article
Show Figures

Figure 1

14 pages, 2999 KiB  
Article
Elevating Innovation: Unveiling the Twin Traction Method for a 50-Ton Load Capacity Elevator in Building and Construction Applications
by Gi-Young Kim and Seung-Ho Jang
Buildings 2024, 14(5), 1244; https://doi.org/10.3390/buildings14051244 (registering DOI) - 27 Apr 2024
Abstract
Most commercial elevators for buildings exceeding four stories use a cable-driven traction system. Typically, a single traction machine operates by hoisting the main cable on a traction sheave, thus vertically transporting the elevator car through rotational motion of the sheave. This research introduces [...] Read more.
Most commercial elevators for buildings exceeding four stories use a cable-driven traction system. Typically, a single traction machine operates by hoisting the main cable on a traction sheave, thus vertically transporting the elevator car through rotational motion of the sheave. This research introduces a groundbreaking advancement aimed at elevating loading capacity to an unprecedented 50 tons—the highest known in the world. The innovation involves the development of a twin traction system, wherein two traction machines collaborate to lift the elevator. This novel elevator system has demonstrated remarkable capabilities, showcasing the ability to transport up to 300 passengers in a single trip. The installation of this high-capacity elevator system has yielded substantial improvements in construction work efficiency and safety protocols, particularly in scenarios where cranes are traditionally used. The newly developed elevator could lift 50 tons of equipment 60 times a day, whereas the crane was limited to 8 times. The positive impact on labor is also noteworthy, with increased safety and health considerations, especially in adverse weather conditions. By eliminating the need for manual stair climbing, the well-being of the workforce is prioritized. Furthermore, the heightened productivity resulting from a significant reduction in wait times for conventional elevators is a key outcome of this transformative technology. This research not only unveils a groundbreaking twin traction system but also highlights its multifaceted features in enhancing efficiency, safety, and overall productivity in various industries. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop